MATEMÁTICA Logaritmos Introdução. Professor Marcelo Gonsalez Badin
|
|
|
- Diogo Rijo Ribas
- 8 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA Logaritmos Introdução Professor Marcelo Gonsalez Badin
2 Você certamente já sabe calcular logaritmos! Por eemplo, resolva a equação: = 8 = 8 = 3 = 3 Logaritmo é apenas um nome que é dado ao epoente que é a solução de uma equação eponencial. Assim, = 8 é o logaritmo de 8 na base = 8 = log 8 = 5 = log 5 3 = 8 4 = 6 3 < < 4 Obs: log 5 é, aproimadamente 3, , ou seja: 3, = 5
3 Logaritmos a = b = log a b log a b = a = b log a b = logaritmo de b na base a C.E.: Condições de Eistência a > 0 a b > 0 base logaritmando log a b = a = b
4 . Determine o domínio da função f() = log ( ) (7 ) C.E.: > 0fi > ( I ) fi ( II ) condições de 7 > 0 fi < 7 ( III ) eistência I II III D D = {ŒIR / < < 7 e } ou vc escreve: D = ],[ U ],7[ 7 7
5 . Resolva a equação = 0 ( ) = 0 Fazendo 5 = t, temos: t = 5 t 7t + 0 = 0 t = S = 7 P = 0 t = 5 5 = 5 = t = 5 = = log 5 S = {, log 5 }
6 3. Calcule a) log 3 43= 3 = 43 3 = 3 5 = 5 b) log 0, 5 = ( ) = 0, 5 ( ) = = = = 4 c) log 5 = = = 65 e) log 3 (log 7 ) = = log 7 d) log 49= = 49 como > 0, = 7 log 7 = 7 = = 7 4. Qual o valor do logaritmo de 5 na base? log 5 = = 9 O logaritmo de 5 na base é 9 = 5 = 9
7 Imagine alguém que, diariamente, tivesse que fazer contas como (,37)(, 0)(3,57) (, )(8,33) sem utilizar uma calculadora. Seria muito chato e trabalhoso! No século XVI, o barão escocês John Napier (550-67) teológo e matemático, criou um método que, aperfeiçoado pelo inglês Henry Briggs (56-639), diminuiu o tempo gasto na realização de operações matemáticas, transformando, por meio das propriedades de potências: Multiplicação em adição; Divisão em subtração; Potenciação em multiplicação; Radiciação em divisão. Para isso, Brigs elaborou uma tabela com a qual é possível escrever qualquer número positivo na forma de potência de dez, com altíssimo grau de aproimação. Essa tabela é chamada de tábua de logaritmos.
8 Briggs foi o primeiro a construir uma tabela de logaritmos. Começou com log 0= e depois achou outros logaritmos. Em 67, ano da morte de Napier, ele publicou uma obra que continha os logaritmos de a 000, cada um com 4 casas decimais. Em 64, publicou Arithmetica logarithmica, que continha os logaritmos, também calculados com 4 casas decimais, de a 0000 e de a Hoje, com o advento das espantosas e cada vez mais baratas e rápidas calculadoras, ninguém mais em sã consciência usa uma tábua de logaritmos ou uma régua de cálculo para fins computacionais. O ensino dos logaritmos, como um instrumento de cálculo, está desaparecendo das escolas, os famosos construtores de réguas de cálculo de precisão estão desativando sua produção e célebres manuais de tábuas matemáticas estudam a possibilidade de abandonar as tábuas de logaritmos. Os produtos da grande invenção de Napier tornaramse peças de museu.
9 A função logarítmica, porém, nunca morrerá pela simples razão de que as variações eponencial e logarítmica são partes vitais da natureza e da análise. Conseqüentemente, um estudo das propriedades da função logarítmica e de sua inversa, a função eponencial, permanecerá sempre uma parte importante do ensino da matemática. log = log 0 (logaritmo decimal) ln = log e (logaritmo natural ou neperiano) O número indicado por e é chamado de número de Euler (Leonhard Euler, matemático suiço, ) é irracional e vale, aproimadamente,,78. lim + = e colog b a = log b a (cologaritmo)
10 O número indicado por e é chamado de número de Euler (Leonhard Euler, matemático suiço, ) é irracional e vale, aproimadamente,,78. A aproimação decimal de e é obtida calculando o limite de + elevado a, para muito grande. Matematicamente: lim + = e Vamos fazer algumas contas! Acompanhe a tabela: + Para quem tiver interesse de saber mais sobre o e, indico o livro e: A HISTÓRIA DE UM NÚMERO Eli Maior (Editora Record) , , , , , ,
11 5. Determine o valor da epressão: a) A = log 8 + log 0, + log000 Calculando cada parcela da soma: 5 log 8 = log 5 0, = y A = ( ) = 8 = = 3 3 = 6 5 y = 0, 5 y = 5 y = A = 8 0, = = = 5 0 5
12 5. Determine o valor da epressão: b) B = log + log 7 + log π + log log 3 ( ) π 3 B = log0 B = 5 + B = 6 c) C = C = 3 + C = 7 + log 3 log 4 3 log 7 C = C = log 7 log a =? log a = 0 log a a c =? log a a c = c logab a? pois a 0 = a = a pois a c = a c logab a log b = b
13 6. A solução real da equação log 7 (7 +56) = é: a) log = b) log 7 8 ( ) = 0 c) log7 d) Fazendo 7 = t, temos: e) t t 56 = 0 fi t = 7 ou t = 8 S = t = 7 t = 8 P = 56 7 = 7 Impossível pois 7 > 0 7 = 8 = log 7 8
14 7. (Vunesp-00) Numa eperiência para se obter cloreto de sódio (sal de cozinha), colocou-se num recipiente uma certa quantidade de água do mar e epôs-se o recipiente a uma fonte de calor para que a água evapore lentamente. A eperiência termina quando toda a água se evaporar. Em cada instante t, a quantidade de água eistente no recipiente (em litros) é dada pela epressão: k 0 Q(t) = log0 com k uma constante positiva e t em horas. t + a) Sabendo que havia inicialmente litro de água no recipiente, determine a constante k. Para t = 0, temos Q(0) = k 0 0 = log 0 + b) Ao fim de quanto tempo a eperiência terminará? 0 Como k =, temos Q(t) = log 0 0 log t = t + A eperiência termina se Q(t) = 0 A eperiência termina ao fim de 9 horas fi log 0 0 k = fi k = fi 0 0 = 0 t + t + = 0 t = 9 Série Pensador P. 508 Eercício 0
15 Esboçar o gráfico das seguintes funções: a) y = log y = log ¼ ½ 4 0 C.E.: > 0 y 0 ¼ ½ a reta = 0 (eio y) é assíntota de log D = IR * + (reais positivos) Im = IR Função crescente 4
16 0. Faça o gráfico da função: b) y = log ½ y = log ½ ¼ ½ 4 0 y 0 ¼ ½ D = IR * + (reais positivos) Im = IR Função decrescente 4 C.E.: > 0 a reta = 0 (eio y) é assíntota de log ½
Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.
LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos
LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T
LOGARITMOS K AT E L Y N L U Z I A D O S S AN T O S D AB O I T HISTÓRIA No início do século XVII, os cálculos envolvidos nos assuntos de Astronomia e Navegação eram longos e trabalhosos. Para simplificar
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos
LOGARITMOS. 1. Introdução Histórica
LOGARITMOS 1. Introdução Histórica No fim do século XVI, o desenvolvimento da Astronomia e da Navegação exigia longos e laboriosos cálculos aritméticos, que nos anos próximos de 1600, era um problema fundamental.
LOGARITMO. Log a = x 10 x = a
LOGARITMO - Introdução O pesquisador John Napier nasceu na Escócia (550 60). Ele, depois de 0 anos pesquisando logaritmo introduziu o seu conceito, que foi aperfeiçoado por Henry Briggs, pesquisador nascido
Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Eponenciais e Logarítmicas.
FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar
Qual é o tempo? INTRODUÇÃO
LOGARÍTMOS INTRODUÇÃO Qual é o tempo? Amanda ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.
Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados
Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões
FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =
Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função
Função exponencial e logarítmica
Função exponencial e logarítmica Laura Goulart UESB 17 de Fevereiro de 2019 Laura Goulart (UESB) Função exponencial e logarítmica 17 de Fevereiro de 2019 1 / 1 "É melhor um bocado seco, e com ele a tranquilidade,
Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:
( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades
Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão
Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b
LOGARITMOS: se e somente se. Obs.: Temos que é a base do logaritmo, é o logaritmando e o logaritmo.
LOGARITMOS: Definição: Sejam números reais positivos com Chamase Logaritmo de na base o expoente ao qual se deve elevar a base de modo que a potência seja igual a, isto é: se e somente se Obs: Temos que
Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.
Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para
Módulo 1 Limites. 1. Introdução
Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico
MATEMÁTICA ELEMENTAR II:
Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer
Logaritmos e a Calculadora
Logaritmos e a Calculadora Denise Martinelli PIBID/Matemática Neumar Regiane Machado Albertoni PIBID/Matemática Violeta Maria Estephan professora do DAMAT CURITIBA, 015 19 a 1 de agosto de 015 Página 1
LOGARITMOS Leia e descubra que eu não vim do além
LOGARITMOS Leia e descubra que eu não vim do além 1 A CRIAÇÃO DOS LOGARITMOS No início do século XVII, a astronomia, o comércio e a navegação atingiram um estágio de desenvolvimento que exigia cálculos
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 2º Ano 1º Bimestre / 2014 Plano de Trabalho LOGARITMOS
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 2º Ano 1º Bimestre / 2014 Plano de Trabalho LOGARITMOS Tarefa: 001 PLANO DE TRABALHO Cursista: CLÁUDIO MAGNO PAULANTI Tutor:
Matemática Caderno 5
FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)
UMA INVESTIGAÇÃO HISTÓRICA SOBRE OS LOGARITMOS COM SUGESTÕES DIDÁTICAS PARA A SALA DE AULA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS NATURAIS E MATEMÁTICA EVANILDO COSTA SOARES UMA INVESTIGAÇÃO HISTÓRICA SOBRE
FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!
Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. 3º Teste de avaliação versão B.
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II º Teste de avaliação versão B Grupo I As cinco questões deste grupo são de escolha múltipla. Para
Exercícios de exames e provas oficiais
Eercícios de eames e provas oficiais 1. Considere as funções f e g, de domínio,0, definidas por ln 1 e g f f Recorrendo a processos eclusivamente analíticos, mostre que a condição pelo menos, uma solução
Matemática Básica Introdução / Operações matemáticas básicas
Matemática Básica Introdução / Operações matemáticas básicas 0. Softwares que podem ser úteis no estudo da disciplina: Geogebra gratuito, possui versões para windows e linux disponível em http://www.geogebra.org
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
Logaritmos. Antonio Carlos Brolezzi.
Logaritmos Antonio Carlos Brolezzi [email protected] Existe uma operação matemática chamada potenciação ou exponenciação: a c = b Existe uma operação matemática chamada potenciação ou exponenciação:
CONTEXTUALIZAÇÃO HISTÓRICA E APLICAÇÕES DE LOGARITMOS E EXPONENCIAIS
CONTEXTUALIZAÇÃO HISTÓRICA E APLICAÇÕES DE LOGARITMOS E EXPONENCIAIS Michelly Bezerra de Oliveira Pinheiro (IFRN) [email protected] Fabiana Tristão de Santana (IFRN) [email protected]
Lista de exercícios Função Logaritmica
Lista de exercícios Função Logaritmica 1- Calcule os logaritmos: ) log 36 ) log 216 ) log 243 ) log ) log 128 )log10000 )log 16 h)ln )ln 2- Assumindo que x, y, e z são números positivos, use as propriedades
Um pouco da História dos Logaritmos
Um pouco da História dos Logaritmos Os logaritmos, como instrumento de cálculo, surgiram para realizar simplificações, uma vez que transformam multiplicações e divisões nas operações mais simples de soma
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 2 + ln( + ) Qual é o valor
Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem?
UMA NOÇÃO SOBRE LOGARÍTMOS Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem? Vejamos o seguinte: Na América Latina, a população cresce a uma taxa de 3% ao ano, aproximadamente.
Acadêmico(a) Turma: Capítulo 7: Limites
Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 2 do plano de trabalho nº 1
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº do plano de trabalho nº 1 Resolver a atividade 4 da página 11 e os eercícios 15, 16, 17
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
FUNÇÕES EXPONENCIAIS
FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.
Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e
Crescimento da dívida
Valores em reais LOGARITMO CONTEÚDOS Logaritmo Propriedades dos logaritmos AMPLIANDO SEUS CONHECIMENTOS Uma empresa que trabalha com empréstimo, cobra juros absurdos. Se o devedor atrasar o pagamento da
MATEMÁTICA A - 12o Ano Funções - Assintotas
MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,
CÁLCULO DIFERENCIAL E INTEGRAL
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.
5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS
57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, =
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
CÁLCULO DIFERENCIAL E INTEGRAL
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o
Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5
AULAS,,, 5 FUNÇÕES. Plano Cartesiano Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (596-65), filósofo e matemático francês. O nome de Descartes em Latim, era
UCS - CCET: CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA MAT PRÉ-CÁLCULO Funções potência
) n m a n.m a UCS - CCET: CENTRO DE CIÊNCIAS EXATAS E DA TECNOLOGIA MAT0 - PRÉ-CÁLCULO Funções potência ADAMI, A. M. et al. Pré-cálculo: capítulo - p.. DEMANA, F. D. et al. Pré-cálculo: capítulo 9 - p.
Ficha de trabalho nº 17
Ficha de trabalho nº 7 ºano Matemática A Continuidade, teorema de Bolzano e assíntotas ª Parte k e se 0 Seja g ( ) O valor de k para o qual é possível aplicar o teorema de se 0 Bolzano à função g, no intervalo,
Fundamentos da Matemática
Fundamentos da Matemática Função Logarítmica Material Teórico Responsável pelo Conteúdo: Prof. a Me. Conceição Aparecida Cruz Longo Revisão Técnica: Prof.ª Dr.ª Cintia Aparecida Bento dos Santos Revisão
TÓPICOS DE MATEMÁTICA
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ. Matemática 2º Ano 1º Bimestre/2013. Plano de Trabalho-1
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CE DR. FELICIANO SODRÉ. Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho-1 Tarefa 1 Cursista: Ana Silvia Azevedo
Capítulo 2. Funções. 2.1 Funções
Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Considere as sucessões convergentes (a n ) e (b n ), de termos gerais a n = ( + ) 3n e b n = ln ( 2e n) n
Bases Matemáticas - Turma A3
Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão
Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES
número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou
Prova 2 - Bases Matemáticas
Prova 2 - Bases Matemáticas Resolução comentada Bases Matemáticas - Turma A3 2 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em )
Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em 8-05-0). O Dinis dispõe de dez cartas todas diferentes: quatro do naipe de espadas,
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL MARIA ZULMIRA TORRES
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL MARIA ZULMIRA TORRES PROFESSORA: TÂNIA REGINA BERNARDINO DA SILVA MATRÍCULA: 5090453 SÉRIE: º ANO ENSINO
Logaritmos Exponenciais - Fatoração
Logaritmos Eponenciais - Fatoração Prof. Edson. Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t)
Função Logarítmica. Formação Continuada em Matemática. Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Função Logarítmica Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014 Tarefa 1 Cursista: Adriana Ramos da Cunha
Unidade 3. Funções de uma variável
Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor
Praticando as Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Praticando as Propriedades ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Praticando as Propriedades Eercícios Introdutórios Eercício. Determine o valor dos logaritmos
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
DATA: VALOR: 20 PONTOS NOTA:
DISCIPLINA: MATEMÁTICA PROFESSORAS: ADRIANA E CLÁUDIO DATA: VALOR: 0 PONTOS NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1ª SÉRIE EM TURMAS: NOME COMPLETO: Nº: Prezado (a) aluno (a), A recuperação
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2015 NOTA AULA PRÁTICA No. 07 LOGARITMOS E ESCALAS LOGARÍTMICAS PROFS. ANGELO BATTISTINI, RODRIGO DI MÔNACO NOME RA TURMA NOTA Montagem sobre a figura de J. S. Bach, criador da
MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem
2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).
1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?
LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL
BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio
Ajuste de Curvas. Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.
Ajuste de Curvas Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ 1 Introdução
Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.
1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0
FUNÇÃO LOGARÍTMICA PLANO DE TRABALHO FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ/ consórcio CEDERJ MATEMÁTICA 2º ANO - 1º BIMESTRE.
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ/ consórcio CEDERJ MATEMÁTICA 2º ANO - 1º BIMESTRE PLANO DE TRABALHO FUNÇÃO LOGARÍTMICA Tarefa 1 Cursista: Terezinha Landim Tutor: Maria Lúcia SUMÁRIO
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
Exponencial e logaritmo
Exponencial e logaritmo Aula 11 Ricardo Ferreira Paraizo umental e-tec Brasil Matemática Instru Curva exponencial Curva logarítmica Meta Revisar potenciação e suas aplicações dentro de exponencial e logaritmo.
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução
MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido
PROGRESSÕES, LOGARITMOS E MATEMÁTICA FINANCEIRA
PROGRESSÕES, LOGARITMOS E MATEMÁTICA FINANCEIRA Martha Salerno Monteiro Departamento de Matemática CAEM - IME-USP A primeira parte desta apostila contém um resumo do conteúdo da referência [1] que conta
MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28
Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais
LISTA DE PRÉ-CÁLCULO
LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +
MATEMÁTICA. Função e Equação Logaritmo. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Função e Equação Logaritmo Professor : Dêner Rocha Monster Concursos 1 Logaritmos Definição A ideia que concebeu o logarítmo é muito simples, ou seja, podemos associar o termo Logaritmo, como
Derivadas de funções reais de variável real
Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a
Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...
, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e
mata O gráfico de uma função é, na maioria das vezes bastante útil para visualizar propriedades da função. Assim, de forma a podermos representar com rigor uma função, devemos fazer um estudo pormenorizado
