Função Quadrática ou Função do 2º grau
|
|
|
- Cristiana Capistrano Bugalho
- 8 Há anos
- Visualizações:
Transcrição
1 Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato
2 Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações de 2º grau já eram conhecidos. Egípcios: já trabalhavam com equações lineares e usavam incógnitas em seus problemas (Papiro de Rhind)* Fonte: * Papiro de Rhind ou Papiro de Ahmes a.c - cópia de um trabalho ainda mais antigo. Detalha a solução de 85 problemas (aritmética, frações, cálculo de áreas, volumes, equações lineares, geometria; dentre outros. 2 Fonte:
3 Um pouco de História... Europa Século XVI: Del Ferro, Tartaglia, Cardano, Ferrari dentre outros, iniciaram estudos sobre equações de terceiro e quarto graus. Fonte: Século XIX: Galois resolveu um antigo problema em aberto envolvendo as raízes de um polinômio e cria um novo campo da álgebra abstrata: a teoria dos grupos. Fonte: 3
4 Algumas Aplicações Modelagem matemática: descrever e ajustar curvas. Na economia: Análises de custos. Mercado de ações: prever como os preços podem variar ao longo do tempo. Na Medicina: Concentração de um medicamento no corpo ao longo do tempo. Na Física: Descrever a trajetória de um móvel. Na Matemática: Análise numérica: um dos problemas mais antigos da matemática é determinar as raízes de polinômios ou resolver equações algébricas. Cálculo de Área. 4
5 Fonte: Fonte:
6
7 Definição Denomina-se função quadrática na variável x toda função na forma: f(x) = ax 2 + bx + c = 0 com x R, a 0 a: é sempre o coeficiente de x 2 b: é sempre o coeficiente de x c: é o coeficiente ou termo independente Gráfico da Função Quadrática: sempre é uma parábola. 7
8 Exercitando... Dadas as funções quadráticas determine os coeficientes a, b e c de cada função. a) f(x) = x 2-6x +8 a = ; b = ; c = b) y = -3x 2 + 4x 4 a = ; b = ; c = c) f(x) = x 2 6 a = ; b = ; c = d) y = -2x 2 + 8x a = ; b = ; c = e) f(x) = x 2 1 a = ; b = ; c =
9 ZEROS (OU RAÍZES) DE UMA FUNÇÃO DE 2º GRAU São os valores de x que anulam a função: f(x) = 0
10 Cálculo dos zeros ou raízes de uma função do 2º grau 1º caso: b = 0 Igualar a função a zero Isolar a variável x e o termo independente a) f(x) = x 2 1 b) f(x) = x 2 9 c) f(x) = 2x 2 14 d) f(x) = x x 2 1= 0 x 2 9 = 0 2x 2 14 = 0 x = 0 x 2 = 1 x 2 = 9 2x 2 = 14 x 2 = - 9 x = 1 x = 9 x 2 = 14/2 x = -9 x = +/- 1 x = +/- 3 x = 7 Não existe solução
11 Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x 2 16 b) y = -x c) f(x) = 2x 2 8 d) y = -2x e) f(x) = 2x 2 6 f) y = x R : a) 4; b) 6; c) 2; d) 5; e) 3; f) 10
12 Cálculo dos zeros ou raízes de uma função do 2º grau 2º caso: c = 0 Igualar a função a zero Colocar a variável x em evidência. a) f(x) = x 2 5x b) f(x) = x 2 + 2x c) f(x) = 2x 2 + 6x x 2 5x = 0 x(x 5) = 0 Raízes: x = 0 x = 5 x 2 + 2x = 0 x(x + 2) = 0 Raízes: x = 0 x = -2 2x 2 + 6x = 0 2x(x + 3) = 0 Raízes: x = 0 x = -3
13 Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x 2 + 3x b) y = x 2 + 4x c) f(x) = x 2 4x d) y = x 2-5x e) f(x) = 2x 2 12x f) y = 2x 2 2x R: a) x = 0 e x = -3; b) x = 0 e x = -4; c) x = 0 e x = 4; d) x = 0 e x = 5; e) x = 0 e x = 6; f) x = 0 e x = 1;
14 Cálculo dos zeros ou raízes de uma função do 2º grau 3º caso: cálculo das raízes da função completa Soma e Produto (Relação de Girard) Exemplo 1: y = x 2-5x + 6 b ( 5) X ' X '' 5 a 1 c 6 X '. X '' 6 a 1 S = (2, 3) Exemplo 2: f(x) = x 2 + 2x - 3 b 2 X ' X '' 2 a 1 c 3 X '. X '' 3 a 1 S = (-3, 1)
15 Cálculo das Raízes: Fórmula de Bháskara 3º caso: cálculo das raízes da função completa Fórmula de Bháskara
16 Gráficos da função quadrática
17 Cálculo dos zeros ou raízes de uma função do 2º grau a) f(x) = x 2 7x + 6 b) f(x) = 9x 2 + 6x + 1 c) f(x) = -2x 2 + 3x - 5 x 2 7x + 6 = 0 9x 2 + 6x + 1 = 0-2x 2 + 3x 5 = 0 b 2 ( 7) 25 4.a.c ( 7) 25 x x' x'' b 4. 2 (6) a. c x x' x'' 18 3 b 2 4.a.c 2 (3) 4.( 2).( 5) Não existe solução que satisfaça f(x) = 0
18 Exercitando... Calcule as raízes das funções quadráticas abaixo: a) f(x) = x² + 3x 10 b) f(x) = 4x² 4x + 2 c) y = 2x 2-4x + 5 d) y = -x² - 6x + 5 e) y = -x² + 6x + 5 f) f(x) = -x x + 20 g) f(x) = 2x 2-3x + 5 f(x) = 5x x
19 Cálculo do Vértice de uma Parábola Valor Máximo ou Mínimo da Função Quadrática x y v v b 2a 4a Valor Máximo Valor Mínimo
20 Exemplos 1) Qual é o vértice da parábola y = x 2 2x + 5? 2) Considere o gráfico a seguir, que representa a função definida por y = 2x 2 5x + 2. As coordenadas do vértice V da parábola são: Letra A
21 3) Determinar as coordenadas do vértice V da parábola que representa a função f(x) = x 2 2x 3 e diga se é um ponto de máximo ou mínimo da função. a) V (1, -4); ponto de mínimo b) V (2, 4); ponto de máximo c) V (-1,-4); ponto de máximo d) V (2,-4); ponto de mínimo 21
22 Exercitando... Em cada um dos itens abaixo ache o vértice e classifique como um ponto de máximo ou de mínimo da função dada. a) f(x) = x 2 + 8x + 9 b) f(x) = -x 2 + 4x + 4 c) f(x) = 4x 2 + 8x - 3 d) f(x) = -x 2 + 2x - 1 e) f(x) = -x f) f(x) = -x 2-9x Gabarito: a) (-4, -7), ponto de mínimo, b) (2, 8), ponto de máximo c) (-1, -7), ponto de mínimo, d) (1, 2), ponto de máximo e) (0, 9), ponto de máximo, f) (0, -9), ponto de máximo 22
23 Aplicações Exemplo 1: O lucro de uma fábrica na venda de um produto é dado pela função L(x) = 5x x 80, onde x representa o número de produtos vendidos e L(x) é o lucro em reais. Determine: a) Quantos produtos devem ser vendidos para se obter o lucro máximo? b) Qual o lucro máximo obtido pela fábrica na venda desses produtos? 23
24 Exemplo 2: O custo de produção de um equipamento hospitalar é dado por C(x) = 3x 2 15x Se a venda de x unidades é dada por V(x) = 2x 2 + x, para que o lucro L(x) = V(x) C(x) seja máximo, devem ser vendidas: a) 20 unidades b) 16 unidades c) 12 unidades d) 8 unidades e) 4 unidades Exemplo 3: Um corpo lançado do solo verticalmente para cima tem posição em função do tempo dada pela função h(t) = 40 t 5t 2 onde a altura h(t) é dada em metros e o tempo t é dado em segundos. Calcule: a) O tempo necessário para o objeto atingir a altura máxima. a) A altura máxima atingida pelo objeto. 24
25 Exercícios: Máximo e Mínimo (Enem) Um boato tem um público-alvo e alastra-se com determinada rapidez. Em geral, essa rapidez é diretamente proporcional ao número de pessoas desse público que conhecem o boato e diretamente proporcional também ao número de pessoas que não o conhecem. Em outras palavras, sendo R a rapidez de propagação, P o público-alvo e x o número de pessoas que conhecem o boato, tem-se: R(x) = k.x.(p - x), onde k é uma constante positiva característica do boato. Considerando o modelo acima descrito, se o público-alvo é de pessoas, então a máxima rapidez de propagação ocorrerá quando o boato for conhecido por um número de pessoas igual a: a) b) c) d) e) b k xv a 2k
26 2. A modelagem matemática que relaciona o consumo de gasolina de um carro para percorrer 100 km com velocidade de x km/h é dado por C(x) = 0,006x 2 0,6x Para qual velocidade este consumo é mínimo? a) 46 km/h b) 47 km/h c) 48 km/h d) 49 km/h e) 50 km/h x v b ( 0,6) 2a 2.0, km / h
27 3. Uma bola, ao ser chutada por um goleiro, teve sua trajetória descrita pela equação h(t) = -2t 2 + 8t, onde t é o tempo medido em segundos e h(t) é a altura em metros da bola no instante t. Calcule: a) O instante (tempo) em que a bola atinge a altura máxima; b) A altura máxima atingida pela bola. a) 2 s b) 8 m
28 4. Durante o processo de tratamento, uma peça de metal sofre uma variação de temperatura descrita pela função: f(t) = 2 + 4t t 2. Em que instante t a temperatura atinge seu valor máximo? a) 1,0 s d) 2,5 s b) 1,5 s e) 3,0 s c) 2,0 s Letra C 5. Uma indústria que fabrica recipientes plásticos tem sua produção diária P, em recipientes, variando com o número de operadores em serviço n, de acordo com a função P(n) = n n Calcule: a) A produção se o número de operadores for 4. b) A produção máxima diária sem a contratação de novos operadores.
29 Conceitos iniciais Vértice da Parábola Máximos e mínimos 29
30 Referências Bibliográficas DANTE, Luiz Roberto. Matemática: Contexto e Aplicações: Ensino médio: volume único. São Paulo: Ática, GIOVANNI, José Rui, BONJORNO, José Roberto, GIOVANNI, José Rui Jr. Matemática Fundamental: uma nova abordagem: ensino médio. Volume único. São Paulo: FTD, Principais sites consultados em 14/09/
Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1
Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx
Assunto: Função do 2º grau
Assunto: Função do 2º grau 1) Dada a função f(x) = x 2-4x+3.Determine: a) A suas raízes; resp: 1 e 3 b) As coordenadas do vértice da parábola; resp: V(2;-1) c) O gráfico d) Se a função admite valor máximo
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma
Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde
FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as
Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro
Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:
Equações do segundo grau
Módulo 1 Unidade 4 Equações do segundo grau Para início de conversa... Nesta unidade, vamos avançar um pouco mais nas resoluções de equações. Na unidade anterior, você estudou sobre as equações de primeiro
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos
Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.
ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
Função Quadrática Função do 2º Grau
Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma
Boa Prova! arcsen(x 2 +2x) Determine:
Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):
4.2 Teorema do Valor Médio. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html
4.2 Teorema do Valor Médio Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Teorema de Rolle: Seja f uma função que satisfaça as seguintes hipóteses: a) f é contínua no intervalo
Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y
. Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:
Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.
Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido
Aula 3 Função do 1º Grau
1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:
1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo
Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).
5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 3ª Etapa 2014 Disciplina: Física Série: 1ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações
CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA
CONSERVAÇÃO DA POSIÇÃO DO CENTRO DE MASSA Problemas deste tipo têm aparecido nas provas do ITA nos últimos dez anos. E por ser um assunto simples e rápido de ser abrodado, não vale apena para o aluno deiar
Teoria da Firma. Capítulo VI. Introdução. Introdução. Medição de custos: quais custos considerar?
Introdução Teoria da Firma A tecnologia de produção representa a relação entre os insumos e a produção. Dada a tecnologia de produção, os administradores da empresa devem decidir como produzir. Capítulo
Seu pé direito nas melhores Faculdades
10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
CIÊNCIAS PROVA 4º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO CIÊNCIAS PROVA 4º BIMESTRE 9º ANO PROJETO CIENTISTAS DO AMANHÃ 2010 01. Paulo e
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO
6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural
FUNÇÃO QUADRÁTICA. Resumo
01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
Física Experimental III
Física Experimental III Unidade 4: Circuitos simples em corrente alternada: Generalidades e circuitos resistivos http://www.if.ufrj.br/~fisexp3 agosto/26 Na Unidade anterior estudamos o comportamento de
Derivação Implícita e Taxas Relacionadas
Capítulo 14 Derivação Implícita e Taxas Relacionadas 14.1 Introdução A maioria das funções com as quais trabalhamos até agora é da forma y = f(x), em que y é dado diretamente ou, explicitamente, por meio
WWW.RENOVAVEIS.TECNOPT.COM
Energia produzida Para a industria eólica é muito importante a discrição da variação da velocidade do vento. Os projetistas de turbinas necessitam da informação para otimizar o desenho de seus geradores,
. Determine os valores de P(1) e P(22).
Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja
Probabilidade. Luiz Carlos Terra
Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
UNIVERSIDADE SEVERINO SOMBRA Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Mestrado Profissional em Educação Matemática
UNIVERSIDADE SEVERINO SOMBRA Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Mestrado Profissional em Educação Matemática JONAS DA CONCEIÇÃO RICARDO UMA PROPOSTA PARA O ENSINO DE FUNÇÕES QUADRÁTICAS
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
b) a 0 e 0 d) a 0 e 0
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,
Interbits SuperPro Web
. (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido
Aula: Equações polinomiais
Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações
Equações do 2º grau a uma incógnita
Equações do º grau a uma incógnita Proposta de sequência de tarefas para o 9.º ano - 3.º ciclo Julho de 011 Autores: Professores das turmas piloto do 9º ano de escolaridade Ano Lectivo 010 / 011 Novo Programa
Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados
UFPel - CENG - CÁLCULO 1
UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s
EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios
Figura 4.1: Diagrama de representação de uma função de 2 variáveis
1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia
Inteligência Artificial
Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?
[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013
Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4
LINEARIZAÇÃO DE GRÁFICOS
LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma
1. Mostre que o conjunto R 2 = {(x, y)/x, y R} é um espaço vetorial real, com as operações usuais de adição de elementos e multiplicação por escalar.
Fundação Universidade Federal do Vale do São Francisco - UNIVASF Colegiado de Engenharia de Produção - CPROD Prof. Felipe Wergete a Lista de Exercícios de Álgebra Linear - 202.. Mostre que o conjunto R
Projeto CONDIGITAL Altos e Baixos da Função Guia do Professor
Projeto CONDIGITAL Altos e Baixos da Função Guia do Professor Página 1 de 7 Guia do Professor Caro(a) professor(a) A utilização de simulações digitais como objetos de aprendizagem tem sido difundida atualmente
Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160
Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três
Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi
Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos
Corrente elétrica, potência, resistores e leis de Ohm
Corrente elétrica, potência, resistores e leis de Ohm Corrente elétrica Num condutor metálico em equilíbrio eletrostático, o movimento dos elétrons livres é desordenado. Em destaque, a representação de
2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar?
2 Workshop processamento de artigos em serviços de saúde Recolhimento de artigos esterilizados: é possível evitar? 3 Farm. André Cabral Contagem, 19 de Maio de 2010 Rastreabilidade É definida como a habilidade
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes
Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.
MODELAGENS. Modelagem Estratégica
Material adicional: MODELAGENS livro Modelagem de Negócio... Modelagem Estratégica A modelagem estratégica destina-se à compreensão do cenário empresarial desde o entendimento da razão de ser da organização
Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.
Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos
Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo:
FRAÇÕES Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo: Adição e subtração de frações Para adicionar ou subtrair frações, é preciso que
Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por
Funções polinomiais 4 Antes de ler o capítulo Esse capítulo trata de um grupo particular de funções, de modo que, antes de lê-lo, o leitor precisa dominar o conteúdo do Capítulo 1. Depois de tratarmos
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende
Otimização Linear Aplicada a Problemas de Planejamento de Produção
Otimização Linear Aplicada a Problemas de Planejamento de Produção Rafaela Schuindt Santos¹, Daniela Renata Cantane² ¹Escola Estadual Luiz Campacci Laranjal Paulista SP - Brasil ²Universidade Estadual
Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano
Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio
Resolução de Equações Algébricas por Radicais
Resolução de Euações Algébricas por Radicais Gervasio G. Bastos Resumo Visão histórica do problema da resolução de euações algébricas, desde os antigos egípcios até Galois. A completação de uadrados e
a) Qual a sentença matemática que define a função que relaciona o salário mensal do professor de musculação e do professor de aeróbica?
01) Indique o gráfico que melhor representa a distância (d) percorrida por um caminhante, em função do tempo (t), num passeio em que ele atravessa uma região plana, sobe uma montanha, dá uma parada a fim
Movimento uniformemente variado. Capítulo 4 (MUV)
Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade
Lista de Exercícios - Integrais
Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.
Cinemática Bidimensional
Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações
Relatório Preliminar Experimento 6.2 Reologia
Universidade Estadual de Campinas FEQ Faculdade de Engenharia Química Relatório Preliminar Experimento 6.2 Reologia EQ601 - Laboratório de Engenharia Química I Turma A Grupo E Integrantes Andrey Seiji
e-mail: [email protected]
Assunto: Cálculo de Lajes Prof. Ederaldo Azevedo Aula 3 e-mail: [email protected] 3.1. Conceitos preliminares: Estrutura é a parte ou o conjunto das partes de uma construção que se destina a
EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 2011-12 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA
dessa Escoladessa Escola MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DFA ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLFF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 011-1 Questão
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
A função do primeiro grau
Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções
Função do 2º Grau. Alex Oliveira
Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
Lista Extra de Física -------------3ºano--------------Professora Eliane Korn. Dilatação, Temperatura, Impulso e Quantidade de movimento
Lista Extra de Física -------------3ºano--------------Professora Eliane Korn Dilatação, Temperatura, Impulso e Quantidade de movimento 1) Qual temperatura na escala Celsius é equivalente a 86o F? a) 186,8
Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior
Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.
UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM
Unidade 2 Matrizes e Sistemas de Equações Apresentação Lineares UNIDADE 3 FUNÇÕES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade você deverá ser capaz de: Descrever e comentar possibilidades
Planos e Retas. Equações do Plano e da Reta. Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins
Planos e Retas Uma abordagem exploratória das Equações do Plano e da Reta Anliy Natsuyo Nashimoto Sargeant José Antônio Araújo Andrade Solange Gomes Faria Martins Na geometria, um plano é determinado se
OPERAÇÕES COM FRAÇÕES
OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que
Apostila de Matemática 16 Polinômios
Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n
Ondas EM no Espaço Livre (Vácuo)
Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM
3 - Bacias Hidrográficas
3 - Bacias Hidrográficas A bacia hidrográfica é uma região definida topograficamente, drenada por um curso d água ou um sistema interconectado por cursos d água tal qual toda vazão efluente seja descarregada
Métodos Matemáticos para Engenharia de Informação
Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,
