Módulo (ou valor absoluto) de um número real: a função modular

Tamanho: px
Começar a partir da página:

Download "Módulo (ou valor absoluto) de um número real: a função modular"

Transcrição

1 Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica 1 Parte 5 Matemática Básica 2 Módulo (ou valor absoluto) de um número real f : R R Definição x f (x) x Exemlos: x, se x 0, x, se x < 0. Módulo (ou valor absoluto) de um número real Mais exemlos: , π 3.14 π 3.14, x x 2 + 1,, se 0,, se < 0, 2 2, 2 2, 0 0, x 2 x 2, x 1 x 1, se x 1, x + 1, se x < 1. x 2 1 x 2 1, se x 2 1 0, (x 2 1), se x 2 1 < 0, x 2 1, se x 1oux 1, x 2 + 1, se 1 < x < 1. Parte 5 Matemática Básica 3 Parte 5 Matemática Básica 4

2 Módulo (ou valor absoluto) de um número real Proriedades a R, a 0. Além disso, a 0 a 0. a b a b ou a b. Observação: a b b 0e(a b ou a b). x x, se x 0, x, se x < 0 x, se x > 0, 0, se x 0, x, se x < 0. x, se x > 0, x, se x 0 a, b R, a b a b. a R, b R 0, a/b a / b. < a a < < a. Vale também que a a a. > a < a ou > a. Vale também que a a ou a. a, b R, a + b a + b (desigualdade triangular). a, b R, a b a b. Parte 5 Matemática Básica 5 Parte 5 Matemática Básica 6 Proriedade [PM01]: demonstração a R, a 0. Além disso, a 0 a 0. Proriedade [PM02]: demonstração a b a b ou a b. Demonstração. Se a R, então, ou a > 0, ou a 0oua < 0. Se a > 0, então a a > 0. Se a 0, então a 0. Se a < 0, então a a > 0 (ois se a < 0, então a > 0). Em todos os três casos, a 0. Vamos agora demonstrar que a 0 a 0. ( ) Suonha, or absurdo, que exista a R tal que a 0 e a 0. Se a 0, então a > 0oua < 0. Nos dois casos, a > 0, uma contradição. Portanto, vale que a 0 a 0. ( ) Se a 0, então, or definição, a 0. Demonstração. ( ) Sejam a, b R tais que a b. Vamos dividir a rova em vários casos, de acordo com os sinais de a edeb. Em todos eles, veremos que a b a b ou a b. a 0e a b b a 0 b 0ea 0 a b. b 0e a b a b 0 a 0eb 0 a b. a > 0, b > 0e a b a b. a > 0, b < 0e a b a b. a < 0, b > 0e a b a b a b. a < 0, b < 0e a b a b a b. ( ) Se a b, então a b. Sea b, então b, se b 0, a b ( b), se b < 0 b, se b 0, b, se b > 0 b. Parte 5 Matemática Básica 7 Parte 5 Matemática Básica 8

3 Proriedade [PM03]: demonstração a b b 0e(a b ou a b). Proriedade [PM04]: demonstração a, b R, a b a b. Demonstração. ( ) Sejam a, b R tais que a b. Por [PM01], b 0. Portanto, b b. Sendo assim, a b a b. Por [PM02], segue-se então que a b ou a b. ( ) Por [PM02], se a b ou a b, então a b. Como b 0, b b. Logo, a b. Observação. A sentença a b a b ou a b é verdadeira! Demonstração. Vamos dividir a rova em vários casos, de acordo com os sinais de a e de b. a 0 a b 0e a 0 a b 0e a b 0 a b a b. b 0 a b 0e b 0 a b 0e a b 0 a b a b. a > 0eb > 0 a b > 0e a a e b b a b a b a b. a > 0eb < 0 a b < 0e a a e b b a b a b a ( b) a b. a < 0eb > 0 a b < 0e a a e b b a b a b ( a) b a b. a < 0eb < 0 a b > 0e a a e b b a b a b ( a) ( b) a b. Em todos os casos, vemos que semre a b a b. Mas sua recíroca é falsa! (Exercício!) Parte 5 Matemática Básica 9 Parte 5 Matemática Básica 10 Proriedade [PM05]: demonstração a R, b R 0, a/b a / b. Proriedade [PM06]: demonstração < a a < < a. Vale também que a a a. Demonstração. Vamos mostrar rimeiro que b R 0, 1/b 1/ b. Se b > 0, então 1/b > 0e b b. Portanto, 1/b 1/b 1/ b. Seb < 0, então 1/b < 0e b b. Portanto, 1/b 1/b 1/( b) 1/ b. Mostramos assim que 1/b 1/ b ara todo b 0. De osse deste resultado e usando [PM04], temos que a R e b R 0, a b a 1 a b 1 b a 1 b a b. Demonstração. Vamos demonstrar que < a a < < a. A demonstração de que a a a fica como exercício. Se a 0, então a equivalência é verdadeira or vacuidade: não existe nenhum número real tal que < a, como não existe nenhum número real tal que a < < a, quando a 0. Suonha então que a > 0. Temos então que < a ( < 0e < a) ou ( 0e < a) ( < 0e > a) ou ( 0e < a) a < < 0 ou 0 < a a < < a. Parte 5 Matemática Básica 11 Parte 5 Matemática Básica 12

4 Proriedade [PM07]: demonstração > a < a ou > a. Vale também que a a ou a. Proriedade [PM08]: demonstração a, b R, a + b a + b (desigualdade triangular). Demonstração. Vamos demonstrar que > a < a ou > a. A demonstração de que a a ou a fica como exercício. Se a < 0, então > a R e < a ou > a R. Logo, se a < 0, então > a < a ou > a. Se a 0, então > a R 0 e < a ou > a R 0. Logo, se a 0, então > a < a ou > a. Suonha então que a > 0. Temos então que > a ( < 0e > a) ou ( 0e > a) ( < 0e < a) ou ( 0e > a) < a ou > a. Demonstração. Observe que, ara todo x R, x x x (exercício). Assim: a a a e b b b (exercício da lista) (exercício da lista) a b a + b a + b ( a + b ) a + b a + b [PM06] [PM06] a + b a + b. Parte 5 Matemática Básica 13 Parte 5 Matemática Básica 14 Proriedade [PM09]: demonstração Interretação geométrica a, b R, a b a b. Demonstração. Usando a desigualdade triangular, temos que a b +(a b) b + a b a b a b e b a +(b a) a + b a a + a b a b a b. Desta maneira: a b a b e a b a b. Segue-se então, or [PM06], que a b a b. E D A C B d(a, B) +2 d(b, C) +1 d(b, E) +5 d(d, E) +2 Parte 5 Matemática Básica 15 Parte 5 Matemática Básica 16

5 Interretação geométrica Duas roriedades imortantes a b < a a < < a > a < a ou > a d(a, b) b a, se b a, a b, se b < a b a. Para justificar estas roriedades, lembre-se que 0 é a distância entre e0. Moral: b a reresenta a distância entre os números a e b na reta numérica. a a 0 Parte 5 Matemática Básica 17 Parte 5 Matemática Básica 18 Alicação Alicação Resolva a desigualdade x < 2. Resolva a desigualdade 2 x + 5 > x < 2 2 < x < < 2 x < < 2 x < < x < 1 2 S ] 5 [ 2, x + 5 > 3 2 x + 5 < 3 ou 2x + 5 > 3 2 x < 3 5 ou 2x > x < 8 ou 2x > 2 x < 4 ou x > 1 S ], 4[ ] 1, + [ Parte 5 Matemática Básica 19 Parte 5 Matemática Básica 20

6 Alicação Resolva geometricamente a desigualdade x + 1 < x 2. x + 1 x ( 1) é a distância de x a 1. Proriedades da função modular f : R R x f (x) x x 2 é a distância de x a2. Se x ( 1) < x 2, então a distância de x a 1 deve ser menor do que a distância de x a2. 1/ S ], 1 [. 2 y x Gráfico da função f tem imagem [0, + [. f é descrescente em ], 0]. f é crescente em [0, + [. f não é injetiva. f não é inversível. f é ar. f tem um onto de mínimo global no onto x 0. f não ossui ontos de máximo global. Parte 5 Matemática Básica 21 Parte 5 Matemática Básica 22

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 7 10 de setembro de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Aula 7 10 de setembro de 2010 Aula 7 Pré-Cálculo 1 Módulo (ou valor absoluto) de um número real x

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado

Leia mais

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)

Humberto José Bortolossi   x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4) SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proosições Uma roosição é uma frase ue ode ser aenas verdadeira ou falsa. 1. Os saos são anfíbios. 2. A caital do Brasil é Porto Alegre. 3. O tomate é um tubérculo. 4. Por

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 2 13 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 2 13 de agosto de 2010 Aula 2 Pré-Cálculo 1 Problemas de organização e erros frequentes Problemas

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

Gabarito da Lista 6 de Microeconomia I

Gabarito da Lista 6 de Microeconomia I Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando

Leia mais

LISTA DE EXERCÍCIOS. Números Reais Geometricamente, Numericamente e Axiomaticamente

LISTA DE EXERCÍCIOS. Números Reais Geometricamente, Numericamente e Axiomaticamente LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 07 Números Reais Geometricamente, Numericamente e Axiomaticamente [01] Determine os números reais x,

Leia mais

LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo

LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.

Leia mais

Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi

Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA Fundamentos de Matemática Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstração direta, demonstração por absurdo e

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 09 Funções reais (domínio, imagem e gráfico), funções monótonas,

Leia mais

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r

Proposição 0 (Divisão Euclidiana): Dados a b, b b * existem q, r b unicamente determinados tais que 0 r < b e a = bq + r "!$#%& '!)( * +-,/.10 2/3"456387,:9;2 .1?/@.1, ACB DFEHG IJDLK8MHNLK8OHP Q RTSVUVWYXVZ\[^]_W Este artigo se roõe a ser uma referência sobre os temas citados no título, que aarecem naturalmente em diversos

Leia mais

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função afim Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 A função afim Proposição O gráfico

Leia mais

Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 SUMÁRIO Apresentação ------------------------------------------------- 2 Capítulo 2

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

MÓDULO DE UM NÚMERO REAL

MÓDULO DE UM NÚMERO REAL Hewlett-ackard MÓDUL DE UM NÚMER REAL Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho, aulo Luiz Ano: 2016 Sumário Módulo de um número real... 0 Módulo de um número real (definição formal)... 0... 0 ropriedades

Leia mais

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6 Folha 1 Matemátia Básia Humberto José Bortolossi Departamento de Matemátia Apliada Universidade Federal Fluminense A reta numéria Parte 6 Parte 6 Matemátia Básia 1 Parte 6 Matemátia Básia 2 A reta numéria

Leia mais

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1 UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA

MATEMÁTICA COMENTÁRIO DA PROVA COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: [email protected] Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA TAUTOLOGIA C1 C2 C3 v A coluna C3 é formada or valores lógicos verdadeiros (), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA C1 C2 C3 C1 C2 C3 A coluna C3 é formada or valores lógicos falsos (), Logo,

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

A função raiz quadrada

A função raiz quadrada Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função raiz quadrada Parte 6 Parte 6 Matemática Básica 1 Parte 6 Matemática Básica 2 A função

Leia mais

Uma Prova Vetorial da Fórmula de Heron

Uma Prova Vetorial da Fórmula de Heron Uma Prova Vetorial da Fórmula de Heron Fernando Neres de Oliveira 1 de janeiro de 015 Resumo Neste trabalho aresentaremos uma rova ara a famosa fórmula de Heron, usando algumas das oerações básicas da

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Função raiz quadrada, funções da forma y = f(x) = a 2 x 2, funções potência [01] Determine o domínio

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio

Leia mais

Uma Prova Vetorial da Fórmula de Heron

Uma Prova Vetorial da Fórmula de Heron Uma Prova Vetorial da Fórmula de Heron Fernando Neres de Oliveira Resumo Neste trabalho aresentaremos uma rova ara a famosa fórmula de Heron, usando algumas das oerações básicas da álgebra vetorial. Palavras

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Somas de números naturais consecutivos

Somas de números naturais consecutivos Julho 006 - nº 5 Somas de números naturais consecutivos António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho, Lisboa. Introdução O objectivo deste trabalho é abordar o roblema da reresentação

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: [email protected]. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Acréscimos e decréscimos - Resolução

Acréscimos e decréscimos - Resolução 0 (Unicam 5 ª fase) (Acréscimo e decréscimo ercentual) Uma comra no valor de.000 reais será aga com uma entrada de 600 reais e uma mensalidade de 4 reais. A taxa de juros alicada na mensalidade é igual

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função

Leia mais

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios Aula 25-Funções trigonométricas no ciclo trigonométrico 1) Função tangente (definição) 2)Gráfico da função tangente 3) Equações e inequações 4) Resolução de exercícios 1) Função tangente definição: Lembre

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano

Unidade 1 - Elementos de Lógica e Linguagem Matemáticas. Exemplo. O significado das palavras. Matemática Básica linguagem do cotidiano A Pirâmide de aprendizagem de William Glasser Unidade 1 - Elementos de Lógica e Linguagem Matemáticas Matemática Básica Departamento de Matemática Aplicada Universidade Federal Fluminense 2018.1 Segundo

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão 4 Nome: N.º Turma: Aresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...

Leia mais

Aula 5 Equações paramétricas de retas e planos

Aula 5 Equações paramétricas de retas e planos Aula 5 Equações paramétricas de retas e planos MÓDULO 1 - AULA 5 Objetivo Estabelecer as equações paramétricas de retas e planos no espaço usando dados diversos. Na Aula 3, do Módulo 1, vimos como determinar

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

2. Sendo f(x) = x 4 e g(x) = 4 x calcule:

2. Sendo f(x) = x 4 e g(x) = 4 x calcule: Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como

Leia mais

LIMITAÇÃO DE QUALQUER FATOR PRIMO DE UM NÚMERO PERFEITO ÍMPAR

LIMITAÇÃO DE QUALQUER FATOR PRIMO DE UM NÚMERO PERFEITO ÍMPAR 2013: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM LIMITAÇÃO DE QUALQUER FATOR

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

A reta numérica. Praciano-Pereira, T

A reta numérica. Praciano-Pereira, T A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, [email protected] - reta numérica Se diz duma reta na qual

Leia mais

Devemosconsiderardoiscasos: 7 k ou7 k+1. Alémdisso, lembremo-nosdoseguintefato:

Devemosconsiderardoiscasos: 7 k ou7 k+1. Alémdisso, lembremo-nosdoseguintefato: Polos Olímicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 18 Resíduos Quadráticos Definição 1. Para todos a tais que mdc(a,m) = 1, a é chamado resíduo quadrático módulo

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

Para Computação. Aula de Monitoria - Miniprova

Para Computação. Aula de Monitoria - Miniprova Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.

Leia mais

Propriedades. 1- Todo raio de luz que incide num espelho esférico paralelamente ao eixo principal reflete numa direção que passa pelo foco.

Propriedades. 1- Todo raio de luz que incide num espelho esférico paralelamente ao eixo principal reflete numa direção que passa pelo foco. ESPELHOS ESFÉRICOS Eselhos eséricos são suerícies reletoras que têm a orma de calota esérica. São côncavos se a suerície reletora or a arte interna, ou convexos, se a suerície reletora or a arte externa.

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais