LIMITES E CONTINUIDADE
|
|
|
- Ruy Philippi Bennert
- 9 Há anos
- Visualizações:
Transcrição
1 LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], NOÇÃO INTUITIVA DE LIMITE Considere a função f(x) =. Esta função está definida para todo x IR, isto é, qualquer que seja o número real x 0, o valor de f(x 0 ) está bem definido. Exemplo 1.1 Seja x 0 = 2, então f(x 0 ) = f(2) = = 3. Dizemos que a imagem de x 0 = 2 é o valor f(2) = 3. Graficamente: Figure 1 Considere agora uma outra função g(x) = x2 1. Esta função está definida x IR {1}. Isto significa que não podemos estabelecer uma imagem quando x assume o valor 1. g(1) = = 0 0??? Quando dividimos a por b, procuramos um número real c tal que bc resulte em a. a b = c bc = a. Se fizermos 0 = x 0 x = 0, para qualquer valor de x IR, isto é, infinitos valores de x. Por isso 0 dizemos que há uma indeterminação no valor para o valor de x. 1
2 Como a variável x não pode assumir o valor 1 na função g, vamos estudar o comportamento desta função quando x está muito próximo de 1, em outras palavras, queremos responder a seguinte pergunta: Qual o comportamento da função g quando x assume valores muito próximos (numa vizinhança pequena) de 1, porém diferente de 1? A princípio, o estudo do ite visa estabelecer o comportamento de uma função em uma vizinhança de um ponto (que pode ou não pertencer ao seu domínio). No caso da função f, qualquer valor atribuído a x pode determinar um valor de imagem. Mas na função g, existe o ponto x = 1 que gera a indeterminação. Assim, vamos estudar a vizinhança de 1 para a função x2 1. Primeiramente precisamos lembrar que podemos nos aproximar de x = 1 pelos dois lados, ou seja: Aproximar pela Esquerda Figure 2 Aproximar pela Direita 1.1 Tabelas de Aproximação As tabelas de aproximações são utilizadas para aproximar o valor da imagem de uma função (se existir) quando a variável x se aproxima de um determinado ponto. Atribuindo a x valores cada vez mais próximos de 1 pela esquerda e pela direira, ou seja, menores que 1 e depois, maiores que 1, obteremos: x 0 0,5 0,75 0,9 0,99 0,999 0,9999 Tabela A. g(x) 1 1,5 1,75 1,9 1,99 1,999 1,9999 x 2 1,5 1,25 1,1 1,01 1,001 1,0001 g(x) 3 2,5 2,25 2,1 2,01 2,001 2,001 Tabela B. Observe que podemos tornar g(x) tão próximo de 2 quanto desejarmos, bastando para isso tomarmos x suficientemente próximo de 1. Desta forma, podemos convencionar: "O ite da função g(x) quando x se aproxima de (tende a) 1 é igaul a 2". Notação: g(x) = 2 ou = 2. Os dois tipos de aproximações que vemos nas tabelas A e B são chamadas de ites laterais. Quando x tende a 1 por valores menores do que 1 (tabela A), dizemos que x tende a 1 pela esquerda, e denotamos simbolicamente por x 1. Temos então que: g(x) = 2 ou = 2. Quando x tende a 1 por valores maiores do que 1 (tabela B), dizemos que x tende a 1 pela direita, e denotamos simbolicamente por x 1 +. Temos então que:
3 g(x) = 2 ou + + = Definição intuitiva de ite (para um caso geral) Seja f uma função definida num intervalo I IR contendo a, exceto possivelvente no próprio a. Dizemos que o ite de f(x) quando x se aproxima de a é L IR, e escrevemos f(x) = L, se, e somente se, os ites laterias à esquerda e à direita de a são iguais à L, isto é, L. Caso contrário, dizemos que o ite não existe, em símbolo f(x). Com relação a g(x) = x2 1, podemos concluir, pela definição, que: porque os ites laterais 1.3 Cálculo de uma indeterminação do tipo 0 0 = 2 = + = 2 f(x) = f(x) = + Exemplo 1.2 Determine g(x), onde g(x) = x2 1. Observe que substituindo x por 1 na função obtemos uma indeterminação matemática. Devemos então simplificar a expressão da função g e depois fazer a substituição direta. g(x) = x2 1 = ()(x + 1) () g(x) = = ()(x + 1) () =, x 1. Então: = (x + 1) = 2 Logo, chegamos a mesma conclusão da análise feita pelas tabelas de aproximações, porém de uma forma bem mais rápida e sistemática. Exemplo 1.3 Determine (Observe que há indeterminação matemática.)
4 x 3 8 Exemplo 1.4 Determine (Observe que há indeterminação no ponto x = 2). 32 2x 3 + 3x 5 Exemplo 1.5 Determine. Vamos resolver este ite usando Briot-Ruffini. 4x 2 3 Teorema 1.1 (Teorema de D Alembert). Um polinômio f(x) é divisível por (x a), a IR, se e somente se a é uma raiz de f(x), isto é, f(a) = 0. f(x) = (x a)q(x) + r(x) Assim, f(a) = 0 r(a) = 0. Como o ponto x = 1 anula os polinômios do numerador e denominador, então ambos são divisíveis por (). Assim 2x 3 + 3x 5 4x 2 3x + 1 = 2x 3 +3x 5 (x 1) 4x 2 3x 1 (x 1) = 2x2 + 2x + 5 4x + 1 = Algumas fórmulas que auxiliam as simplificações nos cálculos dos ites a) Quadrado da soma: (a + b) 2 = a 2 + 2ab + b 2 b) Quadrado da diferença: (a b) 2 = a 2 2ab + b 2 c) Produto da soma pela diferença: (a + b)(a b) = a 2 b 2 d) Cubo da soma: (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 e) Cubo da diferença: (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 f) Conjugado de a b é a + b g) Conjugado de 3 a 3 b é 3 a ab + 3 b 2 Proposição 1.1 Se f(x) = L 1 e f(x) = L 2, então L 1 = l 2. Se o ite de uma função num x a ponto existe, então ele é único.
5 1.5 Principais propriedades dos ites Se f(x) e g(x) existem, e k IR, então: a) [f(x) ± g(x)] = f(x) ± g(x) b) kf(x) = k f(x) c) [f(x) g(x)] = f(x) g(x) [ ] f(x) d) = f(x) g(x) g(x) e) k = k 2 LISTA DE EXERCÍCIOS 1. Aplicando as propriedades, encontre os ites abaixo: (a) x 0 3x 2 8 x 2 = (b) (3x 2 5x + 2) = (c) x 0 (x 5 6x 4 + 7) = (d) x 3 () 2 (x + 1) = (e) x 5 x x = (f) x + 1 x + 2 = (g) = (h) x 2 x 6 x 2 + 3x + 2 = (i) x 4 x 2 x 4 = (j) x 3 x 2 9 x 3 = x 2 + 4x 5 (k) (l) = (m) x 4 x 2 x 4 = =
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
LIMITES E CONTINUIDADE
LIMITES E CONTINUIDADE 1 LIMITE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br Definição 1.1 O limite
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina
Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015
bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
O limite de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Material Básico: Calculo A, Diva Fleming
1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o
Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim
Aula 11 Funções de 2 variáveis: Limites e Continuidade Considere a função de duas variáveis f(x, y). Escrevemos: f(x, y) = L (x,y) (a,b) quando temos que, se (x, y) (a, b) então f(x, y) L, isto é, se (x,
Módulo 1 Limites. 1. Introdução
Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico
MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência
Limites. 2.1 Limite de uma função
Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos
Bons estudos e um ótimo semestre a todos!
Cálculo 206.2 Caro aluno, O Dáskalos tem como objetivo proporcionar aos universitários um complemento de ensino de qualidade, por meio de aulas particulares, apostilas e aulões. Tendo isso em vista, a
Limites e Continuidade
MAT111 p. 1/2 Limites e Continuidade Gláucio Terra [email protected] Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,
LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =
LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade
Capítulo 1: Limite de funções de uma variável real
Notas Matemática para Economia I: Capítulo 1: Limite de funções de uma variável real Felipe Rivero e Thiago Salvador Revisado por: Emilia Neves, Juliana Coelho e Yuri Ki F. Rivero e T. Salvador 2 Matemática
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar
Limite de uma função quando a variável independente tende a um número real a
Limite de uma função quando a variável independente tende a um número real a Santos Alberto Enriquez Remigio Março de 2018 Notação Seja y = f (x) a regra de correspondência da função f, então: 1. x tende
Limites e continuidade
Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,
Volume de um gás em um pistão
Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
Cálculo Diferencial e Integral I CDI I
Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão [email protected] Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
Limite de uma função quando a variável independente tende a um número real a
Limite de uma função quando a variável independente tende a um número real a Santos Alberto Enriquez Remigio 10 de abril de 2018 Notação Seja f uma função e y = f (x) sua regra de correspondência, então:
O problema da velocidade instantânea
Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no
CONTINUIDADE E LIMITES INFINITOS
MATEMÁTICA I CONTINUIDADE E LIMITES INFINITOS Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Continuidade de Funções Definição Tipos de Descontinuidade Propriedades Parte 2 Limites Infinitos Definição
(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit
MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
Limites, derivadas e máximos e mínimos
Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,
1. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R
. Funções Reais de Variável Real Vamos agora estudar funções definidas em subconjuntos D R com valores em R, i.e. f : D R R D x f(x). Uma função é uma regra que associa a cada elemento x D um valor f(x)
26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS
Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),
Tópico 3. Limites e continuidade de uma função (Parte 1)
Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido
UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO
1 UNIVERSIDADE FEDERAL DO OESTE DO PARÁ PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO INSTITUTO DE ENGENHARIA E GEOCIENCIAS-IEG PROGRAMA DE COMPUTAÇÃO NOTAS DE AULA DA DISCIPLINA DE CÁLCULO 1 MATERIAL EM CONSTRUÇÃO
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos
Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos
Limites infinitos e limites no infinito Aula 15
Propriedades dos ites infinitos Limites infinitos e ites no infinito Aula 15 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Abril de 2014 Primeiro Semestre de 2014
Acadêmico(a) Turma: Capítulo 7: Limites
Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores
(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos
LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx
Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além
Integral definida. Prof Luis Carlos Fabricação 2º sem
Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Concavidade. Universidade de Brasília Departamento de Matemática
Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
CÁLCULO I. Calcular o limite de uma função composta;
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de
AULA 7- LIMITES VERSÃO: OUTUBRO DE 2016
CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 7- LIMITES VERSÃO: 0.2 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: [email protected]
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de
Aula 21 Máximos e mínimos relativos.
Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos
Limite e Continuidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Limites: Noção intuitiva e geométrica
Eemplo : f : R {} R, f sen a Gráfico de f b Ampliação do gráfico de f perto da origem Limites: Noção intuitiva e geométrica f Apesar de f não estar definida em, faz sentido questionar o que acontece com
Vamos revisar alguns fatos básicos a respeito de séries de potências
Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais
Material Didático de Apoio INTRODUÇÃO AO ESTUDO DOS LIMITES
Material Didático de Apoio INTRODUÇÃO AO ESTUDO DOS LIMITES 1.1 INTRODUÇÃO O limite observa o comportamento de uma função f(x)quando x tende a a. Considere a função f(x) = x + 4. Se montarmos uma tabela
Soluções dos Exercícios do Capítulo 2
A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo
Departamento de Matemática - UEL Ulysses Sodré. 1 Comparações entre sequências e funções reais 1
Matemática Essencial Limites de Funções Reais Departamento de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessencial/ Conteúdo Comparações entre sequências e funções reais 2 Limites 3
Cálculo Diferencial e Integral I
Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico
MATEMÁTICA BÁSICA SUMÁRIO
MATEMÁTICA BÁSICA SUMÁRIO 1 Operações com frações 2 Divisão de frações 3 Operações com números relativos 4 Resolução de equações do 1º grau (1º tipo) 5 Resolução de equações do 1º grau (2º tipo) 6 Resolução
4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:
4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que
Limites. Entretanto, os gregos não usaram explicitamente os limites.
30 Limites O problema da área As origens do cálculo remontam à Grécia antiga, pelo menos 2.500 anos atrás, quando áreas eram calculadas utilizando o chamado método da exaustão. Naquela época, os gregos
Limites e Continuidade
Limites e Continuidade Gláucio Terra [email protected] Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/1 Revisão Elementos de Lógica Matemática p. 2/1 Limite de uma Função num
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
Funções reais de variável real. Limites de funções reais de variável real O essencial
Funções reais de variável real Limites de funções reais de variável real O essencial Ponto aderente de um conjunto Dado um conjunto A IR e um número real a, a designa-se ponto aderente a A quando existe
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades
EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO
Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
Resolução dos Exercícios Propostos no Livro
Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de
LIMITES. Prof. Danilene Donin Berticelli
LIMITES Prof. Danilene Donin Berticelli Considere um gerente que determina que, quando x% da capacidade de produção de uma fábrica estão sendo usados, o custo total de operação é C centenas de milhares
Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos
MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios
Cálculo Vetorial. Funções de duas variáveis Prof. Vasco Ricardo Aquino da Silva
Cálculo Vetorial Funções de duas variáveis Prof. Vasco Ricardo Aquino da Silva Retomando... Dada a função, determine: a. O domínio e sua representação gráfica; b. As curvas de nível para z=1, z=2, z=3;
Polinômios de Legendre
Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.
Máximos e mínimos em intervalos fechados
Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir
Cálculo diferencial de Funções de mais de uma variável
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade
