Funções exponenciais e logarítmicas
|
|
|
- Ayrton Moreira Peralta
- 9 Há anos
- Visualizações:
Transcrição
1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções exponenciais e logarítmicas Parte 07 Parte 7 Matemática Básica 1 Parte 7 Matemática Básica 2 Observações Nosso enfoque aqui será mais do pontos de vista operacional do que conceitual. Uma construção conceitual das funções exponencial e logarítmica requer ferramentas de cálculo diferencial e integral. Para o leitor interessado em uma abordagem mais conceitual, indicamos as referências a seguir. y = f x) =a x, com a > 0ex R. 1) Vale que f 0) =a 0 = 1, para todo a > 0. Temos também que f x) =a x > 0 para todo a > 0ex R. 2) Vale que f p + q) =a p+q = a p a q = f p) f q). 3) Vale que f x + h)/f x) =a x+h /a x = a h não depende de x, apenas de h. 4) Vale que f é crescente para a > 1 e decrescente para 0 < a < 1. Parte 7 Matemática Básica 3 Parte 7 Matemática Básica 4
2 y = f x) =a x, com a > 0ex R. y = f x) =a x, com a > 0ex R. y = f x) =a x é crescente para a > 1 e decrescente para 0 < a < 1. É importante saber os gráficos das funções exponenciais! Parte 7 Matemática Básica 5 Parte 7 Matemática Básica 6 Motivação: dívida de R$ 1.00 a 100% ao ano Valor do dinheiro considerando 1 período de 12 meses: y = f x) =a x, com a > 0ex R = 2. Uma função exponencial especial: y = e x, com e = Valor do dinheiro considerando 2 períodos de 6 meses: + 1 = = ) Valor do dinheiro considerando 3 períodos de 4 meses: ) = = ) Valor do dinheiro considerando n períodos de 12/n meses: n. n Parte 7 Matemática Básica 7 Parte 7 Matemática Básica 8
3 Motivação: empréstimo de R$ 1.00 a 100% ao ano Valor do dinheiro considerando n períodos de 12/n meses: n. n Moral: como lim n /n) n = e = , o valor justo do pagamento um empréstimo de R$ 1.00 a 100% ao ano após 1 ano deveria ser de e = reais. Em Cálculo I -A- você aprenderá que e que e x = lim 1 + x ) n n + n e x = 1 + x + x 2 2! + x 3 3! + + x n n! + = i=0 x i i!. Cuidado: função exponencial função potência Cuidado: função exponencial função potência! Função exponencial: y = constante x. Função potência: y = x constante. y = x x não é uma função exponencial e nem uma função potência! Parte 7 Matemática Básica 9 Parte 7 Matemática Básica 10 f : R ]0, + [ x y = f x) =ax, com a ]0, + [ {1} Observações Note que A função f : R ]0, + [ é injetiva pois é crescente se a > 1 e decrescente se 0 < a < 1). A função f : R ]0, + [ é sobrejetiva a prova deste fato requer ferramentas de análise). Logo f : ]0, + [ R é bijetiva e, portanto, inversível. A função inversa f 1 de f é denominada função logarítmica de base a. Usaremos a notação log a x) para representar f 1 x). Note então que, se x > 0, então log a x) éoúnico número real tal que a elevado a esse número dá o número real x. Parte 7 Matemática Básica 11 log a a x ) = x, para todo x R e a log a x) = x, para todo x ]0, + [. Se a = e = , então é usual escrever lnx) para representar log e x). Assim, lne x )=x para todo x R e e lnx) = x para todo x > 0. Parte 7 Matemática Básica 12
4 : propriedades y = f x) =log a x) com a > 0, a 1ex ]0, + [. É importante saber os gráficos das funções logarítmicas! Se x > 0, então log a x) éoúnico número real tal que a elevado a esse número dá o número real x. log a 1) =0 e log a a) =1, para todo a > 0ea 1. De fato: log a 1) é o único número real tal que a elevado a este número dá 1: a log a 1) = 1. Como a 0 também é igual a 1, segue-se que log a 1) =0. De fato: log a a) é o único número real tal que a elevado a este número dá a: a log a a) = a. Como a 1 também é igual a a, segue-se que log a a) =1. Parte 7 Matemática Básica 13 Parte 7 Matemática Básica 14 Se x > 0, então log a x) éoúnico número real tal que a elevado a esse número dá o número real x. Se p > 0eq > 0, então log a p q) =log a p)+log a q). De fato: log a p q) é o único número real tal que a elevado a este número dá p q: a log a p q) = p q. Agora: a log a p)+log a q) = a log a p) a log a q) = p q. Logo, log a p q) =log a p)+log a q). Fica como exercício demonstrar as propriedades a seguir. Se p > 0er R, então log a p r )=r log a p). Se p > 0eq > 0, então log a p/q) =log a p) log a q). Se x > 0, a > 0, b > 0, a 1eb 1, então log a x) =log b x)/ log b a). Parte 7 Matemática Básica 15 Parte 7 Matemática Básica 16
5 Habilidade fundamental: mudar para base e x x = e lnx x ) = e x lnx) 1 + sen4 x)) cotgx) = e ln[1+sen4 x))cotgx) ] = cotgx) ln1+sen4 x)) e Funções potência, logarítmica e afim y = C x a, com C > 0, x > 0ea R função potência) lny) =lnc x a ) lny) =lnc)+lnx a ) lny) =lnc)+a lnx) 2 x = e ln2x ) = e x ln2) x 2 = e lnx 2) = e 2 lnx) para x > 0) Fazendo ỹ = lny) e x = lnx), vemos que: y = C x a, com C > 0, x > 0ea R função potência) ỹ = lnc)+a x função afim) Em escala logarítmica, funções potência são funções afins! Parte 7 Matemática Básica 17 Parte 7 Matemática Básica 18
Funções potência da forma f (x) =x n, com n N
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1
A função raiz quadrada
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense A função raiz quadrada Parte 6 Parte 6 Matemática Básica 1 Parte 6 Matemática Básica 2 A função
Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição
Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 10 23 de maio de 2010 Aula 10 Pré-Cálculo 1 Funções injetivas Funções injetivas, sobrejetivas
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo 1 Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções
Funções. Matemática Básica. O que é uma função? O que é uma função? Folha 1. Humberto José Bortolossi. Parte 07. Definição
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 07 Aula 9 Matemática Básica 1 Aula 9 Matemática Básica 2 O que é uma
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57
2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 09 Funções reais (domínio, imagem e gráfico), funções monótonas,
Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição
Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente
Cálculo Diferencial e Integral I
Provas e listas: Cálculo Diferencial e Integral I Período 204.2 Sérgio de Albuquerque Souza 4 de maio de 205 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio
Humberto José Bortolossi x 1 < 0 x2 x 12 < 0. x 1 x + 12 (x + 3)(x 4)
SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (2.0) Resolva a inequação x 2 < x + 2 no conjunto dos
CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função
Funções, Seqüências, Cardinalidade
Funções, Seqüências, Cardinalidade Prof.: Rossini Monteiro Noções Básicas Definição (Função) Sejam A e B conjuntos. Uma função de A em B é um mapeamento de exatamente um elemento de B para cada elemento
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
MATEMÁTICA. Função e Equação Logaritmo. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função e Equação Logaritmo Professor : Dêner Rocha Monster Concursos 1 Logaritmos Definição A ideia que concebeu o logarítmo é muito simples, ou seja, podemos associar o termo Logaritmo, como
MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)
MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação
A derivada (continuação) Aula 17
A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema
Módulo (ou valor absoluto) de um número real: a função modular
Matemática Básica Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Módulo (ou valor absoluto) de um número real: a função modular Parte 5 Parte 5 Matemática Básica
Integração por Partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência
Gabarito das Questões do Curso de Nivelamento LISTA 2
Gabarito das Questões do Curso de Nivelamento LISTA 2 Questão 01: a) Quociente = 3x + 7, resto = 193 b) Quociente = 5t 2 + 7t + 5, resto = 0 c) Quociente = 5y 3 + y 2 4y + 15, resto = 43 Questão 02: a)
Derivada - Parte 2 - Regras de derivação
Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (
Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x
Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria
MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP)
MAT 0143 Aula 14/ 30/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Derivada de sen, cos 3 Regra da cadeia 4 Funções inversas 5 Derivada da função
Pré-Cálculo ECT2101 Slides de apoio Funções II
Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Generalidades Aplicação: integrais cujos integrandos são compostos de: produtos; funções trigonométricas;
Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f
0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.
Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :
CONTINUIDADE E LIMITES INFINITOS
MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição
Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2
Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais
Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções Parte 2 Parte 2 Pré-Cálculo Parte 2 Pré-Cálculo 2 O que é uma função? O que é uma função?
CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e
CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área
LINEARIZAÇÃO DE GRÁFICOS
LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos
1. Polinómios e funções racionais
Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição
FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável.
FUNÇÃO EXPONENCIAL DEFINIÇÃO: Chama-se função exponencial qualquer função f: R R dada por uma lei da forma f(x) =a x, em que a é um número real dado, a>0 e a 1. Exemplos: y = 2 x ; f(x)=(1/3) x ; f(x)
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar
MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Taciana Villela Savian Sala 304, pav. Engenharia, ramal 237 [email protected] [email protected]
Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y
. Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:
Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 14 17 de junho de 2011 Aula 14 Pré-Cálculo 1 Funções da forma x elevado a menos n Aula 14 Pré-Cálculo
Informática no Ensino da Matemática
Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 3 ATIVIDADE 1 (a) Sejam u =(a b)/(a + b), v =(b c)/(b + c) ew =(c a)/(c + a). Mostre
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos
CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
Pré-Cálculo. Humberto José Bortolossi. Aula 9 30 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 9 3 de abril de Aula 9 Pré-Cálculo Cuidado! Se os eios coordenados são desenhados com escalas
Derivadas. Incremento e taxa média de variação
Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a
Derivadas. Capítulo O problema da reta tangente
Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
ANÁLISE MATEMÁTICA II
ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se
Apresentação do curso
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Pré-Cálculo 1 Parte 1 Pré-Cálculo 2 Conteúdo do curso Números
Prof. Doherty Andrade. 25 de outubro de 2005
Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................
Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente
Unidade 5 Diferenciação Incremento e taxa média de variação
Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático
Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010
. Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log
Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado
Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:
Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT
Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018
CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Cálculo I -A- Humberto José Bortolossi. Parte 1 Versão 0.9. [Folha 1] Departamento de Matemática Aplicada Universidade Federal Fluminense
[Folha 1] Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 1 Versão 0.9 Parte 1 Cálculo I -A- 1 Conteúdo do curso [Folha 2] Apresentação
1. Integração por partes. d dx. 1. Integração por partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
Matemática Aplicada à Economia LES 201. Aulas 19 e 20 Funções exponenciais e logarítmicas. Luiz Fernando Satolo
Matemática Aplicada à Economia LES 201 Aulas 19 e 20 Funções exponenciais e logarítmicas Luiz Fernando Satolo Funções Exponenciais e Logaritmicas Chiang, cap. 10 Funções exponenciais e logarítmicas várias
1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.
Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)
Universidade Federal de Pelotas Disciplina de Introdução à Economia Matemática Professor Rodrigo Nobre Fernandez. Primeira Avaliação
Universidade Federal de Pelotas Disciplina de Introdução à Economia Matemática Professor Rodrigo Nobre Fernandez Primeira Avaliação ) Sejam definidos os seguintes conjuntos ( ponto): I = Conjunto de pessoas
1 Módulo: Fatoração. 1.1 Exemplos
1 Módulo: Fatoração Fatorar é transformar equações algébricas em produtos de duas ou mais expressões chamadas fatores. Existem vários casos de fatoração como: Fator comum em evidência: quando os termos
Lista 2 Funções: Definição e exemplos
Lista Funções: Definição e exemplos. Seja f : R R definida por f(x) = x 3. Qual é o elemento do dominio que 5 tem 3 como imagem? 4. É dada uma função real tal que: (a) f(x) f(y) = f(x + y) (b) f() = (c)
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
Capítulo 5 Derivadas
Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este
