Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Tamanho: px
Começar a partir da página:

Download "Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição"

Transcrição

1 Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções decrescentes Dizemos que uma função f : D C é crescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) < f ( 2 ). Dizemos que uma função f : D C é decrescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) > f ( 2 ). f ( 2 ) f ( 1 ) f ( 1 ) f ( 2 ) Parte 3 Pré-Cálculo 3 Parte 3 Pré-Cálculo 4

2 Funções monótonas não-decrescentes Dizemos que uma função f : D C é monótona não-decrescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) f ( 2 ). Funções monótonas não-decrescentes Dizemos que uma função f : D C é monótona não-decrescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) f ( 2 ). f ( 2 ) f ( 2 ) f ( 1 ) f ( 1 ) Parte 3 Pré-Cálculo 5 Parte 3 Pré-Cálculo 6 Funções monótonas não-crescentes Dizemos que uma função f : D C é monótona não-crescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) f ( 2 ). Funções monótonas não-crescentes Dizemos que uma função f : D C é monótona não-crescente em um subconjunto S de D se 1, 2 S, 1 < 2 f ( 1 ) f ( 2 ). f ( 1 ) f ( 2 ) f ( 1 ) f ( 2 ) Parte 3 Pré-Cálculo 7 Parte 3 Pré-Cálculo 8

3 Observações Uma função monótona em um conjunto S é uma função que é crescente, decrescente, monótona não-decrescente ou monótona não-crescente neste conjunto. Observações Eistem funções que não são monótonas. Por eemplo, a função descrita na figura abaio não é monótona no conjunto S =[ 1, 4]. Contudo, ela é monótona em [ 1, 0], em[0, 1], em[1, 3] eem[3, 4]. Note que toda função crescente em um conjunto S também é monótona não-decrescente neste conjunto e que toda função decrescente em um conjunto S também é monótona não-crescente neste conjunto. 40 Alguns autores chamam funções monótonas não-decrescentes simplesmente de funções não-decrescentes e funções monótonas nãocrescentes simplesmente de funções não-crescentes. Note, contudo, que negar (por eemplo) que uma função seja decrescente em um conjunto S não implica necessariamente que ela seja monótona não-decrescente neste conjunto. Uma função é estritamente monótona em um conjunto S se ou ela é crescente ou ela é decrescente neste conjunto Parte 3 Pré-Cálculo 9 Parte 3 Pré-Cálculo 10 Eemplo Mostre que a função = f () = 2 é crescente no intervalo S =[0, + ). Demonstração. Sejam 1, 2 S =[0, + ), com 1 < 2. Com estas condições, vale que 2 > 0e 2 1 > 0. Como 1 0e 2 > 0, segue-se que > 0. Como o produto de dois números reais positivos é ainda um número real positivo, temos que ( 2 1 )( ) > 0. Sendo assim, > 0 e, consequentemente, 2 2 > 1 2, isto é, f ( 2 ) > f ( 1 ). Mostramos então que 1, 2 S, 1 < 2 f ( 1 ) < f ( 2 ). Logo, f é uma função crescente em S. Estudar o crescimento de funções pode ser difícil! Em quais intervalos a função f abaio é crescente? f : R R f () = f é crescente nos intervalos (, 1 ] 1 (ln(2)) 2 ln(2) =(, ] e [ 1+ 1 (ln(2)) 2 ln(2), + ) =[ ,+ ). A disciplina de Cálculo ensinará novas ferramentas para se resolver questões deste tipo! Parte 3 Pré-Cálculo 11 Parte 3 Pré-Cálculo 12

4 Estudar o crescimento de funções pode ser difícil! f : R R f () = Funções injetivas, sobrejetivas e bijetivas Parte 3 Pré-Cálculo 13 Parte 3 Pré-Cálculo 14 Funções injetivas Funções injetivas Dizemos que f : D C é injetiva se elementos diferentes de D são transformados por f em elementos diferentes em C, isto é, se f satisfaz a seguinte condição: 1, 2 D, se 1 2, então f ( 1 ) f ( 2 ). Forma equivalente (usando a contrapositiva): f : D C é injetiva se ela satisfaz a seguinte condição: 1, 2 D, se f ( 1 )=f( 2 ), então 1 = 2. (Ir para o GeoGebra) Parte 3 Pré-Cálculo 15 Parte 3 Pré-Cálculo 16

5 Funções injetivas Funções injetivas (Ir para o GeoGebra) (Ir para o GeoGebra) Parte 3 Pré-Cálculo 17 Parte 3 Pré-Cálculo 18 Eemplo Mostre que a função f : R R definida por = f () =2 + 1 é injetiva. Demonstração. Sejam 1, 2 R tais que f ( 1 )=f( 2 ). Temos que f ( 1 )=f( 2 ) = = = 2. Eercício Mostre que a função f :[0, + ) R definida por = f () = 2 é injetiva. Demonstração. Sejam 1, 2 R tais que f ( 1 )=f( 2 ). Temos que f ( 1 )=f( 2 ) 1 2 = = 0 ( 1 2 )( )=0. Assim, 1 2 = 0ou = 0, isto é, 1 = 2 ou 1 = 2. No caso em que 1 = 2, como 1 0e 2 0, concluímos que obrigatoriamente 1 = 0e 2 = 0. Em particular, 1 = 2. Outra demonstração. sejam 1, 2 [0, + ), com 1 2. Então 1 < 2 ou 2 < 1. Como f é crescente em [0, + ), segue-se que f ( 1 ) < f ( 2 ) ou f ( 2 ) < f ( 1 ). Nos dois casos, f ( 1 ) f ( 2 ). Parte 3 Pré-Cálculo 19 Parte 3 Pré-Cálculo 20

6 Funções sobrejetivas Funções sobrejetivas Dizemos que f : D C é sobrejetiva se sua imagem é igual ao seu contradomínio, isto é, se para todo C, pode-se encontrar (pelo menos) um elemento D tal que f () =. (Ir para o GeoGebra) Parte 3 Pré-Cálculo 21 Parte 3 Pré-Cálculo 22 Funções sobrejetivas Funções sobrejetivas f : R R f () =1 não é injetiva! Mas g : R {1} g() =1 é injetiva! (Ir para o GeoGebra) Parte 3 Pré-Cálculo 23 Parte 3 Pré-Cálculo 24

7 Eemplo Mostre que a função f : R R definida por = f () =2 + 1 é sobrejetiva. Demonstração. Seja R. Observe que f () = = 2 = 1 = 1 2. Assim, =( 1)/2 R é tal que f () =. Isto mostra que f é sobrejetiva. Atenção! Mostrar que a função f :[0, + ) [0, + ) definida por = f () = 2 é sobrejetiva é bem mais complicado! Para fazer isto, precisaríamos do conceito de continuidade, que será visto em Cálculo I -A-. Parte 3 Pré-Cálculo 25 Parte 3 Pré-Cálculo 26 Funções bijetivas Funções bijetivas f : R R f () =2 + 1 é bijetiva. Dizemos que f : D C é bijetiva se ela é injetiva e sobrejetiva. 0 Parte 3 Pré-Cálculo 27 Parte 3 Pré-Cálculo 28

8 Funções bijetivas f : R R f () = 2 não é bijetiva, pois não é injetiva e nem sobrejetiva. Funções bijetivas f : R [0, + ) f () = 2 não é bijetiva, pois não é injetiva (mas é sobrejetiva). 0 0 Parte 3 Pré-Cálculo 29 Parte 3 Pré-Cálculo 30 Funções bijetivas f : [0, + ) [0, + ) f () = 2 é bijetiva. Novas funções a partir de antigas: operações com funções 0 Parte 3 Pré-Cálculo 31 Parte 3 Pré-Cálculo 32

9 Operações com funções Eemplo: soma Sejam f : D f R e g : D g R duas funções reais. Definimos as funções soma f + g, diferença f g, produto f g e quociente f /g da seguinte forma: (f +g)() = f ()+g(), com D f+g = D f D g (f g)() = f () g(), com D f g = D f D g (f g)() = f () g(), com D f g = D f D g (f / g)() = f () / g(), com D f / g = { D f D g g() 0}. f () =1 + 2, g() = 3. D f =[2, + ), D g = R. (f + g)() =f ()+g() = = 2 + 2, D f +g = D f D g =[2, + ). Parte 3 Pré-Cálculo 33 Parte 3 Pré-Cálculo 34 Eemplo: diferença Eemplo: produto f () =1 + 2, g() = 3. D f =[2, + ), D g = R. f () =1 + 2, g() = 3. D f =[2, + ), D g = R. (f g)() =f () g() =1 + 2 ( 3) =4 + 2, D f g = D f D g =[2, + ). (f g)() =f () g() =(1 + 2) ( 3), D f g = D f D g =[2, + ). Parte 3 Pré-Cálculo 35 Parte 3 Pré-Cálculo 36

10 Eemplo: quociente Cuidado! f () =1 + 2, g() = 3. f () =, g() =. D f =[2, + ), D g = R. D f = R, D g = R. (f /g)() =f ()/g() = 1 + 2, 3 D f /g = D f D g { D g g() =0} =[2, + ) {3}. ( ) f () = f () g g() = = 1, D f /g = D f D g { D g g() =0} = R {0}. Parte 3 Pré-Cálculo 37 Parte 3 Pré-Cálculo 38 Composição de funções Sejam f : D f C f e g : D g C g duas funções reais tais que C g D f. A composição de f e g é a função f g : D g C f definida por: Composição de funções (f g)() =f (g()). Parte 3 Pré-Cálculo 39 Parte 3 Pré-Cálculo 40

11 Composição de funções Sejam f : D f C f e g : D g C g duas funções reais tais que C g D f. A composição de f e g é a função f g : D g C f definida por: (f g)() =f (g()). Composição de funções Sejam f : D f C f e g : D g C g duas funções reais tais que C g D f. A composição de f e g é a função f g : D g C f definida por: (f g)() =f (g()). (entrada) (saída) (entrada) (saída) Parte 3 Pré-Cálculo 41 Parte 3 Pré-Cálculo 42 Eemplo Eemplo f () = 2 + 3, g() =. f () = 2 + 3, g() =. (f g)() =f (g()) = f ( )=( ) = + 3. (g f )() =g(f ()) = g( 2 + 3) = Parte 3 Pré-Cálculo 43 Parte 3 Pré-Cálculo 44

12 Eemplo Identificando composições f () = 2 + 3, g() =. h() =( 2 + 1) 10 =(f g)() (f g)() = + 3, (g f )() = onde Moral: (em geral) f g g f. A operação de composição de funções não é comutativa! f () = 10 e g() = Parte 3 Pré-Cálculo 45 Parte 3 Pré-Cálculo 46 Identificando composições Identificando composições h() =tg( 5 )=(f g)() h() = 4 3 =(f g)() onde onde f () = tg() e g() = 5. f () = e g() =4 3. Parte 3 Pré-Cálculo 47 Parte 3 Pré-Cálculo 48

13 Identificando composições Identificando composições h() =8 + =(f g)() h() =1/( + 1) =(f g)() onde onde f () =8 + e g() =. f () =1/ e g() = + 1. Parte 3 Pré-Cálculo 49 Parte 3 Pré-Cálculo 50 Funções inversíveis Dizemos que uma função f : D C é inversível se eiste função g : C D tal que Funções inversíveis e (g f )() =g(f ()) =, para todo D (f g)() =f (g()) =, para todo C. Neste caso, dizemos que g éainversa de f e escreveremos: g = f 1. Parte 3 Pré-Cálculo 51 Parte 3 Pré-Cálculo 52

14 Eemplo Eemplo Parte 3 Pré-Cálculo 53 Parte 3 Pré-Cálculo 54 Eemplo A função f : D = R C = R = f () =2 + 1 é inversível, pois g : C = R D = R = g() =( 1)/2 Cuidado Cuidado! f 1 () e (f ()) 1 denotam objetos diferentes! é tal que (g f )() =g(f ()) = g(2 + 1) =((2 + 1) 1)/2 =, D = R e (f g)() =f (g()) = f (( 1)/2) =2(( 1)/2)+1 =, C = R. Podemos então escrever que f 1 () =g() =( 1)/2. f 1 () é a função inversa de f calculada em. (f ()) 1 é igual a 1/f (). No eemplo anterior, f 1 () =( 1)/2, enquanto que (f ()) 1 =(2 + 1) 1 = 1/(2 + 1). Parte 3 Pré-Cálculo 55 Parte 3 Pré-Cálculo 56

15 Proposição Proposição f : D C é uma função inversível se, e somente se, f é bijetiva, isto é, se, e somente se, 1. f é injetiva: para todo 1, 2 D, se 1 2, então f ( 1 ) f ( 2 ) e, ao mesmo tempo, 2. f é sobrejetiva: para todo C, eiste pelo menos um D tal que f () =. Demonstração: ( ) Se f : D C é inversível, então eiste uma função g : C D tal que D, (g f )() =g(f ()) = e C, (f g)() =f (g()) =. Suponha, por absurdo, que f não seja injetiva. Então eistem 1, 2 D tais que 1 2 e f ( 1 ) = f ( 2 ). Mas, se f ( 1 ) = f ( 2 ), então g(f ( 1 )) = g(f ( 2 )), isto é, 1 = 2, uma contradição. Assim f : D C é injetiva. Seja C. Se = g(), então f () =f (g()) =. Isso mostra que f : D C é sobrejetiva. Como f : D C é injetiva e sobrejetiva, segue-se que f : D C é bijetiva. Parte 3 Pré-Cálculo 57 Parte 3 Pré-Cálculo 58 Demonstração: ( ) Como f : D C é sobrejetiva, para todo C, eiste D tal que f () =. Mais ainda: como f é injetiva, esse é único. Considere então a função g : C D definida por g() = = o único elemento de D tal que f () =. Observe que g(f ()) = g() =, D e f (g()) = f () =, C. Sendo assim, f é inversível e sua inversa é f 1 = g. Observações Provar que uma função é inversível pode não ser uma tarefa fácil seja com a definição, seja com a proposição anterior. A disciplina de Cálculo ensinará novas ferramentas para estudar se uma função é inversível (localmente). Parte 3 Pré-Cálculo 59 Parte 3 Pré-Cálculo 60

16 O gráfico da função inversa O gráfico da função inversa Seja f uma função real inversível. Se f (1) =2, então f 1 (2) =1. Assim, o ponto (1, 2) pertence ao gráfico de f e (2, 1) pertence ao gráfico de f 1. Se f (2) =3, então f 1 (3) =2. Assim, o ponto (2, 3) pertence ao gráfico de f e (3, 2) pertence ao gráfico de f 1. Se f () =, então f 1 () =. Assim, o ponto (, ) pertence ao gráfico de f e (, ) pertence ao gráfico de f 1. (Ir para o GeoGebra) Parte 3 Pré-Cálculo 61 Parte 3 Pré-Cálculo 62 O gráfico da função inversa Qual é a relação entre o gráfico de uma função e sua inversa? Se uma mesma escala foi usada para os eios e, os gráficos de f e f 1 são simétricos com relação a reta =. Se uma mesma escala foi usada para os eios e, o gráfico da inversa f 1 é obtido fazendo-se uma refleão do gráfico de f com relação a reta =. Parte 3 Pré-Cálculo 63

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição

Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 9 3 de abril de Aula 9 Pré-Cálculo Cuidado! Se os eios coordenados são desenhados com escalas

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4

GRÁFICO 1 GRÁFICO 2 GRÁFICO 3 GRÁFICO4 AUTOAVALIAÇÃO 0. Sobre a função f amplamente definida cuja lei de formação é f() = - 4 foram feitas as afirmações: 0 0 É uma função estritamente negativa. É uma função não-par e não-ímpar. É uma função

Leia mais

Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)

Humberto José Bortolossi   x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4) SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f

Leia mais

A função raiz quadrada

A função raiz quadrada Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função raiz quadrada Parte 6 Parte 6 Matemática Básica 1 Parte 6 Matemática Básica 2 A função

Leia mais

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 09 Funções reais (domínio, imagem e gráfico), funções monótonas,

Leia mais

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse.

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse. Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Escalas em Gráficos Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Cuidado! Cuidado! Um círculo

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE

EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE Nível Intermediário Um dos temas mais desafiadores para um olímpico são os problemas sobre equações funcionais.

Leia mais

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM300 - Pré-cálculo 0 a lista de eercícios (6/0/207 a 27/0/207). Sejam A e B conjuntos. Defina

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

Funções exponenciais e logarítmicas

Funções exponenciais e logarítmicas Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função par e função ímpar Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Função par Definição

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste 0º Ano de escolaridade Versão 3 Nome: Nº Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma

Leia mais

Limites: Noção intuitiva e geométrica

Limites: Noção intuitiva e geométrica Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL. Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano

UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL. Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano CAMPO MOURÃO 203 Capítulo Conjuntos e Funções Neste capítulo vamos fazer uma breve

Leia mais

Introdução às Equações Funcionais

Introdução às Equações Funcionais 1. Introdução Introdução às Equações Funcionais Prof. Davi Lopes OBM 22ª Semana Olímpica Anápolis 21/01/2019 Estudaremos aqui um dos assuntos mais requisitados no mundo olímpico: as equações funcionais.

Leia mais

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E.

FUNÇÕES. Carlos Eurico Galvão Rosa UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS UFPR JCE001 GALVÃO ROSA,C.E. UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO DE JANDAIA DO SUL LICENCIATURAS Injetiva FUNÇÕES Sobrejetiva Bijetiva Carlos Eurico Galvão Rosa UFPR 1 / 33 de Injetiva Sobrejetiva Bijetiva : Dados

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3 - Pré-cálculo a lista complementar de eercícios (6//7 a 7//7) Diga quais dos conjuntos abaio

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Funções, Seqüências, Cardinalidade

Funções, Seqüências, Cardinalidade Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R

Leia mais

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura:

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura: SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [01] (2.0) Resolva a desigualdade 1 x 2 2 x 3 0 usando a

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Etensivo V. Eercícios 0) a) S = {, } b) S = c) S = ; 4 d) S = {,,, } e) S = ; a) + = Pela propriedade IX temos: + = ou + = = = = = Para = Para = + = + = = = = (ok) = (ok) S = {, } b) = + Pela propriedade

Leia mais

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1 Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº do plano de trabalho nº 1 Resolver a atividade 4 da página 11 e os eercícios 15, 16, 17

Leia mais

Funções EXERCÍCIOS ( ) ( )

Funções EXERCÍCIOS ( ) ( ) Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1 UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em )

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em ) Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em 8-05-0). O Dinis dispõe de dez cartas todas diferentes: quatro do naipe de espadas,

Leia mais

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Neste momento do curso de Elementos de Cálculo, estamos interessados em rever algumas funções já estudadas no Ensino Médio de forma

Leia mais

A ideia geral das funções compostas é aplicar duas funções consecutivamente.

A ideia geral das funções compostas é aplicar duas funções consecutivamente. 56 9. Função Composta A ideia geral das funções compostas é aplicar duas funções consecutivamente. Considere f: A B e g: C D. y= f() y= g() Para podermos aplicar a função f primeiro, e no seu resultado

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/31 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

MATEMÁTICA A - 12o Ano Funções - Assintotas

MATEMÁTICA A - 12o Ano Funções - Assintotas MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,

Leia mais

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}.

Relações. Relações. {1, 2} = {2, 1}, {3, -1} = {-1, 3}, {a, b} = {b, a}. UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Relações. Par ordenado Em Matemática eistem

Leia mais

Gabarito da lista de Exercícios sobre Conjuntos

Gabarito da lista de Exercícios sobre Conjuntos Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais

Leia mais

MAT Cálculo Diferencial e Integral I para Economia - 1 semestre de 2013 Registro das aulas e exercícios sugeridos - Atualizado 15.6.

MAT Cálculo Diferencial e Integral I para Economia - 1 semestre de 2013 Registro das aulas e exercícios sugeridos - Atualizado 15.6. MAT 46 - Cálculo Diferencial e Integral I para Economia - semestre de 203 Registro das aulas e eercícios sugeridos - Atualizado 5.6.203. Segunda-feira, 4 de março de 203 Apresentação do curso. www.ime.usp.br/

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função afim Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 A função afim Proposição O gráfico

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha

Curso de Pré Cálculo Dif. Int. I Aula 03 Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha Ministrante Profª. Drª. Silvana Heidemann Rocha Material elaborado pela Profª. Drª. Silvana Heidemann Rocha SUMÁRIO 4 FUNÇÃO REAL DE UMA VARIÁVEL REAL 1 4.1 DEFINIÇÃO E NOTAÇÃO Definição Dados dois conjuntos

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Exercícios de Complementos de Matemática I

Exercícios de Complementos de Matemática I Exercícios de Complementos de Matemática I 9 de Novembro de 018 Semana I-II-III Do Leithold: Exercicios 1.1: ex. 1 até 56. Exercicios de revisão do cap. 1., pag 5-53: ex 1 até ex 0. Exercìcio 1. Sejam

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais