O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

Tamanho: px
Começar a partir da página:

Download "O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra."

Transcrição

1 Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Eemplo.: O custo C de enviar uma carta pelo correio depende de seu peso w. O correio tem uma fórmula que permite calcular C quando é dado w. A área de um círculo depende do seu raio r. A lei que conecta r e A é dada pela equação A = π r. A cada número r positivo eiste um único valor de A e dizemos que A é uma função de r. Uma função pode ser representada de várias maneiras por uma equação, por uma tabela, por um gráfico ou mesmo por meio de palavras. Definição.: Uma função f é uma lei a qual cada elemento em um conjunto A faz corresponder apenas um elemento chamado f() em um conjunto B. O conjunto A é o domínio da função e o conjunto B é o contradomínio. Observação: As funções estudadas neste curso têm como domínio e contradomínio conjuntos de números reais. Definição.: Chamamos conjunto imagem de f ao conjunto de todos os valores possíveis de f() quando varias por todo o domínio. Eemplo.: Sejam A=[-,], B= e f:a B dada por f()=3. Determine: a) f(-) b)f(0) c)f() d) o conjunto imagem de f Destacamos algumas das funções com as quais trabalharemos ao longo do curso: polinômios, função eponencial e função logarítmica.. Polinômios Uma função P é denominada polinômio se n n P ( ) = an an K a a ao, onde n é um inteiro não negativo e os números a o, a, a,...,a n são constantes chamadas coeficientes do polinômio. O domínio de qualquer polinômio é =(-, ). Se o coeficiente dominante a n 0, então o grau do polinômio é n Eemplo.3: P ( ) = é um polinômio de grau 6. 5

2 Polinômio de grau (Função do º grau) A equação de uma função do º grau pode ser escrita na forma: y=mb; onde m e b são constantes. Propriedades da função do º grau : ) o gráfico de uma função do º grau é sempre uma reta. ) na função f() = m b, se b = 0, f é dita função linear e se b 0 f é dita função afim. 3) o gráfico intercepta o eio dos na raiz da equação f() = 0 e, portanto, no ponto de abscissa = - b/m. 4) o gráfico intercepta o eio dos y no ponto (0, b), onde b é chamado coeficiente linear. 5) o valor m é chamado coeficiente angular e dá a inclinação da reta. 6) se m>0, então f é crescente. 7) se m< 0, então f é decrescente. 8) quando a função é linear, ou seja, y = f() = m, o gráfico é uma reta que sempre passa na origem. Eemplo.4: Esboce o gráfico de y=3 Eemplo.5: Na função y=mb sabe-se que f()=0 e f(3)=4. Determine a função. O eemplo.5 pode ser resolvido usando o conceito de coeficiente angular e equação da reta para obter a epressão de y. Coeficiente Angular Equações de Retas As linhas retas num plano têm equações muito simples, relativamente a um sistema de coordenadas cartesianas. Estas equações podem ser deduzidas utilizando-se o conceito de coeficiente angular.

3 Definição.3: Sejam (, y ) e (, y ) pontos distintos de uma reta r. Se então o coeficiente angular (ou inclinação) m de r é dado por Observações: m = y y O valor de m calculado pela definição anterior é independente da escolha dos dois pontos em r. Se = então r é uma reta vertical e seu coeficiente angular não está definido. Para entender o significado do coeficiente angular, vamos pensar que estamos caminhando da esquerda para a direita ao longo da reta. Em retas com coeficiente angular positivo estaremos caminhando para cima. Em retas com coeficiente angular negativo estaremos caminhando para baio. Caminhar em retas com coeficiente angular zero, corresponde a caminhar na horizontal. Se = então r é uma reta vertical e seu coeficiente angular não está definido. Coeficiente angular positivo Coeficiente angular negativo Coeficiente angular zero Coeficiente angular indefinido Eemplo.6: Ache o coeficiente angular da reta que passa pelos pontos (, 5) e (3, ). Eemplo.7: Determine o coeficiente angular da reta que passa pelos pontos (7, ) e (3, ). Seja (, y ) um ponto dado de uma reta de coeficiente angular m. Então, para qualquer outro ponto (,y) da reta temos que y y = m Daí, multiplicando ambos os membros por ( ) obtemos a equação da reta na forma chamada ponto-coeficiente angular. y y = m( ) () Se o ponto conhecido é aquele em que a reta corta o eio y, e é denotado por (0, b), então a equação () torna-se y = m b () 3

4 Neste caso, b chama-se interseção y da reta ou coeficiente linear e a equação () chama-se equação reduzida da reta. Esta equação epressa a forma geral de uma função do º grau. Como uma reta horizontal tem coeficiente angular zero, a reta horizontal que passa pelo ponto (, y ) tem a equação y = y. O coeficiente angular de uma reta vertical não está definido, por isso as fórmulas () e () não são apropriadas para se obter sua equação. No entanto, as primeiras coordenadas de todos os pontos de uma reta vertical são iguais. Assim, uma reta vertical que passa pelo ponto (, y ) tem equação =. Eemplo.8: Escreva a equação da reta que: a) passa pelos pontos (4, ) e (5, 8). b) passa por (, 3) e tem coeficiente angular 4. c) tem coeficiente angular e coeficiente linear 5. d) passa pelos pontos (3, 5) e (3, ) Teorema.: Duas retas não-verticais são paralelas se e somente se seus coeficientes angulares são iguais. r // s m r = m s Eemplo.9: Seja r a reta que passa pelos pontos (,9) e (,3) e seja s a reta que passa pelos pontos ( 4, 0) e (3, 4). Mostre que r e s são paralelas. Teorema.: Duas retas não-verticais são perpendiculares se e somente se o coeficiente angular de uma é igual ao simétrico do inverso do coeficiente angular da outra. r s m r = m s Eemplo.0: Seja r a reta que passa pelos pontos (,9) e (,3) e seja s a reta que passa pelos pontos (4, 5) e (, ). Mostre que r e s são perpendiculares. Observação: O coeficiente angular de uma reta é uma constante sempre que ele está definido. O número y y é a variação na coordenada y (podemos representar por y) e é a variação na coordenada (podemos representar por ). Dessa forma, o coeficiente angular de uma reta fornece a razão entre a variação de y e a variação de, ou ainda, a taa de variação de y em relação à. y y y y m = = y y 4

5 Eemplo.: No começo do ano de 00, o preço dos pães integrais em um supermercado local aumentou a uma taa constante de centavos por mês. Em º de novembro do referido ano, o preço atingiu R$,06 por unidade. Epresse o preço do pão em função do tempo e determine o preço no começo de 00. Polinômio de grau (Função do º grau) Uma função é dita do º grau quando é do tipo: f() = a b c, com a>0. Eemplos.: f() = - ( a =, b = -, c = ) ;y = - ( a = -, b = 0, c = 0 ) Gráfico da função do º grau y = a b c : é sempre uma parábola de eio vertical. Propriedades do gráfico de y = a b c : ) se a >0 a parábola tem um ponto de mínimo. ) se a <0 a parábola tem um ponto de máimo 3) o vértice da parábola é o ponto V( v, y v ) onde: v = - b/a y v = - /4a, onde = b - 4ac 4) a parábola intercepta o eio dos nos pontos de abcissas ' e '', que são as raízes da equação a b c = 0. 5) a parábola intercepta o eio dos y no ponto (0, c). 6) o eio de simetria da parábola é uma reta vertical de equação = - b/a. 7) y ma = - / 4a ( a <0 ) 8) y min = - /4a ( a > 0 ) 5

6 9) Im(f) = { y ; y - /4a } ( a > 0 ) 0) Im(f) = { y ; y - /4a} ( a< 0) ) Forma fatorada : sendo e as raízes da de f() = a b c, então ela pode ser escrita na forma fatorada a seguir : y = a( - ).( - ) Função Eponencial e Função Logarítmica Função Eponencial Definição.4: Seja b IR { } função eponencial de base b. Eemplos.3:. A função de IR em IR tal que f() = b é chamada de ) Seja f() =. Temos que f(3) = 3 = 8; f(0) = 0 = ; f( ) = - = ; f 3 = 3/ = 3 = 8 ) Seja f() = Temos que f(4) = ; f( 3) = 8; f(0) = ; f = 6 Observação: Na definição anterior, b IR { } pois: a) Seja f() = ( ). Então, por eemplo, f(/) = (-) ½ = IR b) Seja f() = 0. Então, por eemplo, f( ) = 0 = 0 IR c) Seja f() =. Então f() = para todo número real, isto é, f() é uma função constante. Figura 6

7 As quatro curvas da figura são típicas dos gráficos de funções eponenciais. Em particular, se b >, o gráfico de y = b se parece com os gráficos de y = e y = 3 ; se 0 < b <, o gráfico de y = b se parece com os gráficos de y = (/) = e y = (/3) = 3. De modo geral, o gráfico de y = b é representado por uma curva que está toda acima do eio, corta o eio y no ponto (0,) e tem concavidade voltada para cima em IR. Além disso, y = b é crescente em IR para b > e é decrescente em IR para 0 < b <. As funções eponenciais são contínuas em IR e obedecem às seguintes propriedades: Sejam a, b IR { } e e y números reais. a) b = b y = y d) (b ) y = b y b) b.b y = b y e) (a.b) = a.b b c) y b = b y f) a b a = b O número e Dentre todas as bases possíveis para uma função eponencial, há uma que aparece com muita freqüência em livros tetos de cursos de cálculo. O número e aparece quando escolhemos para a base a um valor tal que a reta tangente a y=a no ponto (0,) tem inclinação eatamente. O número e é um número irracional, ou seja, não pode ser escrito na forma de fração e seu valor é, e também é transcedental (não pode ser resultado de uma equação polinomial com coeficientes inteiros do tipo: a n b n-... z = 0). Esta notação foi escolhida pelo matemático suíço Leonard Euler em 77. A função f()=e cruza o eio y com inclinação 7

8 A função f()=e aprece na modelagem de vários fenômenos naturais por eemplo: crescimento populacional, desintegração radioativa. Na área de Economia é aplicada no cálculo de juros. Por eemplo: Imagine que um banco pague juros de 00% ao ano. Uma situação hipotética, mesmo assim, vamos fazer de conta que eiste um banco com essa maravilhosa generosidade. Após um ano, teríamos o montante de R$,00 para cada R$,00 aplicado. E se, com uma generosidade ineplicável, os juros fossem creditados semestralmente, ao final de um ano teríamos R$,5. A epressão para esse cálculo é a seguinte: ( /n) n = ( /) =,5 (a fórmula dos Juros Compostos é: M=C(i) t, onde M=montante, C=capital, i=taa de juros, t=tempo) Para o crédito ser trimestral, temos n = 4 e o resultado é,444. Vejamos alguns resultados para diversos valores de n na tabela abaio. n ( /n) n,5 3, ,444 5,4883 0, , , , , , , ,788 A loucura total seria calcular quanto seria o resultado para o crédito instantâneo, ou seja, com n tendendo ao infinito. Esse limite é chamado número e (número de Euler). Função Logarítmica Para definir a função logarítmica, vamos primeiro fazer uma revisão de logaritmo. Definição.5: Sejam a, b IR com b. Dizemos que o logaritmo de a na base b é o número tal que b = a, isto é: log b a = b = a Eemplos.4: ) log 8 = 3 pois 3 = 8 ) log 3 8 = 4 pois 3 4 = 8 3) 5 log 5 = 3 porque 5 3 = 5 Observações: 8

9 ) Os logaritmos de base 0 são chamados de logaritmos decimais e denotados sem indicar o valor da base, isto é, log a = log 0 a. ) Os logaritmos de base e são chamados de logaritmos neperianos (ou naturais) e denotados por ln isto é, ln a = log e a. Propriedades dos logaritmos: Sejam b IR { } e sejam a, c IR ) log b a = log b c a = c ) log b b = 3) log b = 0 4) log b (a.c) = log b a log b c 5) log b a c a = c. log b a 6) log b c = log b a log b c Definição.6: Seja b IR { } de função logarítmica de base b.. A função de A figura abaio mostra os gráficos de duas funções logarítmicas: IR em IR tal que f() = log b é chamada Observações: Gráfico de y = log Gráfico de y = log / ) A função logarítmica é uma função contínua em ) A função logarítmica é crescente em IR. IR para b > e é decrescente em IR para 0 < b < Propriedades que relacionam as funções eponencial e logarítmica como funções inversas: ) log b b = ) log b b = Funções: Aplicações Função Custo, Função Receita e Função Lucro Uma função custo descreve o custo de produção de determinado bem e varia em função da quantidade produzida desse bem. No custo de produção eistem duas parcelas: uma parte fia, chamada custo fio, que não depende da quantidade produzida e corresponde aos gastos fios de produção tais como aluguel e manutenção do prédio; e uma parte variável que depende da 9

10 quantidade produzida e corresponde aos gastos de produção propriamente dita, isto é, envolve compra de matéria prima, pagamento de mão-de-obra, etc., é o chamado custo variável. A função custo é a soma dos custos fio e variável. Eemplo.5: O custo variável de fabricação de filtros de água é 0 0,000 com e o custo fio mensal é R$.000,00. Determine a função C() que fornece o custo total da fábrica e calcule o custo para produzir litros de água. Eemplo.6: O custo mensal de produção de brinquedos é dado por C() = a) Calcule o custo para se produzir.000 brinquedos. b) Determine o custo adicional, se o nível de produção aumentar de.000 para.00 brinquedos. c) Quantos brinquedos podem ser produzidos a um custo de R$5.000,00? A função receita descreve o total bruto recebido pela venda de uma quantidade variável de um produto. A função receita R() pode ser determinada multiplicando-se o preço unitário p do produto pela quantidade, isto é, R() = p. A função lucro (total) é epressa pela diferença entre as funções receita e custo. Eemplo.7: Suponha que brinquedos do eemplo anterior são vendidos por R$0,00 a unidade. Então R() = 0. Dada a mesma função custo, C() = 3.000, o lucro gerado pelos brinquedos será: L() = R() C() = 0 ( 3.000) L() = a) Determine a receita gerada por brinquedos. b) Determine o lucro gerado por brinquedos. Eemplo.8: O custo semanal de fabricação de unidades de um produto é dado por C() = e a receita gerada pela venda de unidades é R() =. a) Determine a função lucro L(). b) Qual é o lucro obtido quando são vendidas 0 unidades por semana? c) Se o lucro é de R$.000,00 por semana, qual é a receita semanal? Eemplo.9: C() = 7 e R() = 0 são, respectivamente, as funções custo e receita para unidades de um produto fabricado e vendido por uma empresa. a) Determine a função lucro L() da empresa. b) Determine o valor de para que o lucro seja máimo. Referências: -Cardoso, Maria Emília Neves. Notas de aula de Complementos de Matemática Aplicada, UFF: 0. -Hoffmann, L;Bradley,G. Cálculo: um curso moderno e suas aplicações. 6 a ed. LTC, Stewart, James. Cálculo Volume. 5 a Ed.. São Paulo: Thomson Learnig,

Capítulo 2. Funções. 2.1 Funções

Capítulo 2. Funções. 2.1 Funções Capítulo Funções Ao final deste capítulo você deverá: Recordar o conceito de função, domínio e imagem; Enunciar e praticar as operações com funções; Identificar as funções elementares, calcular função

Leia mais

Cálculo I - Lista 1: Números reais. Desigualdades. Funções.

Cálculo I - Lista 1: Números reais. Desigualdades. Funções. Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

Apostila 2: Matemática - Funções

Apostila 2: Matemática - Funções de 9 UNERJ - Centro Universitário de Jaraguá do Sul Curso: Administração / Ciências Contábeis Disciplina: Matemática Prof.: JOABLE Apostila : Matemática - Funções Conjuntos Numéricos Conjunto: conceito

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Cálculo Diferencial Integral 1 Profª Sheila Regina Oro AULAS 2, 3, 4, 5 AULAS,,, 5 FUNÇÕES. Plano Cartesiano Os nomes Plano Cartesiano e Produto Cartesiano são homenagens ao seu criador René Descartes (596-65), filósofo e matemático francês. O nome de Descartes em Latim, era

Leia mais

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.

Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

Capítulo 3 - Geometria Analítica

Capítulo 3 - Geometria Analítica 1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:

Leia mais

AULAS DE CONJUNTOS E FUNÇÕES

AULAS DE CONJUNTOS E FUNÇÕES 1 SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS FACULDADE DE MATEMÁTICA AULAS DE CONJUNTOS E FUNÇÕES PLANO NACIONAL DE FORMAÇÃO DE PROFESSORES DA EDUCAÇÃO

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 12. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 12. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Funções reais de variável real. Seja g a função, de domínio,, representada graficamente na figura ao lado, e seja u a sucessão definida por. n Qual é o valor

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR

Leia mais

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández

MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández MAT-2453 CÁLCULO DIFERENCIAL E INTEGRAL I - BCC Prof. Juan Carlos Gutiérrez Fernández Lista 3: Introdução à Derivada, Limites e continuidade. Ano 207. Determine a função derivada e seu domínio para a função

Leia mais

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:

Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE: Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Matemática Básica Função polinomial do primeiro grau

Matemática Básica Função polinomial do primeiro grau Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Lista de exercícios: Funções do 2º Grau

Lista de exercícios: Funções do 2º Grau Lista de eercícios: Funções do º Grau 1 1. Marque quais são as funções do º grau: (R= b, c, d, e, i, j, k,l) a. e. i. b. 6 9 f. 5 10 c. g. 1 j. 5 k. 1 1 d. h. 5 1 l. 1. Quais dos pontos pertencem à parábola

Leia mais

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta Termos Semelhantes(redução) a) + (não há termos semelhantes) b) ²+3-5 (não há termos semelhantes) c) +3+ => 5+ d) 5 + (3 ) - ( 9) 5 + 3 + 9 5 + 3 + 9 6 + 5 e) 8 [ - + ( + 3 7)] 8 [ - + +3 7] 8 + 3 + 7

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

Matemática A Extensivo V. 4

Matemática A Extensivo V. 4 Etensivo V. 4 Eercícios 0) C f(t) = at + b (t = tempo) (I) t = 0 f(t) = 9000 (II) t = 4 f(t) = 4000 Substituindo os valores na função f(t) = at + b, temos: (I) 9000 = a. 0 + b b = 9000 (II) 4000 = 4a +

Leia mais

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares

Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Neste momento do curso de Elementos de Cálculo, estamos interessados em rever algumas funções já estudadas no Ensino Médio de forma

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

Ou seja, D(f) = IR e Im(f) IR.

Ou seja, D(f) = IR e Im(f) IR. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix

Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais