Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
|
|
|
- Vagner Taveira Bergmann
- 8 Há anos
- Visualizações:
Transcrição
1 FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1, b = 0, c = -9 ) f(x) = 4x² + 2x 3 (a = 4, b = 2, c = -3) f(x) = -x² - 5x (a = -1, b = -5, c = 0) f(x) = 7x² (a = 7, b = 0, c = 0) Gráfico Para construirmos o gráfico da função quadrática no plano cartesiano, vamos proceder da mesma maneira como fizemos para a função do 1º grau. O gráfico de uma função quadrática é uma curva aberta chamada parábola. Observação: A função f(x) = x² - 2x 3, temos a = 1 > 0 => a parábola tem a concavidade voltada para cima. a > 0 A função f(x) = -x² + 2x + 3, temos a = -1 < 0 => a parábola tem a concavidade voltada para baixo. a < 0 Zeros (ou raízes) de uma função do 2º grau. Denominam-se zeros ou raízes de uma função quadrática os valores de x que anulam a função, ou seja, que tornam f(x) = 0. Estes valores calcula-se usando o algoritmo de Bhaskara que é: x 2. a onde = b² - 4ac 1
2 Da mesma forma que, para as equações do 2º grau: Se > 0 a função y = ax² + bx + c tem duas raízes reais distintas ( x x ). Se = 0 a função y = ax² + bx + c tem duas raízes reais iguais ( x = x ). Se < 0 a função y = ax² + bx + c não tem raízes reais. Observação: As raízes são os valores de x em que a parábola corta o eixo das abscissas (x). Exemplos: Determinar as raízes (zeros) das funções: a) y = x² - 4x 5 solução: Fazendo x² - 4x 5 = 0, teremos = b² - 4ac = (-4)² (-5) = x = ( 4) x = -1 e x = 5 2. a 2(1) 2 b) y = 4x² + 20x + 25 solução Resolvendo a equação : 4x² + 20x + 25 = 0, teremos: = (20)² - 4.(4).(25) = = x, logo x = x = -5 / A função f(x) = x² - 2x + 3k tem dois zeros reais iguais. Nestas condições, determinar os valores de k. Solução: A condição para que a função tenha zeros reais iguais é que = 0. = b² - 4.a.c = (-2)² (3k) = 4 12k 4 12k = 0 => 12k = 4 => k = 4 / 12 => k = 1 / 3. EXERCÍCIOS 1- Determinar os zeros das seguintes funções: 2
3 a) y = x² - 7x + 10 b) y = 2x² - 3x + 4 c) y = x² + 2x + 1 ESTUDO DO VÉRTICE DA PARÁBOLA Vamos estudar, neste item, o vértice da parábola e observar as consequências desse estudo: As coordenadas do vértice A parábola, que representa o gráfico da função f(x) = ax² + bx + c, passa por um ponto V, chamado vértice, cujas coordenadas são : x v = 2. a (abscissa) e y v = (ordenada) 4.a Os esboços dos gráficos, no diversos casos, são os seguintes: > 0 y a > 0 a < 0 y 4.a -b/2a - /4.a x -b /2a x = 0 y a > 0 a < 0 y 0 -b/2.a x 0 -b / 2.a x 3
4 < 0 - /4.a a < 0 y y a > 0 -b/2.a 0 - /4.a 0 x -b/2.a Logo vértice da parábola é o ponto: V (, ). 2. a 4. a IMPORTANTE: Quando: a > 0, o vértice funciona como sendo o ponto mínimo. Neste caso o valor mínimo da função é dado por: y min = y v = - /4.a Quando: a < 0, o vértice funciona como sendo o ponto máximo. Neste caso o valor máximo da função é dado por: y max = y v = - /4.a Exemplos: 1- Determinar as coordenadas do vértice V da parábola que representa a função f(x) = x² - 2x - 3 Solução: ( 2) 2 xv 1 2. a 2(1) 2 = b² -4.a.c = (-2)² - 4.(1).(-3) = = 16 y v a 4(1) 4 Logo: o vértice é o ponto V(1, -4). 2- A função f(x) = x² - x 6 admite valor máximo ou valor mínimo? Qual é esse valor? Solução: f(x) = x² - x 6. Como a = 1 > 0, a função admite valor mínimo, que vamos calcular; 4
5 a>0 y min - / 4.a = b² - 4.a.c = (-1)² - 4.(1).(6) = = 25 yv = - /4.a = -15 / 4 ( valor mínimo). EXERCÍCIO RESOLVIDO Se a equação de demanda de um bem é q = custo associado, determine: 12 p D e C T = 3q + 10 o 2 a) a equação da receita total em função da quantidade q vendida, e seu gráfico b) o break even point c) a equação do lucro total d) o valor de q que maximiza o lucro, e o lucro máximo correspondente e) o valor de q que maximiza a receita, e a receita máxima correspondente. Solução; a) Temos que R T = p v.q. Como não temos o preço de venda por unidade (p v ), vamos explicitar P = p v na equação da demanda, logo teremos 12 p R T = p v.q = (12 2q).q = -2q² + 12q, isto é q p pv 12 2q 2 R T = -2q² + 12q Para obter o gráfico, calcularemos as raízes e o vértice da função receita total, isto é. Raízes: R T = -2q² + 12q = 0 q(-2q + 12) = 0 R T q = 0-2q + 12 = q = -12 q = 6 Vértice: 12 xv 3 2a 2( 2) y v [12² 4.( 2).0] a 4.( 2) q b) R T = C T 5
6 -2q² + 12q = 3q q² + 9q 10 = 0 ( por Bhaskara) termos: = 9² - 4.(-2).(-10) = = x 2.( 2) x' 2,5 4 4 R T = C T = 3.(2,5) + 10 = 7, = 17,5 (2,5 ; 17,5) x" R T = C T = 3.(2) + 10 = 16 (2 ; 16) c) A função lucro total é dada por: L T = R T - C T = -2q² + 12q (3q + 10) = -2q² +12q 3q 10, Logo L T = -2q² + 9q 10 d) O valor de q que maximiza o lucro total é dado pelo ( 9) 9 xv 2,25. 2a 2.( 2) 4 [9² 4.( 2).( 10)] 1 O valo do lucro máximo é dado pelo y v 0,125 4a 4.( 2) 8 e) O valor de q que maximiza a receita também é dado pelo x v = 3, calculado no item a ( observe o gráfico). O mesmo ocorre com o valor máximo da receita que é dada pelo y v = 18 (ver o gráfico). EXERCÍCIOS Aplicações da função do 2º grau 1- Consideremos a oferta dada por: S = p² - 64, com p < 20. a) A partir de que preço haverá oferta? b) Qual o valor da oferta para p = 20? c) A que preço a oferta será de 300 unidades? d) A partir de que preço a oferta será maior que 57 unidades? e) A partir de que preço a oferta será menor que 105 unidades? 2- O lucro diário total (LT) é a diferença entre a receita total (RT) e o Custo total (CT) de produção. Supondo que em certa fábrica, a receita gerada e o custo de produção sejam dados, em reais, pelas funções: RT = -x² + 60x e CT = 10x + 6
7 400, sendo x o número de itens produzidos e vendidos no dia. Sabendo que a fábrica tem capacidade de produzir até 50 itens por dia, pede-se: a) O número mínimo de itens x que devem ser produzidos por dia, para que a fábrica não tenha prejuízo; b) A quantidade x para que a fábrica tenha lucro máximo; c) O lucro máximo correspondente. 3- O lucro mensal de uma empresa é dado por L(x) = -x² + 30x 5, em que x é quantidade mensal vendida. Pede-se: a) O lucro mensal máximo b) A quantidade x produzida, para obter o lucro máximo c) Entre que valores deve variar x para que o lucro mensal seja no mínimo igual a 195? 7
8 1- Função Exponencial FUNÇÕES: EXPONENCIAL E LOGARÍTIMICA Seja a um número real positivo a 1. A função dada por y = a x com x R, recebe o nome de função exponencial Exemplos a. y = 2 x b. y = ( 1 2 )x 3- y = 3 x 4- y = ( 1 3 )x Gráfico da função exponencial. Como exemplo faremos o gráfico do exemplo 3 acima, y = 3 x. Inicialmente, faremos uma tabela. x y = 3 x Os outros itens ficam como exercícios. 8
9 EXERCÍCIO RESOLVIDO Em juros compostos, o montante de uma aplicação de capital inicial C, a uma taxa i, em n períodos é dado por: C(n) = C.(1 + i) n. Podemos assim obter, o montante composto de um capital inicial de R$ 3.000,00 aplicados à taxa de 2% a.m. durante 10 meses. Isto é: C = 3.000,00 i = 2% a.m. = 2 / 100 = 0,02 a.m. n = 10 m Logo C(10) = 3.000( 1 + 0,02) 10 = 3.000(1,02) 10 = , = R$3.656,98 Aplicações 1- Suponhamos que a população de um determinado país cresça exponencialmente. Sabe-se que daqui a t anos, sua população P será dada por P = 2, (1,2) t a) Qual é a sua população atual? b) Qual será sua população daqui a 2 anos? 2- Suponhamos que o valor de um carro usado decresça exponencialmente como tempo t. Seu valor V, em reais, daqui a t anos, será dado por V = 1, (0,81) t a) Qual é seu valor atual? b) Qual será seu valor daqui a 1 ano? c) Qual será seu valor daqui a 6 meses. 2- Função logaritmo 9
10 Seja a um número real positivo, a 1. Se x é um número real positivo existe um único real y tal que a y = x. O número y assim obtido recebe o nome de logaritmo de x na base a, e escrevemos: y = log a x. A função definida por y = log a x com x > 0, recebe o nome de função logaritmo de base a. Exemplos 1- y = log 2 x 2- y = log 1/2 x 3- y = log 3 x 4- y = log 1/3 x Gráfico da função logaritmo. Como exemplo faremos apenas o item 3 Y = log 3 x. x y = log 3 x 1/9-2 1/
11 PROPRIEDADES OPERATÓRIAS DOS LAGARITIMOS Sendo a, b, c números reais positivos com b 1, e n R + *, teremos: P1; Logaritimo do produto: log ( a. c) log a log c b b b a P2: Logaritimo do quociente: log b( ) logb a logb c c n P3: Logaritmo da potência: log a n.log a b b Mudança de base: log b log a log c c a b Exemplos: 1- Calcule a) log 180 b) log 600 c) log 50 d) log Resolva as equações: a) 3 x = 20 b) 2,7 = 1,02 x 11
12 c) 5 x+1 = Um capital de R$ 6.000,00 foi investido a juros compostos, a uma taxa mensal fixa de 3%. Após quanto tampo ele rendeu R$ 2.347,80? 4- Durante quanto tempo deve ser aplicado um capital a juros compostos de 5% ao mês, para que o rendimento obtido seja equivalente a 2 vezes o capital aplicado? 5- Após ser plantada, a muda de uma árvore começa a crescer. Sabe-se que sua altura H (em cm) após t meses, é dada pela função. H = 15. log 2 ( t +2) Calcule a) a altura da muda ao ser plantada. b) a altura da árvore daqui a 6 meses. c) a altura da árvore daqui a 8 meses. d) Em quanto tempo a altura da árvore atinge 60 cm? 12
13 e) Em quanto tempo a altura da árvore dobre? REFERÊNCIAS: ANTON, Howard. Cálculo Um Novo Horizonte. 6ª ed. Porto Alegre: Bookman, 2006, vol 1, 578p. FLEMMING, D. M., GONÇALVES, M. B. Cálculo A: funções, limite, derivação e integração. 5ª ed. São Paulo: Makron SILVA, S. M. da et al. Matemática básica para cursos superiores. São Paulo: Atlas, ÁVILA, Geraldo. Introdução ao cálculo. Rio de Janeiro: Editora JC, LEITHOLD, L. Matemática aplicada à economia e administração. São Paulo: Harbra, SILVA, S. M. da et al. Matemática para os cursos de economia, administração e ciências contábeis. 5ª ed., São Paulo: Atlas,
Matemática para contabilidade/mário INTRODUÇÃO. Vejamos os problemas.
INTRODUÇÃO Vejamos os problemas. 1- Seja a oferta de mercado de uma utilidade dada por: S = -20 + 2p, com p R$270,00. Poderíamos querer saber: a) A partir de que preço haverá oferta? b) Qual o valor da
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.2 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net FUNÇÃO QUADRÁTICA Seja a, b e c números reais
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
Matemática e suas tecnologias CONTEÚDOS POR ETAPA 1ª ETAPA 2ª ETAPA 3ª ETAPA. Função Afim Função Quadrática Função Exponencial ORIENTAÇÕES
Matemática e suas tecnologias MATEMÁTICA GLAYSON L. CARVALHO ROTEIRO DE RECUPERAÇÃO FINAL RECUP. FINAL 5 pts,75 pts 8 º ANO A B CONTEÚDOS POR ETAPA ª ETAPA ª ETAPA ª ETAPA Função Afim Função Quadrática
Função de 2º Grau. Parábola: formas geométricas no cotidiano
1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando
Curso de Biomedicina
Curso de Biomedicina Centro de Ciências da Saúde Universidade Católica de Petrópolis Matemática - Biomedicina Funções Polinomiais do 2o. Grau Maio de 2018 Luís Rodrigo de O. Gonçalves [email protected]
8/8/2012. Matemática. Conteúdo da Aula. Objetivos: Tema 3 Função do Segundo Grau. Ivonete Melo de Carvalho, MSc. Função de Segundo Grau.
Matemática Tema 3 Função do Segundo Grau Ivonete Melo de Carvalho, MSc Conteúdo da Aula Função de Segundo Grau. Objetivos: Estudar a função do segundo grau, suas características e a suas aplicações. Construir
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Função Quadrática Há várias situações do dia-a-dia
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
Função Quadrática e Proporcionalidade Inversa ( )
Função Quadrática e (18-01-08) F. Quadrática e Matemática e Estatística 2007/2008 Função Quadrática Chama-se função quadrática a qualquer função f de R em R dada por uma lei da forma f(x) = ax 2 + bx +
Exercícios de Aprofundamento Matemática Funções Quadráticas
1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais. Prof Jorge Jr.
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais Prof Jorge Jr. A CONTA DE ENERGIA ELÉTRICA Devido ao aumento da energia elétrica, Maria Eduarda resolveu registrar as suas despesas com a conta
C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:
Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;
PROFESSOR: JARBAS 4 2 5
PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).
FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda
EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO
EXERCÍCIOS DE REVISÃO DE MATEMÁTICA ASSUNTO: FUNÇÃO QUADRÁTICA 1 o PERÍODO - ADMINISTRAÇÃO =========================================================================================== 1) Seja a função f(x)
FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:
FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:
C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
1. Considere os conjuntos A = {0; 2} e B = {1; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta:
. Considere os conjuntos A = {0; 2} e B = {; 2; 3}. A respeito de produto cartesiano entre dois conjuntos, assinale a alternativa correta: a. AxB = {(0; ); (0; 2); (0; 3); (2; ); (2; 2); (2; 3)} b. BxA
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:
1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
Nivelamento Matemática Básica
Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios
OBJETIVOS DOS CAPÍTULOS
OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
Acadêmico(a) Turma: Capítulo 6: Funções
1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
Função quadrática. Definição. Exercício. = - Δ 4a. y V. x V. = - b 2a = - Δ = - Δ = = 420. Recuperação - 2 o ano 2 o bimestre de 2014
Função quadrática Recuperação - 2 o ano 2 o bimestre de 2014 Definição É toda função da forma f(x) = ax 2 + bx + c, com a, b e c reais e a 0. Gráfico É uma parábola! a > 0: concavidade para cima admite
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:
Faculdades Integradas Campos Salles
Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:
Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),
Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa
MATEMÁTICA APLICADA MÓDULO 2
MATEMÁTICA APLICADA MÓDULO 2 Índice 1. Receita total...3 2. Custo total...6 3. Ponto de nivelamento e lucro total...7 4. Resolvendo problemas... 10 5. Referências bibliográficas... 13 2 1. RECEITA TOTAL
ALUNO(A): Prof.: Andre Luiz 04/06/2012
1. FUNÇÃO 1.1 Definição A função dada por ( ), com a, b, c reais e a 0. Vejamos alguns exemplos: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) Vamos a outro exemplo: Ex2.: Um objeto que se desloca
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
1) Se o preço de um fogão da marca XYZ é de R$ 500,00, determine a receita total para venda de 20 fogões.
RESUMO Ponto de equilíbrio de mercado é o ponto de intersecção do gráfico entre a () e a (qo), ou seja é o ponto onde ocorre a igualdade entre () e (qo). Suas coordenadas são preço de equilíbrio (pe) e
Exercícios 5 e 6 do MUROLO, páginas 59 e 60. Matemática Aplicada (UNIP, 2011)
Exercícios 5 e 6 do MUROLO, páginas 59 e 60 Matemática Aplicada (UNIP, 2011) Exercício 5 (página 59) a) a função receita é dada por: R = p x q então, R = (-2q + 400). q é a função receita. Para esboçar
FUNÇÃO DO 2 GRAU TERÇA FEIRA
FUNÇÃO DO GRAU TERÇA FEIRA 1. (G1 - cftmg 016) Dadas as funções reais f e g, definidas por correto afirmar que 1 a) f(x) g 0, 4 para todo x. b) f(x) 0, para todo x. f(x) 3x e g(x) 4x 1, é c) f(x) g(x),
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
4-Função Quadrática. Laura Goulart. 11 de Fevereiro de 2019 UESB. Laura Goulart (UESB) 4-Função Quadrática 11 de Fevereiro de / 12
4-Função Quadrática Laura Goulart UESB 11 de Fevereiro de 2019 Laura Goulart (UESB) 4-Função Quadrática 11 de Fevereiro de 2019 1 / 12 Denição de função quadrática A função f : A R B R dada por f (x) =
MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto. LISTA 1 - Revisão
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA51A - Cálculo Aplicado Prof a Diane Rizzotto Rossetto LISTA 1 - Revisão Questão 1: Se 2 x = 256, o valor de x
Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO QUADRÁTICA Aulas 01 a 07 + EXTRA Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2016 Sumário O CONCEITO DE FUNÇÃO QUADRÁTICA... 2 (Função polinomial do 2 grau)... 2 EXERCÍCIO
Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t,
Atividade extra Exercício 1 Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t + 00t, onde h(t) é a altura da bola em função do tempo (t) em segundos. Quanto
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).
1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.
FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola
FUNÇÃO DO 2º GRAU A função do 2º grau está presente em inúmeras situações cotidianas, na Física ela possui um papel importante na análise dos movimentos uniformemente variados (MUV), pois em razão da aceleração,
Função Polinomial do 2º Grau
FORMAÇÃO CONTINUADA EM MATEMÁTICA PROJETO SEEDUC Matemática 1º Ano 3ºBimestre/01 Plano de Trabalho Função Polinomial do º Grau 04/09/01 Tarefa 1 Cursista: Darling Domingos Arquieres - Matrícula: 911917-3
Mat.Semana 5. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 5 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03
COLEÇÃO DARLAN MOUTINHO VOL. 02 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta 0 RESPOSTA 0 + 0 + 0 [Resposta do ponto de vista da disciplina de Matemática] [0] Falsa Nas etremidades das artérias o valor de 0, logo: V0 C. 0 R - 0 0
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1
Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima
Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011
CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
Matemática Básica. Atividade Extra
Matemática Básica Atividade Extra Assunto: Funções do 1º e º grau Professor: Carla Renata 1)Construir os gráficos das funções abaixo: ) 3) 4) 5) Classifique cada função em crescente ou decrescente. 6)
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
Inequação do Segundo Grau
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c
47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA
Matemática A Semiextensivo V. 2
Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2
EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.
Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois
Fundação CECIERJ/Consórcio CEDERJ
Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 1: Plano de Trabalho Matemática 1 Ano - 3 Bimestre/2014 Função Polinomial do 2 Grau Cursista: Soraya de Oliveira Coelho Tutor:
Função Polinomial do 2º Grau
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 3º bimestre / 2012 Plano de Trabalho Função Polinomial do 2º Grau y = x² + x Tarefa 1 Cursista : Nelson Gonçalves Dias
Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),
Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
PLANO DE AULA. Universidade Federal do Pampa. Campus Caçapava do Sul
PLANO DE AULA Universidade Federal do Pampa Campus Caçapava do Sul Disciplina: Matemática Nome: Misael Forma Data da aula: 07/07/2017 Duração: 45 minutos Local: Dinarte Ribeiro Conteúdo: Funções. Conteúdo
