MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin
|
|
|
- Artur Cesário Azeredo
- 8 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin
2 Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem da mesma. O módulo de um número é representado por Eemplos: = 4 = 4 0 = 0 3 = I. 0, IR II. = III. =, se ³ 0, se 0 0 O módulo de um número é ele se ele for positivo e é ele de sinal trocado se ele for negativo.
3 1. (Fuvest-11) Sejam f() = 9 e g() = A soma dos valores absolutos das raízes da equação f(g()) = g() é igual a a) 4 b) 5 c) 6 d) 7 e) 8 f(g()) = g() f( ) = ( ) 9 = = = 6 S= = = = 0 S = 5 = 1 P = 6 Cuidado: A soma dos módulos não é o módulo da soma + +
4 Lembrete: f() = 3 3 g() = + = (0, ) (, 0)
5 Lembrete: f() = = (0, 1) (4, 0) g() = (função identidade) = (0, 0) (origem) (1, 1) bissetriz dos quadrantes ímpares 4 1
6 Lembrete = Raízes: = 0 S = 6 P = 8 a = 1 b = 6 c = 8 = = 4 8 Vértice: b v = a v = f ( v ) = 3 = f (3) =
7 Lembrete: f() = 4, se 1 + 1, se 1 < < , se 3 1 f() = 1 < < 3 = (1, ) 3 4 (3, 4) 3 = (3, 4) 5 0 (5, 0) Im = { IR / 4} ou vc escreve: Im = ], 4]
8 . Faça o gráfico da função: a) f() =, se 0 f() =, se 0 45º ( ) 45º 0 b) f() = Se 0, f() = = + 1 Se 0, f() = + 1 = 1 + 1, se 0 = 1, se = (0, 1) (1, 3) Adicionar a favoritos 0 1 Im = IR + (Reais não negativos)
9 5. (UFRGS 009) Considerando a função definida por f() = + 1, assinale, entre os gráficos apresentados nas afirmativas, aquele que pode representar f. C.E.: 0 Se > 0, f() = + 1 = = Se < 0, f() = + 1 = = 0 =, se > 0 0, se < 0 0
10 c) f() = + d) f() = = Raízes: 3 = 0 = 3 = ± 3
11 e) f() = = =
12 f) f() = ( 5) f () = f() = = 5 = 5, se 5 + 5, se 5 5, se ( 5), se 5 0 = (5, 0) 6 1 (6, 1) = (5, 0) (0, 5)
13 f) f() = ( 5) f() = 5 5 Inicialmente vamos fazer o gráfico da função que está dentro do módulo = (0, 5) (5, 0) A seguir, rebatemos com simetria a parte negativa do gráfico. 5 5 O módulo de um número é ele se ele for positivo e é ele de sinal trocado se ele for negativo.
14 g) f() = Inicialmente vamos fazer o gráfico de = 9 Raízes: Vértice: b 9 = 0 v = = 0 a = ± 3 v = f ( v ) = f(0) = 9 A seguir, rebatemos com simetria a parte negativa do gráfico. O módulo de um número é ele se ele for positivo e é ele de sinal trocado se ele for negativo. 9
15 *h) f() = 3 = 3 = = 3 3 O módulo de um número é ele se ele for positivo e é ele de sinal trocado se ele for negativo. 3
16 *i) = = ( + 3) ( 4) = = + 1 = 3 + 1, se 3 7, se 3 4 1, se 4 3 = ( 3, 7) 4 9 ( 4, 9) 4 = (4, 7) (5, 9) raízes das funções que estão em módulo = + 3 ( 4) = = = = 1 5
17 (Unicamp 01) Considere a função f() = + + p, definida para real. a) A figura a seguir mostra o gráfico de f() para um valor específico de p. Determine esse valor. Observando o gráfico podemos tomar pontos para obter o valor de p. Um ponto muito conveniente é (1, ), no qual a função modular quebra de padrão. f() = + + p (1, ) p = 1 + p = 0 p = p = 0
18 (Unicamp-01) Considere a função f() = + + p, definida para real. b) Supondo, agora, que p = 3, determine os valores de que satisfazem a equação f() = 1. Para p = 3, temos f() = + 3 f() = = 1 raiz da função que está em módulo 3 5 ( 3) = = = 1 3 = 15 = 9 (não convém) = 5 9 não está neste intervalo! S = {5}
19
20
21
22
23 (FGV) a) Esboce o gráfico da função f() = = 3.( ) + = 3 + = se 0 = se 0 = Raízes: = 0 = 1 ou = Vértice: v = 1,5 v = f( v ) = 0,5 = 3 + Raízes: 3 + = 0 = 1 ou = Vértice: v = 1,5 v = f( v ) = 0,5 1,5 1 0,5 1 1,5
24 (FGV) 1 b) Qual o domínio da função f() = C.E.: 0 C.E.: = ( 3) 4 1 = 1 Raiz: 1 = 0 = 1 3± é raiz dupla 4 ½ = 0 ½ = é NEGATIVO D = { IR / > ½ e 1}
25 (Fuvest) raízes das funções que estão em módulo a) Esboce, para real, o gráfico da função f() = ½ = ( ) (+1) 6 = ( ) = = = = 7 = 4 5 = 3 = 4 5, se ½ 3, se ½ 7, se ½ = 4 5 ½ 3 ( ½, 3) 5/4 0 ( 5/4, 0) = 7 3 (, 3) 7/ 0 (7/, 0) 5/4 ½ 3 7/
26 (Fuvest) b) Para que valores reais de temos f() > +? > + 7/6 ( ) (+1) 6 > > > + 6 > 7 6 < 7 < 7/6 (multiplica por 1) ½ ( ) > + 3 > + > 5 (multiplica por 1) < 5 < 5/ Não há neste intervalo S = { IR / < 7/6} Ou vc escreve: S = ], 7/6[ > + 7 > + 7 > (F) Nenhum é solução
27 O volume de água em um tanque varia com o tempo de acordo com a e equação V = 10 4 t t 6, t IR +. Nela, V é o volume, medido em m 3, após t horas, contadas a partir de 8h de uma manhã. a) Faça o gráfico de V em função de t 3 V = 10 (4 t) + (t 6) V = 10 + (4 t) +(t 6) V = 10 + (4 t) (t 6) V = t + t 6 V = t + t 6 V = t t + 6 V = 4t V = 8 V = 4t + 0 V = t 4t, se t 8, se t 3 4t + 0, se t 3 t V = 4t 8 (, 8) 0 0 (0, 0) V 8 t 3 t V = 4t (3, 8) 5 0 (5, 0) t
28 O volume de água em um tanque varia com o tempo de acordo com a e equação V = 10 4 t t 6, t IR +. Nela, V é o volume, medido em m 3, após t horas, contadas a partir de 8h de uma manhã. b) Determine o horário em que o volume permanece constante. c) A partir de que horas o tanque estará vazio. V = 4t, se t 8, se t 3 4t + 0, se t 3 b) O volume permanece constante (8 m 3 ) para t 3, isto é: Entre 10 e 11 horas. c) O tanque estará vazio (V = 0) para t = 5, isto é: A partir de 13 horas. V t
29 (Fuvest-010) Seja f() = 1, IR, e considere também a função composta g() = f(f()), IR. a) Esboce o gráfico da função f, no desenho da folha de respostas (abaio), indicando seus pontos de interseção com os eios coordenados. = = 1 0 Raízes: 1 = 0 = 1 = ± 1
30 (Fuvest-010) Seja f() = 1, IR, e considere também a função composta g() = f(f()), IR. b) Esboce o gráfico da função g, no desenho da folha de respostas (abaio), indicando seus pontos de interseção com os eios coordenados. g() = f(f()) = f( 1) = 1 1 = 1 = O módulo de um número é ele se ele for positivo e é ele de sinal trocado se ele for negativo.
31 (Fuvest-010) Seja f() = 1, IR, e considere também a função composta g() = f(f()), IR. b) Esboce o gráfico da função g, no desenho da folha de respostas (abaio), indicando seus pontos de interseção com os eios coordenados. g() = f(f()) = f( 1) = 1 1 = Raízes: 1 1 = 0 1 = 1 1 = 1 Þ = Þ = ou = 1 = 1 Þ = 0 Þ = 0
32 (Fuvest-010) Seja f() = 1, IR, e considere também a função composta g() = f(f()), IR. c) Determine os valores de para os quais g() = 5. g() = = 5 1 = 6 Þ = 7 Þ = 7 ou = 7 1 = 6 1 = 6 Þ = 5 Impossível pois 0 = 7 ou = 7
33 (FGV 011) No plano cartesiano, os pontos (, ) que satisfazem a relação + = determinam um polígono cujo perímetro é: a) b) 4 + c) 4 d) e) 8 Se 0 e 0, temos + = = + Se < 0 e 0, temos + = = + Se < 0 e < 0, temos = = Se 0 e < 0, temos = = a a a a O polígono formado é um quadrado. a = + a = Assim, o perímetro do polígono é 4 = 8
FUNÇÕES EXPONENCIAIS
FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.
Módulo e Função Modular
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença
Matemática I Capítulo 11 Função Modular
Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2
Matemática Prof. Piloto Gráficos de Funções 1. Função Uma forma simples de dizer o que é uma função é: Uma função é uma variável (y) que depende de outra () Nosso esquema mental é: y é a função ou variável
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Funções - Noções Básicas Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções - Noções Básicas Resolução de Exercícios 1 Exercícios Introdutórios Exercício 1. Três
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Exercícios de Matemática Funções Função Modular
Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
2. Sendo f(x) = x 4 e g(x) = 4 x calcule:
Geometria linear Dados dois pontos distintos e, o primeiro postulado de Euclides nos permite construir, com a régua, o segmento. Notação: Depois de construído o segmento, tomamos o seu comprimento como
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES
FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Matemática Régis Cortes GEOMETRIA ANALÍTICA
GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule:
Resolução das atividades complementares Matemática M6 Função Modular p. 89 De acordo com a definição, calcule: a) b) c) 8 d) 6 7 a) b) c) 8 8 d) 6 6 7 Aplicando a definição, determine o valor numérico
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3
FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor
MATRIZ FORMAÇÃO E IGUALDADE
MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se
Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
7. Calcule o valore de x + y z sabendo que as
. Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual
MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1
MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições
MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com
A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.
Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo
Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.
MAT 105- Lista de Exercícios
1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I
6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição
DVD do professor. banco De questões
coneões com Capítulo 8 números compleos capítulo 8. Escreva na forma algébrica os números compleos abaio. a) i i b) i i i c) e o i. (UEL-PR) Qual é a parte real do número compleo 5 a bi, com a e b reais
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
III CAPÍTULO 21 ÁREAS DE POLÍGONOS
1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além
Escola Secundária com 3º Ciclo D. Dinis. Ficha de Apoio nº2
Escola Secundária com 3º Ciclo D. Dinis Ano Lectivo 2008 /2009 Matemática B Ano 10º Turma D 1. Observe a figura. 1.1.Indique as coordenadas dos pontos A, B, C, A, B e C. 1.2. Descreva a transformação geométrica
GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu
GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Matemática A Intensivo V. 1
Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso
4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA
43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir
Ficha de avaliação nº2 Versão A1
st ireção-eral dos stabelecimentos scolares SRAI ireção de Serviços da Região Algarve ARUPAMNT SLAS JÚLI ANTAS LAS (145415) Matemática A- 10ºAN 1/11/013 Ano letivo 013/014 icha de avaliação nº Versão A1
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real.
1 Projeto Jovem Nota 10 Números Complexos Lista 2 Professor Marco Costa 1. (Fuvest 2003) Nos itens abaixo, z denota um número complexo e i a unidade imaginária (i = -1). Suponha z i. a) Para quais valores
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine
de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).
UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
Cálculo Diferencial e Integral I
Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico
Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental
postila de Geometria nalítica º período de gronomia e Engenharia mbiental luno(a): data: / /0 GEOMETRII NLÍÍTIIC.. O PLNO CRTESIINO Y ( eio das ORDENDS ) issetriz dos quadrantes pares issetriz dos quadrantes
Exercícios de Matemática Produtos Notáveis Fatoração
Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.
Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?
PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos
MATEMÁTICA - 3 o ANO MÓDULO 61 FUNÇÕES TRIGONOMÉTRICAS E TRANSLAÇÃO DE GRÁFICOS
MATEMÁTICA - 3 o ANO MÓDULO 61 FUNÇÕES TRIGONOMÉTRICAS E TRANSLAÇÃO DE GRÁFICOS y 1 0 π π π π 6 4 3 π senoide 3π 3π -1 y 1 Cossenoide 0 π π π π 6 4 3 π 3π π -1 y tangentoide π 0 π π π Como pode cair no
Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1
Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto
VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06.
VESTIBULAR DA UFBA- FASE / 00-0- PROVA DE MATEMÁTICA Resolução e comentários pela professora Maria Antônia C. Gouveia. UESTÕES DE 0 A 06. LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA UESTÃO, FORMULE SUAS RESPOSTAS
1 Cônicas Não Degeneradas
Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de dezembro de 2001 Estudaremos as (seções) cônicas,
MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0
FUNÇÃO MODULAR 1. DEFINIÇÃO A função modular (ou valor absoluto) é tal que f,se 0,se 0.A notação utilizada é f. OBSERVAÇÃO Veja que f 0 para todo real.. PROPRIEDADES I) II) III) IV) (Esta propriedade é
MATEMÁTICA E SUAS TECNOLÓGIAS
MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
& ( $ + & ( U V $ QUESTÃO 01.
Resolução da prova de Matemática do º Vestibular Simulado de 004 _ Colégio Anchieta-BA Elaboração; prof. Octamar Marques. Resolução e comentário: profa. Maria Antônia Gouveia. QUESTÃO 0. & ( 0 4 U V $
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR
MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa
Notas de Aulas 2 - Retas e Circunferências Prof Carlos A S Soares
Notas de Aulas - Retas e Circunferências Prof Carlos A S Soares Preliminares O Plano Cartesiano e o Ponto Você certamente está familiarizado com o plano cartesiano desde o término do seu ensino fundamental
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros
Nuno Marreiros 9º ANO FUNÇÕES Função Quadrática Ponto de partida Já foi estudada a função de proporcionalidade direta bem como a função de proporcionalidade inversa. Hoje vamos aprender e estudar um pouco
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu
GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )
UNIDADE X geometria analítica CAPÍTULO 8 Geometria analítica: ponto e reta Banco de questões 1 (Cesgranrio RJ) Observe a figura e considere uma reta r cuja equação é y = x +. A esse respeito, são feitas
PRIMEIRA LISTA PARA A DISCURSIVA DE MATEMÁTICA-COMPLEXOS PROFESSOR PAULO ROBERTO
1. (Fuvest 94) a) Se z = cosš + isenš e z = cosš + isenš, mostre que o produto zz é igual a cos (š + š ) + isen(š + š ). b) Mostre que o número complexo z = cos48 + isen48 é raiz da equação z + z + 1 =
MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander
MATERIAL COMPLEMENTAR GEOMETRIA ANALÍTICA Professor. Sander I) O BÁSICO 0. Considere os pontos A(,8) e B(8,0). A distância entre eles é: 3 3 0 0. O triângulo ABC formado pelos pontos A (7, 3), B ( 4, 3)
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO
CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística
1 = 0,20, teremos um aumento percentual de 20% no gasto com
6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado
GABARITO Prova Verde. GABARITO Prova Rosa
Sistema ELITE de Ensino COLÉGIO NAVAL 011/01 GABARITO Prova Verde MATEMÁTICA 01 E 11 D 0 D 1 A 03 E 13 ANULADA 0 E 1 ANULADA 05 D 15 B 06 D 16 C 07 B 17 C 08 E 18 B 09 A 19 A 10 C-Passível de anulação
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
Média, Mediana e Distância entre dois pontos
Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs
Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.
Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D
Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração
Exercícios sobre Trigonometria
Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:
matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos
Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no
As funções do 1º grau estão presentes em
Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos
CPV o Cursinho que mais aprova na GV
CPV o Cursinho que mais aprova na GV FGV ADM 4/dezembro/16 MAteMátiCA 1. Estima-se que, em determinado país, o consumo médio por minuto de farinha de trigo seja 4,8 toneladas. Nessas condições, o consumo
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.
QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
2. (Fuvest 2004) Seja m µ 0 um número real e sejam f e g funções reais definidas por f(x) = x - 2 x + 1 e g(x) = mx + 2m.
1. (Ufrj 2003) Seja f a função real dada por f(x) = ax + bx + c, com a > 0. Determine a, b e c sabendo que as raízes da equação f (x) = 12 são -2, 1, 2 e 5. Justifique. 2. (Fuvest 2004) Seja m µ 0 um número
A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula
A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,
