Função exponencial e logarítmica
|
|
|
- Simone Caiado Gentil
- 6 Há anos
- Visualizações:
Transcrição
1 Função exponencial e logarítmica Laura Goulart UESB 17 de Fevereiro de 2019 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
2 "É melhor um bocado seco, e com ele a tranquilidade, do que a casa cheia de iguarias e com desavenças - Provérbios 17:01 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
3 6 - Função exponencial Dado a R +, a 1, chama-se função exponencial de base a a função que para cada x R, associa-se a x R. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
4 6 - Função exponencial Dado a R +, a 1, chama-se função exponencial de base a a função que para cada x R, associa-se a x R. Em outras palavras, f : R + R dado por f (x) = a x. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
5 6.1-Exemplo ( ) x 1 Como exemplo, tomemos f (x) = 2 x e g(x) =, e vamos elaborar 2 tabelas de valores para avaliar o comportamento de cada uma delas. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
6 6.1-Exemplo ( ) x 1 Como exemplo, tomemos f (x) = 2 x e g(x) =, e vamos elaborar 2 tabelas de valores para avaliar o comportamento de cada uma delas. x f(x) g(x) Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
7 6.2-Propriedades 6.1) a 0 = 1 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
8 6.2-Propriedades 6.1) a 0 = 1 6.2) Se a > 1 a função é crescente. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
9 6.2-Propriedades 6.1) a 0 = 1 6.2) Se a > 1 a função é crescente. 6.3) Se 0 < a < 1 a função é decrescente. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
10 6.2-Propriedades 6.1) a 0 = 1 6.2) Se a > 1 a função é crescente. 6.3) Se 0 < a < 1 a função é decrescente. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
11 6.3-Revisão de Potenciação 1 a n a m = a n+m Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
12 6.3-Revisão de Potenciação 1 a n a m = a n+m a n 2 a m = an m Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
13 6.3-Revisão de Potenciação 1 a n a m = a n+m 2 3 a n a m = an m n a m = a m n Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
14 Propriedade a x = a y x = y Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
15 6.4-A constante de Euler Como o número e é encontrado em diversos fenômenos naturais, a função f (x) = e x é considerada uma das mais importantes da matemática, merecendo atenção especial de cientistas de diferentes áreas de conhecimento humano. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
16 6.4-A constante de Euler Como o número e é encontrado em diversos fenômenos naturais, a função f (x) = e x é considerada uma das mais importantes da matemática, merecendo atenção especial de cientistas de diferentes áreas de conhecimento humano. Foi o matemático inglês John Napier( ) o responsável pelo desenvolvimento da teoria logarítmica utilizando o número e como base. O número e é irracional, ou seja, não pode ser escrito sob a forma de fração e vale: Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
17 6.4-A constante de Euler Como o número e é encontrado em diversos fenômenos naturais, a função f (x) = e x é considerada uma das mais importantes da matemática, merecendo atenção especial de cientistas de diferentes áreas de conhecimento humano. Foi o matemático inglês John Napier( ) o responsável pelo desenvolvimento da teoria logarítmica utilizando o número e como base. O número e é irracional, ou seja, não pode ser escrito sob a forma de fração e vale: e = 2, Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
18 7 - Função logarítmica Para estudarmos a função logarítmica, vamos primeiro aprender o logaritmo de um número real positivo e suas principais propriedades. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
19 7.1 - Logaritmo O logaritmo de b na base a é o expoente que devemos ter em a para obternmos a potência b. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
20 7.1 - Logaritmo O logaritmo de b na base a é o expoente que devemos ter em a para obternmos a potência b. Em outras palavras, Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
21 7.2 - Propriedades 7.1) log a 1 = 0 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
22 7.2 - Propriedades 7.1) log a 1 = 0 7.2) log a 0 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
23 7.2 - Propriedades 7.1) log a 1 = 0 7.2) log a 0 7.3) log a a = 1 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
24 7.2 - Propriedades 7.1) log a 1 = 0 7.2) log a 0 7.3) log a a = 1 7.4) log a a b = b Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
25 7.2 - Propriedades 7.1) log a 1 = 0 7.2) log a 0 7.3) log a a = 1 7.4) log a a b = b 7.5) a logab b = b Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
26 7.2 - Propriedades 7.1) log a 1 = 0 7.2) log a 0 7.3) log a a = 1 7.4) log a a b = b 7.5) a logab b = b 7.6) log a b = log a c b = c Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
27 7.3 - Propriedades operatórias 7.7) log a (b c) = log a b + log a c Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
28 7.3 - Propriedades operatórias 7.7) log a (b c) = log a b + log a c 7.8) log a b n = nlog a b Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
29 7.3 - Propriedades operatórias 7.7) log a (b c) = log a b + log a c 7.8) log a b n = nlog a b ( ) b 7.9) log a = log c a b log a c Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
30 7.3 - Propriedades operatórias 7.7) log a (b c) = log a b + log a c 7.8) log a b n = nlog a b ( ) b 7.9) log a = log c a b log a c 7.10) [Mudança de Base] log a b = log cb log c a Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
31 7.4 - A função logarítmica Dado um número real a ( a > 0, a 1 ), chamamos de função logarítmica na base a a toda função f de R + em R que cada x associa-se o número log a x. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
32 7.4 - A função logarítmica Dado um número real a ( a > 0, a 1 ), chamamos de função logarítmica na base a a toda função f de R + em R que cada x associa-se o número log a x. Em outras palavras, f : R + R dada por f (x) = log a x. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
33 7.4 - A função logarítmica Dado um número real a ( a > 0, a 1 ), chamamos de função logarítmica na base a a toda função f de R + em R que cada x associa-se o número log a x. Em outras palavras, f : R + R dada por f (x) = log a x. Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
34 Exercício de Fixação Sabendo que log 2 = 0, 301 e log 3 = 0, 477, calcule os seguintes logaritmos: 1 log 6 2 log 4 3 log 12 4 log 12 5 log 0, 5 6 log 5 7 log 20 8 log 15 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de / 1
FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Função Modular Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado
LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T
LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T HISTÓRIA No início do século XVII, os cálculos envolvidos nos assuntos de Astronomia e Navegação eram longos e trabalhosos. Para simplificar
MATEMÁTICA Logaritmos Introdução. Professor Marcelo Gonsalez Badin
MATEMÁTICA Logaritmos Introdução Professor Marcelo Gonsalez Badin Você certamente já sabe calcular logaritmos! Por eemplo, resolva a equação: = 8 = 8 = 3 = 3 Logaritmo é apenas um nome que é dado ao epoente
MATEMÁTICA. Função e Equação Logaritmo. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função e Equação Logaritmo Professor : Dêner Rocha Monster Concursos 1 Logaritmos Definição A ideia que concebeu o logarítmo é muito simples, ou seja, podemos associar o termo Logaritmo, como
Qual é o tempo? INTRODUÇÃO
LOGARÍTMOS INTRODUÇÃO Qual é o tempo? Amanda ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.
Função Logarítmica. Formação Continuada em Matemática. Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Função Logarítmica Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014 Tarefa 1 Cursista: Adriana Ramos da Cunha
Plano de Trabalho 1. Função Logarítmica
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2012 Plano de Trabalho 1 Função Logarítmica Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
MATEMÁTICA PARA TÉCNICOS
PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
PLANO DE AULA DA REGÊNCIA
PLANO DE AULA DA REGÊNCIA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio. Município: Sombrio. Disciplina: Matemática. Série: 2º Ano H. Nível: Ensino Médio. Professor: Marcelo Bereta Lopes. Tempo estimado:
Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem?
UMA NOÇÃO SOBRE LOGARÍTMOS Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem? Vejamos o seguinte: Na América Latina, a população cresce a uma taxa de 3% ao ano, aproximadamente.
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos
Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares
Exponenciais e Logaritmos - Notas de Aulas 3(206) Prof Carlos Alberto S Soares Função Logarítmica Iniciamos estas propondo um exercício que evidenciará a relação entre uma função e sua inversa quanto ao
Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.
LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.
LOGARITMOS: se e somente se. Obs.: Temos que é a base do logaritmo, é o logaritmando e o logaritmo.
LOGARITMOS: Definição: Sejam números reais positivos com Chamase Logaritmo de na base o expoente ao qual se deve elevar a base de modo que a potência seja igual a, isto é: se e somente se Obs: Temos que
Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010
. Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log
8/8/2012. Matemática. Conteúdo da Aula. Objetivos: Tema 3 Função do Segundo Grau. Ivonete Melo de Carvalho, MSc. Função de Segundo Grau.
Matemática Tema 3 Função do Segundo Grau Ivonete Melo de Carvalho, MSc Conteúdo da Aula Função de Segundo Grau. Objetivos: Estudar a função do segundo grau, suas características e a suas aplicações. Construir
Matemática I Capítulo 13 Logaritmos
Nome: Nº Curso: Controle Ambiental Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /2017 Matemática I Capítulo 13 Logaritmos 13.1 - Logaritmos Chamamos de logaritmo de b na base a o expoente
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 2º Ano 1º Bimestre / 2014 Plano de Trabalho LOGARITMOS
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 2º Ano 1º Bimestre / 2014 Plano de Trabalho LOGARITMOS Tarefa: 001 PLANO DE TRABALHO Cursista: CLÁUDIO MAGNO PAULANTI Tutor:
Função Am. Laura Goulart. 4 de Fevereiro de 2019 UESB. Laura Goulart (UESB) Função Am 4 de Fevereiro de / 11
Função Am Laura Goulart UESB 4 de Fevereiro de 2019 Laura Goulart (UESB) Função Am 4 de Fevereiro de 2019 1 / 11 2-Função constante Uma função f : A R B R é dita uma função constante quando a cada elemento
Método dos Mínimos Quadrados
Método dos Mínimos Quadrados Laura Goulart UESB 4 de Abril de 2019 Laura Goulart (UESB) Método dos Mínimos Quadrados 4 de Abril de 2019 1 / 22 Objetivos O Método dos Mínimos Quadrados (MMQ) é uma técnica
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
Equações Exponenciais e Logarítmicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas
Fundamentos da Matemática
Fundamentos da Matemática Função Logarítmica Material Teórico Responsável pelo Conteúdo: Prof. a Me. Conceição Aparecida Cruz Longo Revisão Técnica: Prof.ª Dr.ª Cintia Aparecida Bento dos Santos Revisão
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1 ano 4 bimestre/2012 Plano de Trabalho Função Exponencial Tarefa 1 Cursista: Iara de Oliveira Evangelista Cardoso Tutor:
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
FUNÇÃO LOGARÍTMICA PLANO DE TRABALHO FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ/ consórcio CEDERJ MATEMÁTICA 2º ANO - 1º BIMESTRE.
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ/ consórcio CEDERJ MATEMÁTICA 2º ANO - 1º BIMESTRE PLANO DE TRABALHO FUNÇÃO LOGARÍTMICA Tarefa 1 Cursista: Terezinha Landim Tutor: Maria Lúcia SUMÁRIO
FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
Mat.Semana 8. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 8 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/04
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y
. Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ. Matemática 2º Ano 1º Bimestre/2013. Plano de Trabalho-1
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CE DR. FELICIANO SODRÉ. Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho-1 Tarefa 1 Cursista: Ana Silvia Azevedo
Crescimento da dívida
Valores em reais LOGARITMO CONTEÚDOS Logaritmo Propriedades dos logaritmos AMPLIANDO SEUS CONHECIMENTOS Uma empresa que trabalha com empréstimo, cobra juros absurdos. Se o devedor atrasar o pagamento da
Hewlett-Packard LOGARITMO. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard LOGARITMO Aulas 0 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 06 Sumário LOGARITMO... PRELIMINAR... LOGARITMO... EXERCÍCIOS FUNDAMENTAIS... CONSEQUÊNCIAS... CONSEQUÊNCIAS...
FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =
Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
Função Definida Por Várias Sentenças
Ministrante Profª. Drª. Patrícia Aparecida Manholi Material elaborado pela Profª. Drª. Patrícia Aparecida Manholi SUMÁRIO Função Definida Por Várias Sentenças Lembrando... Dados dois conjuntos não vazios
MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência
Formação Continuada em Matemática Fundação Cecierj/ Consórcio Cederj
Formação Continuada em Matemática Fundação Cecierj/ Consórcio Cederj Matemática 1º ano - 4º bimestre de 2012 Plano de Trabalho Função Exponencial Cursista: Luciano Araujo Rêgo Tutor: Lezieti Cubeiro da
Aulas n o 22: A Função Logaritmo Natural
CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos}
= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos} 2 2 = 1 + 1 = 2 = 2 = 2 2 3 + 2 3 2 < > < > < < < > > > 3
GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =
88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.
Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados
Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões
Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão
Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b
a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a...
Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL 1 1) Revisão de Potência Assim: a 1 = a e a n = a.a.a.....a a n+1 = (a.a.a.....a).a 2) Propriedades das Potências P1) a m.a n = a m+n Demonstração: a m.a
Lista de exercícios 06 Aluno (a):
Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que
Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Equações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 3 de novembro de 018 No material da aula
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
Gabarito das Questões do Curso de Nivelamento LISTA 2
Gabarito das Questões do Curso de Nivelamento LISTA 2 Questão 01: a) Quociente = 3x + 7, resto = 193 b) Quociente = 5t 2 + 7t + 5, resto = 0 c) Quociente = 5y 3 + y 2 4y + 15, resto = 43 Questão 02: a)
Hewlett-Packard LOGARITMO. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard LOGARITMO Aulas 0 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário LOGARITMO... PRELIMINAR... LOGARITMO... EXERCÍCIOS FUNDAMENTAIS... CONSEQUÊNCIAS... CONSEQUÊNCIAS... EXERCÍCIOS
Expoentes fracionários
A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes
Invertendo a exponencial
Reforço escolar M ate mática Invertendo a exponencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica DINÂMICA
Podemos verificar as duas condições [1) e 2)] na figura abaixo.
ROTEIRO: 1. Função exponencial 2. Logaritmo e propriedades 3. db, dbm. Função Exponencial: Na função exponencial, a variável x encontra-se no expoente, por exemplo, y=2 x, y=3 x+ 4, ou y=0,5 x. Podemos
LIMITES E CONTINIDADE
MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função
Logaritmos Profº Adriano
Logaritmos Profº Adriano Propriedades gerais dos logaritmos Os logaritmos considerados em uma base qualquer a, gozam de propriedades gerais: I) Em qualquer sistema de logaritmos, o logaritmo da própria
Formação Continuada para professores de Matemática Fundação CECIERJ/SEEDUC RJ Colégio Estadual Cinamomo Profª. Adilcimara da silva Gomes Matrícula:
Formação Continuada para professores de Matemática Fundação CECIERJ/SEEDUC RJ Colégio Estadual Cinamomo Profª. Adilcimara da silva Gomes Matrícula: 0838003-2 Série 2 Ano Ensino Médio 3 Bimestre Tutora:
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
EXERCÍCIOS ADICIONAIS
EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo
AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018
CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço
Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Funções inversas. - O ponto de partida é o ponto de parada da
Elementos de Matemática
Elementos de Matemática Funções Exponenciais e Logarítmicas Roteiro no.4 - Atividades didáticas de 2007 Versão compilada no dia 27 de Abril de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré
Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,
O valor de que torna a expressão verdadeira é:
Exercício 1. (FUVEST SP/1994) O número real x que satisfaz a equação é: a) b) c) 2 e) Resposta: e Tags: Logaritmos, Funções, Ensino Médio, Álgebra, Matemática, FUVEST SP, 1994, Logarítmos Exercício 2.
Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES
Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 5 pts,75 pts 8 º ANO A B CONTEÚDOS POR ETAPA ª ETAPA ª ETAPA ª ETAPA Função Afim Função Quadrática
FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável.
FUNÇÃO EXPONENCIAL DEFINIÇÃO: Chama-se função exponencial qualquer função f: R R dada por uma lei da forma f(x) =a x, em que a é um número real dado, a>0 e a 1. Exemplos: y = 2 x ; f(x)=(1/3) x ; f(x)
LOGARITMOS Leia e descubra que eu não vim do além
LOGARITMOS Leia e descubra que eu não vim do além 1 A CRIAÇÃO DOS LOGARITMOS No início do século XVII, a astronomia, o comércio e a navegação atingiram um estágio de desenvolvimento que exigia cálculos
Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio
Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos
Matrizes. Laura Goulart. 29 de Outubro de 2018 UESB. Laura Goulart (UESB) Matrizes 29 de Outubro de / 16
Matrizes Laura Goulart UESB 29 de Outubro de 2018 Laura Goulart (UESB) Matrizes 29 de Outubro de 2018 1 / 16 Motivação Chama-se matriz de ordem m por n uma tabela com m n elementos(em geral, números reais)
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
Material Básico: Calculo A, Diva Fleming
1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de
LOGARITMOS. 1. Introdução Histórica
LOGARITMOS 1. Introdução Histórica No fim do século XVI, o desenvolvimento da Astronomia e da Navegação exigia longos e laboriosos cálculos aritméticos, que nos anos próximos de 1600, era um problema fundamental.
FUNÇÃO EXPONENCIAL FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 1º ano - 4º bimestre/2012 PLANO DE TRABALH0. Professora: Valéria Gomes Gonçalves
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 1º ano - 4º bimestre/2012 PLANO DE TRABALH0 FUNÇÃO EXPONENCIAL http://matfotos.pbworks.com/w/page/11251898/grupo%20%20%206 Professora: Valéria Gomes Gonçalves
Exponencial e logaritmo
Exponencial e logaritmo Aula 11 Ricardo Ferreira Paraizo umental e-tec Brasil Matemática Instru Curva exponencial Curva logarítmica Meta Revisar potenciação e suas aplicações dentro de exponencial e logaritmo.
Funções potência da forma f (x) =x n, com n N
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1
