O problema da velocidade instantânea
|
|
|
- Ana Santana Coimbra
- 8 Há anos
- Visualizações:
Transcrição
1 Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no marco zero da estrada, não é difícil notar que a função que fornece a posição em um instante t > 0 é dada por s(t) = 60t. De uma maneira mais geral, se a posição inicial é s 0 R e a velocidade (constante) é igual a v 0 R, então a posição é dada por s(t) = s 0 +v 0 t. Você certamente já se deparou com o problema acima. Nos seus estudos do ensino médio, considerava-se uma situação mais geral, com o carro tendo uma aceleração constante e igual a a R. Neste caso, a posição é dada por s(t) = s 0 +v 0 t+ 2 at2, t > 0, que é exatamente a equação do espaço para o movimento uniformemente variado. Como a aceleração é igual a a, podemos facilmente deduzir que a velocidade do carro é dada pela função v(t) = v 0 +at, t > 0. Estamos interessados aqui no seguinte problema: supondo que conecemos a posição do carro s(t), queremos determinar a sua velocidade v(t) em um dado instante t > 0. No caso em que s(t) é um polinômio de grau ou 2, a solução já foi dada nos dois parágrafos anteriores. O que queremos agora é obter uma forma de calcular a velocidade para funções s(t) mais gerais. As ideias que vamos desenvolver servem para muitas expressões da função s(t). Porém, para simplificarmos a exposição, vamos supor que s(t) = t 3. Também por simplicidade, vamos supor que queremos encontrar a velocidade do carro no instante t = 2. Sumarizando, vamos tratar do problema seguinte: Problema: se a posição do carro é dada por s(t) = t 3, qual é a velocidade do carro no instante t = 2? A primeira coisa que deve ser observada é que as fórmulas aprendidas no ensino médio não são suficientes para obtermos a resposta. De fato, elas só se aplicam para aos casos em que a função s(t) é um polinômio de grau (velocidade constante) ou um polinômio de grau 2 (aceleração constante). Logo, precisamos desenvolver uma nova técnica para resolver o problema.
2 Ainda que não saibamos calcular a velocidade v(t), podemos usar a expressão de s(t) para calcular a velocidade média entre os instante t = 2 e t = 4, por exemplo. Ela é dada pela expressão s(4) s(2) 4 2 = = 64 8 = Logo, como não sabemos calcular v(2), podemos aproximar esse valor usando a velocidade média calculada acima. Naturalmente, essa aproximação contém algum tipo de erro, porque estamos deixando um intervalo de 2 oras em que o motorista poderia, eventualmente, efetuar mudanças de velocidade, sem com isso mudar o valor de v(2). Parece natural que, se diminuirmos esse intervalo de tempo para ora somente, a aproximação pela velocidade média seria melor. Assim, podemos considerar agora a seguinte aproximação: s(3) s(2) 3 2 = 27 8 = 9. Procedendo como acima, podemos construir uma tabela que fornece, para cada valor 0, a velocidade média do carro entre o instante inicial t = 2 e o instante final t = 2+. Listamos abaixo alguns valores dessa tabela: 0 instante final velocidade média t = 2+ s(2+) s(2) (2+) ,5 2,5 5,25 0, 2, 2,6 0,0 2,0 2,060 0,00 2,00 2,00600 Do ponto de vista físico, parece claro que a aproximação que estamos usando (velocidade média) fica mais precisa à medida em que o intervalo de tempo se torna mais próximo de zero. Assim, a tabela parece indicar que a velocidade no instante 2 é igual a 2. Para melor justificar a afirmação acima, vamos criar uma nova função. Seja então vm 2 () a função que associa, para cada 0, a velocidade média entre os instantes t = 2 e t = 2+. Formalmente, vm 2 () = s(2+) s(2) (2+) 2 = (2+) () Observe que o valor de nunca pode ser igual a zero. Mais especificamente, como estamos falando de dois instantes distintos t = 2 e t = 2 +, os valores possiveis para são todos aqueles em que 0 e 2. Essa última restrição surge porque, se < 2, então 2
3 2+ < 0, e não faz sentido falarmos em instante de tempo negativo. Em resumo, o domínio da função vm 2 é dado por Dom(vm 2 ) = [ 2,0) (0,+ ) = { R : 2 e 0}. Precisamos descobrir o que acontece com o valor de vm 2 () quando fica próximo de zero. Se olarmos para o último quociente da definição de vm 2 em (), percebemos que, à medida em que se aproxima de zero, tanto o numerador quanto o denominador desse quociente se aproximam de zero. Para entender melor o comportamento do quociente, vamos lembrar que, para todo a, b R, temos (a+b) 3 = a 3 +3a 2 b+3ab 2 +b 3. Deste modo, a expressão de vm 2 () em () pode ser escrita como ou ainda vm 2 () = (2+)3 2 3 = ( ) 2 3 = (2+6+2 ), vm 2 () = Vale ressaltar que, ainda que a expressão do lado direito da equação acima possa ser calculada para qualquer valor de, o domínio da função vm 2 continua sendo [ 2,0) (0,+ ). Usando a expressão acima, os valores de vm 2 () da tabela anterior podem ser facilmente calculados. Além disso, fica muito simples perceber o que acontence com vm 2 () quando se aproxima de zero. De fato, como os termos 6 e 2 ficam próximos de zero, concluímos que vm 2 () se aproxima de 2, conforme esperávamos. Usamos a seguinte notação para escrever isso de maneira sucinta: lim vm s(2+) s(2) 2() = lim 0 0 = 2. Observe que todas estas considerações nos permitem concluir que a velocidade do carro no instante t = 2 é igual a 2. Não existe nada de especial no instante t = 2, escolido para a exposição acima. Para qualquer t > 0, podemos calcular a velocidade no instante t > 0 como sendo s(t+) s(t) (t+) 3 t 3 v(t) = lim = lim. 0 (t+) t 0 Usando novamente a expressão do cubo de uma soma, obtemos de modo que (t+) 3 t 3 = (t 3 +3t 2 +3t ) t 3 = (3t 2 +3t+ 2 ), v(t) = lim 0 (3t 2 +3t+ 2 ) = lim 0 (3t 2 +3t+ 2 ) = 3t = 3t 2. 3
4 Na penúltima igualdade acima, usamos o fato de, para cada t > 0 fixado, os termos 3t e 2 se aproximarem de zero quando se aproxima de zero. Assim, podemos enunciar a solução do nosso problema como se segue: Solução do problema: Se a posição do carro é dada pela função s(t) = t 3, então a velocidade é v(t) = 3t 2, para todo t > 0. Em particular, a velocidade no instante 2 é igual a 2. Finalizamos com algumas observações importantes:. O método desenvolvido aqui nos permite considerar várias expressões diferentes para a função s(t). Tudo o que deve ser feito é uma manipulação algébrica da expressão s(t+) s(t), de modo a descobrir o que acontece com o quociente quando se aproxima de zero. 2. A expressão acima não está definida quando = 0. Isso não é importante na aplicação do método, visto que queremos estudar o comportamento do quociente para valores que são próximos, mas diferentes de zero. 3. Estas ideias serão desenvolvidas à exaustão nas próximas semanas, quando introduziremos o conceito de derivada. Contudo, se você cegou vivo até aqui, não terá nenuma dificuldade para entender o que está por vir. 4. O que foi feito aqui depende somente de sabermos a definição de velocidade média. Assim, você pode agora tentar explicar isso tudo para aquele seu primo que cursa o primeiro ano do ensino médio! Como um bom exercício, vale a pena refazer as contas acima para o caso em que s(t) = s 0 +v 0 t+(a/2)t 2, com s 0, a R, para verificar que, nesse caso, o limite da velocidade média quando se aproxima de zero é exatamente v(t) = v 0 +at. 4
5 Tarefa Nesta tarefa vamos usar a mesma estratégia adotada no texto para determinar a velocidade do carro, supondo agora que a posição é dada pela função s(t) = t, t > 0. Vamos inicialmente calcular a velocidade no instante t = 3. Para tanto, siga os passos abaixo:. Com o auxílio de uma calculadora, complete a tabela abaixo: 0 instante final t = 3+ velocidade média s(3+) s(3) (3+) 3 4 0, 0833 (aproximadamente) 0, 3, 0,0 0,00 2. Verifique que, após as devidas simplificações, temos s(3+) s(3) = 3+ 3 = = (3+)3. 3. Fazendo se aproximar de 0 na última expressão acima, determine v(3). Repetindo o argumento do item 2 acima verifique que v(t) = lim 0 s(t+) s(t) = = lim 0 (t+)t, e obtena a expressão para v(t). O que significa o sinal de menos que aparece nessa expressão? 5
O limite de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se
A derivada de uma função
Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no
O Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma
LIMITES E CONTINUIDADE
LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos
Derivada de algumas funções elementares
Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº 5 do plano de trabalho nº 5 Resolver os eercícios 03, 0, 05, 0 e 6 das páginas 95 e 0.
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis
Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada
1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em
Máximos e mínimos em intervalos fechados
Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir
Volume de um gás em um pistão
Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume
MATEMÁTICA. Produtos Notáveis, Fatoração e. Expressões Algébricas. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Produtos Notáveis, Fatoração e Expressões Algébricas Professor : Dêner Rocha Monster Concursos 1 PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS QUADRADO DA DIFERENÇA DE DOIS TERMOS Monster
Integração por frações parciais - Parte 1
Universidade de Brasília Departamento de Matemática Cálculo Integração por frações parciais - Parte Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções
Continuidade e Limite
Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada
Teoremas e Propriedades Operatórias
Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
O Teorema do Valor Intermediário
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Intermediário Suponha que f é uma função contínua em todo o intervalo fechado [a,b]. Isto significa que, para todo c (a,b),
Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.
6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter
Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados:
A U A UL LA Acelera Brasil! Suponhamos que tenha sido realizado um estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: VEÍCULO Velocidade máxima
Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária
Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Para algumas situações-problema, cuja formulação matemática envolve equações diferenciais, é possível
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o
Capítulo 4 - Derivadas
Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação
A velocidade instantânea (Texto para acompanhamento da vídeo-aula)
A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
parciais primeira parte
MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe
MATEMÁTICA A - 11o Ano. Propostas de resolução
MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade
Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real
Estudar mudança no valor de funções na vizinhança de pontos.
Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:
Método dos Mínimos Quadrados
Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1998/99 Método dos Mínimos Quadrados Objectivos: Estimação de valores pelo método dos mínimos quadrados. PROBLEMAS 1 Determine
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades
MAT146 - Cálculo I - Taxas de Variação. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Obserque que até o momento, tem sido visto apenas como uma notação dx para a derivada da equação y = f (x). O que faremos agora é interpretar
Material Básico: Calculo A, Diva Fleming
1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de
DERIVADA. A Reta Tangente
DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.
PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária
Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.
Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais
MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2
1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida
Cálculo com expressões que envolvem radicais
Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.
Derivadas de funções reais de variável real
Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição
Concavidade. Universidade de Brasília Departamento de Matemática
Universidade de Brasília Departamento de Matemática Cálculo 1 Concavidade Conforme vimos anteriormente, o sinal da derivada de uma função em um intervalo nos dá informação sobre crescimento ou decrescimento
Cálculo diferencial de Funções de mais de uma variável
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade
A regra do produto e do quociente para derivadas
Universidade de Brasília Departamento de Matemática Cálculo A rera do produto e do quociente para derivadas Vimos em um texto anterior que a derivada de uma soma é a soma das derivadas, um resultado análoo
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II
ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Definição
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição
INTEGRAÇÃO DE FUNÇÕES RACIONAIS
Cálculo Volume Dois - 40 INTEGRAÇÃO DE FUNÇÕES RACIONAIS Quando uma função racional da forma N()/D() for tal que o grau do polinômio do numerador for maior do que o do denominador, podemos obter sua integral
Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015
bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias
Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.
11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo
Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução A interpolação é outra técnicas bem conhecida e básica do cálculo numérico. Muitas funções são conhecidas apenas em um
Cálculo da Raiz Quadrada sem o uso da Calculadora
Cálculo da Raiz Quadrada sem o uso da Calculadora Márcio Roberto Rocha Ribeiro [email protected] IMTec/Regional Catalão/Universidade Federal de Goiás Aline Lourenço Costa 1 [email protected]
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
Tópico 3. Limites e continuidade de uma função (Parte 1)
Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:
Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio
Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de
Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).
E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
MOVIMENTO UNIFORMEMENTE VARIADO
MOVIMENTO UNIFORMEMENTE VARIADO É um movimento em que a velocidade varia uniformemente no decorrer do tempo. Isto é, o móvel apresenta iguais variações de velocidade em intervalos de tempo iguais. No MUV
Função Logarítmica. Formação Continuada em Matemática. Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Função Logarítmica Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014 Tarefa 1 Cursista: Adriana Ramos da Cunha
Minicurso de nivelamento de pré-cálculo:
Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine
Matemática I. 1 Propriedades dos números reais
Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +
COLÉGIO SÃO JOÃO GUALBERTO
RESOLUÇÃO COMENTADA Prof.: Pedro Bittencourt Série: 1ª Turma: A Disciplina: Física Nota: Atividade: Avaliação mensal 1º bimestre Valor da Atividade: 10 Instruções Esta avaliação é individual e sem consulta.
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Aula nº 1 do plano nº 12
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Aula nº do plano nº Resolver os eercícios 35, 355, 358, 360, 36, 364 das páginas 67 a 7 Conceito de derivada de uma função
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,
Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!
Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos
Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos
MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios
Funções - Terceira Lista de Exercícios
Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na
Consequências do Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.
Aula 13. Plano Tangente e Aproximação Linear
Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )
LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =
LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade
1 Congruências e aritmética modular
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES. Módulo de um número real... 2 Equações modulares... 5
Aula 6 Parte 3 Módulo de um número real... Equações modulares... 5 Prof. Guilherme Neves www.pontodosconcursos.com.br 1 Módulo de um número real Olá, pessoal! Tudo bem com vocês? Nesta terceira parte da
1 PLANO DE AULA III - INTEGRAL 1.1 AULA SOBRE INTEGRAL DEFINIDA
1 PLANO DE AULA III - INTEGRAL Para concluir as aulas sobre ideia intuitiva e conceitos iniciais do Cálculo, abordamos nesse plano de aula a integral definida. 1.1 AULA SOBRE INTEGRAL DEFINIDA Propomos
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 6º Teste de avaliação versão A.
Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Complexos 6º Teste de avaliação versão A Grupo I As cinco questões deste grupo são de escolha múltipla. Para
Professora Bruna FÍSICA A. Aula 14 Velocidades que variam sempre da mesma forma. Página 189
FÍSICA A Aula 14 Velocidades que variam sempre da mesma forma Página 189 INTRODUÇÃO O que já vimos até agora? Movimento Uniforme (velocidade constante) gráficos s x t, gráficos v x t e função horária.
