Seu pé direito nas melhores Faculdades

Tamanho: px
Começar a partir da página:

Download "Seu pé direito nas melhores Faculdades"

Transcrição

1 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória, 1 ponto em caso de empate e nenhum ponto em caso de derrota. Considere que uma equipe participante do campeonato já tenha realizado J jogos (0 J 38), tendo acumulado um total de P pontos. Se o número de jogos que essa equipe empatou é igual ao número de partidas em que foi derrotada, então ela já venceu a) P - J 5 jogos. b) 3P - J 4 jogos. c) P +3J 4 jogos. d) 3P - J jogos. 3 e) P + J jogos. 3 x: vitórias P: pontos y: empates z: derrotas J: jogos, 0 < J < 38 P = 3x + 1y P = 3x + y Þ y = P 3x (1) J = x + y + z Þ J = x + y () y = z Substituindo (1) em () temos: J = x + (p 3x) \ x = P - J jogos 5 Alternativa A

2 Seu pé direito nas melhores Faculdades Insper 01/11/ Na figura a seguir, estão representadas partes dos gráficos das funções f(x) = senx e g(x) = cos x. A partir dos gráficos, é correto concluir que a menor solução positiva da equação vale aproximadamente cos( sen x) = a) 0,. b) 0, 3. c) 0, 4. d) 0, 5. e) 0, 6. cos( senx) = π + kπ 4 Þ sen x = 7π + kπ ( não convém) 4 assim: sen x = p 4 + kp, para a menor solução positiva temos k = 0 \ sen x = p 4 Þ sen x = p 8 Þ sen 0,4 Se f(x) = 0,4; do gráfico temos x = 0,4. Alternativa C

3 1 Insper 01/11/009 Seu pé direito nas melhores Faculdades 4. Numa cidade, há apenas três fiscais responsáveis pelo exame para obtenção da carteira de motorista (A, B e C). Cada candidato é examinado por um único fiscal, a menos que este tenha alguma dúvida. Neste caso, o exame é repetido pelo fiscal A, que é o mais experiente. Na tabela a seguir, são dadas as taxas de aprovação históricas dos três fiscais. Um grupo de pessoas se submeterá ao exame na próxima semana, não sendo possível saber, para um candidato qualquer, qual fiscal será o responsável pelo exame. Considerando que as séries históricas da tabela se mantenham, pode-se concluir que serão aprovados a) no mínimo 45% e no máximo 60% dos candidatos. b) no mínimo 50% e no máximo 60% dos candidatos. c) no mínimo 50% e no máximo 65% dos candidatos. d) no mínimo 50% e no máximo 70% dos candidatos. e) no mínimo 65% e no máximo 70% dos candidatos. A aprovação percentual total depende do maior ou menor número de candidatos que forem atribuídos, em primeira tentativa, ao examinador A (mais reprovador ), ao examinador B ou ao C (mais aprovador ). Assim, há três possíveis situações-limite a considerar: Cenário 1: todos os candidatos (100%) são atribuídos ao examinador A. Desses, 50% são aprovados em 1 a tentativa, sem chance de reavaliação. Total de aprovados: n = 0,50. Cenário : todos os candidatos (100%) são atribuídos ao examinador B. Desses, 45% são aprovados em 1 a tentativa; dos 50% que repetem o teste, 50% são aprovados em a tentativa. Total de aprovados: n = 0,45 + 0,50. 0,50 = 0,45 + 0,5 = 0,70. Cenário 3: todos os candidatos (100%) são atribuídos ao examinador C. Desses, 60% são aprovados em 1 a tentativa; dos 10% que repetem o teste, 50% são aprovados em a tentativa. Total de aprovados: n = 0,60 + 0,50. 0,10 = 0,60 + 0,05 = 0,65. Avaliando os dois extremos de aprovação, temos que a porcentagem geral de aprovação oscila no intervalo de limites 50% e 70%. Alternativa D

4 Seu pé direito nas melhores Faculdades Insper 01/11/ Os oito elementos que estão faltando na sequência de números inteiros serão escolhidos respeitando-se os seguintes critérios: (1,??,??,??,??,??,??,??,??, 10) todo elemento da sequência obtida, a partir do segundo, será maior ou igual ao elemento imediatamente anterior; haverá um único elemento repetido na sequência, isto é, dentre os seus dez elementos haverá exatamente nove números inteiros diferentes. Nessas condições, o número de maneiras distintas de escolher estes oito elementos é igual a a) 54. b) 56. c) 64. d) 70. e) 7. Temos uma sequência com 10 posições, contra 10 opções de números inteiros disponíveis para preenchê-la. Entretanto, dois desses inteiros são especiais: um (e apenas um) dos números será repetido uma vez [NR], de modo que um segundo número estará necessariamente ausente da série [NA]. Exemplos de possíveis sequências são: (1, 1,, 3, 4, 5, 6, 7, 8, 10) NR = 1 e NA = 9 (1,, 3, 4, 4, 5, 6, 7, 9, 10) NR = 4 e NA = 8 (1,, 3, 3, 4, 5, 6, 8, 9, 10) NR = 3 e NA = 7 (1,, 3, 4, 5, 6, 7, 8, 10, 10) NR = 10 e NA = 9 Assim, há 3 casos a considerar: 1 o Caso: NR = 1 caso o número 1 repita, basta escolher apenas qual o número ausente. Note que esse número não pode ser nem o 1, nem o 10, o que gera um subtotal de 8 opções. o Caso: NR = 10 caso o número 10 repita, basta escolher apenas qual o número ausente. Assim como no 1 o caso, esse número não pode ser nem o 1, nem o 10, o que gera um subtotal de mais 8 opções. 3 o Caso: NR ¹ 1 e NR ¹ 10 aqui, precisamos definir qual o número que se repete (há 8 opções para NR) e qual o número ausente: nesse caso, haverá 7 opções para escolha de NA (à exceção de 1, 10 e NR). Logo, são geradas mais 8 x 7 = 56 opções. O total de construções possíveis é então: n = = 7 sequências. Alternativa E

5 14 Insper 01/11/009 Seu pé direito nas melhores Faculdades 44. Em uma indústria, há duas chaminés com a forma de cilindros circulares retos, de bases inferiores horizontais e coplanares, por onde são eliminados gases não poluentes. Em relação a um sistema de coordenadas cartesianas, em que a unidade adotada foi o metro, os centros das bases inferiores das duas chaminés são dados, respectivamente, por (0, 0, 0) e (1, 9, 0). Se a distância entre os centros das bases superiores das duas chaminés é 17 m, então a altura da chaminé mais alta supera a altura da mais baixa em a) 5 m. b) 8 m. c) 10 m. d) 1 m. e) 15 m. x = x = 15 z 17 D Como CE = AB, aplicando o Teorema de Pitágoras no D CDE: x + h = (17) C h h = 8m E (0; 0; 0) A x 9 y x 1 B (1; 9; 0) Alternativa B

6 Seu pé direito nas melhores Faculdades Insper 01/11/ Ao dividir o polinômio A(x), que possui grau 4 e coeficientes reais, pelo polinômio B(x) = x 3 4x, obtém-se quociente Q(x) e resto R(x). Sabe-se que é uma raiz de R(x). Assim, sendo n o número total de raízes reais de A(x), conclui-se que o conjunto de todos os valores que n pode assumir é a) {0; ; 4}. b) {0; }. c) {0; 4}. d) {; 4}. e) {4}. é raiz de R(x) Þ R() = 0 A(x) B(x) Þ A(x) = B(x). Q(x) + R(x) R(x) Q(x) Þ A(x) = (x 3 4x). Q(x) + R(x) Assim, A() = ( 3 4. ). Q() + R() Þ A() = 0 \ é raiz de A(x) Como A(x) tem 4 raízes e uma delas é real, as outras 3 raízes devem ser: \ A(x) poderá ter Logo, n = ou n = 4 4 raízes reais raízes reais e raízes imaginárias 3 reais e 0 imaginárias ou 1 real e imaginárias Alternativa D

7 16 Insper 01/11/009 Seu pé direito nas melhores Faculdades 46. Seja A o conjunto de todas as matrizes de ordem da forma x y, em que x, y, z, w são elementos do conjunto {0; 1}. z w Escolhendo ao acaso uma matriz do conjunto A, a probabilidade de que seu determinante seja zero é igual a a) 1. b) 5 8. c) 3 4. d) e) Há 4 = 16 maneiras distintas de montar as matrizes do conjunto A. Matrizes cujos determinantes são iguais a zero: somente um elemento não nulo; ,,, Þ 4 matrizes todos os elementos são iguais; , Þ matrizes uma linha ou coluna onde todos os elementos são zero; ,,, Þ 4 matrizes Portanto, a probabilidade será = = Alternativa B

8 Seu pé direito nas melhores Faculdades Insper 01/11/ Leia o texto a seguir. Suponha que você disponha de uma quantidade infinita de cópias de uma determinada forma geométrica. Se for possível encaixá-las, sem falhas ou sobreposição, de modo que o plano seja todo coberto por elas, dizemos que essa forma geométrica pavimenta o plano. No ano de 1968, o problema de pavimentar o plano com pentágonos convexos idênticos parecia resolvido: aparentemente, apenas oito tipos de pentágonos convexos possuíam essa propriedade. Porém, um acontecimento surpreendente causou uma reviravolta no problema. Uma dona de casa americana, Marjorie Rice, cuja formação matemática limitava-se àquela obtida no ensino médio, tomou conhecimento do assunto em uma revista de divulgação científica e descobriu, entre 1976 e 1977, quatro novos tipos de pavimentações do plano usando pentágonos convexos. Texto adaptado de: F. Dutenhefer e R. Castro. Uma hist oria sobre pavimentações do plano euclidiano: acertos e erros. Revista do Professor de Matemática número 70. A figura abaixo mostra um dos tipos de pavimentação do plano descoberto por Marjorie Rice. Nesse caso, o pentágono convexo ABCDE satisfaz as seguintes condições: EA = AB = BC = CD ^E + ^B = 360º ^D + ^C = 360º Observando-se a figura da pavimentação, pode-se concluir que esse pentágono também satisfaz a condição a) ^A + ^B + ^C = 360. b) ^A + ^B + ^C = 360. c) ^A + ^B + ^C = 360. d) A ^ + ^B + ^C + ^D = 360. e) A ^ + ^B + ^C + ^E = 360. Temos que a soma dos ângulos internos desse pentágono convexo é: ^A + ^B + ^C + ^D + ^E = 540 ^A + ^B + ^C + ^D + ^E = 1080º Assim: ^E + ^B = 360º Þ ^A + ^B + ^C = 1080 ^D + ^C = 360º Þ ^A + ^B + ^C = 360º Alternativa A

9 18 Insper 01/11/009 Seu pé direito nas melhores Faculdades 48. No triângulo PQR, retângulo em P, PR = 1 e PQ = 3. O ponto S, pertencente ao lado PR, é tal que o ângulo R^SQ mede 10º. Assim, sendo a medida do ângulo S^QR, o valor de sen a é a) b) c) d) e) No D SPQ: tg 60º = 3 x Þ x = 1 Aplicando o Teorema de Pitágoras no D PQR: RQ = 1 + ( 3) 1 x RQ = 147 = 7 3 Pela Lei dos senos no D RSQ: sen 10º = sen α 3 = sen α Þ sen a = x 60º 3 Alternativa E

10 Seu pé direito nas melhores Faculdades Insper 01/11/ Dada uma constante real k, considere a equação x kx + k + 1 = 0, na variável x. Para cada valor de k, a equação foi resolvida e suas soluções foram plotadas no plano complexo de Argand-Gauss. Dentre as alternativas abaixo, aquela que mais se assemelha à figura obtida é a) b) c) d) e) x kx + k + 1 = 0 Im (x k) + 1 = 0 (x k) = 1 = i x k = ± i Þ x = k + i Þ e(x) = k e Im(x) = 1 x = k i Þ e(x) = k e Im(x) = 1 \ a representação no plano Argand-Gauss será duas retas constantes: Alternativa D

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

ponto O. (d) é um número composto pelo produto de apenas três números primos distintos.

ponto O. (d) é um número composto pelo produto de apenas três números primos distintos. Vestibular Ibmec São Paulo 1 27. 9 8 7 6 5 4 3 2 1 O y R S Q 1 2 3 4 5 6 7 8 28. Num show de patinação no gelo, o casal que se apresenta está inicialmente sobre o ponto A indicado na figura. Ambos partem

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios

Leia mais

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas

Leia mais

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2004 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 CALCULE o número natural n que torna o determinante a seguir igual a 5. Por Chio, tem-se Matemática Questão 02 Considere

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)

Leia mais

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0.

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0. Resposta: 6 0. Incorreta. 00% 3% = 77% Logo, V = 0,77. V 0 0. Correta. f(x) = x + 3 Para x > : f(x) = x + 3 f(x) = x (crescente) 04. Incorreta. 4 x x + 3 = 7 ( x ) x. 3 = 8 x = a a 8a 8 = 0 a = 6 x = 6

Leia mais

DIVISÃO DE POLINÔMIOS

DIVISÃO DE POLINÔMIOS DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

GABARITO ITA MATEMÁTICA

GABARITO ITA MATEMÁTICA GABARITO ITA MATEMÁTICA Sistema ELITE de Ensino ITA - 014/01 GABARITO 01. D 11. B 0. C 1. E 0. D 1. C 04. E 14. D 0. D 1. E 06. E 16. A 07. B 17. E 08. B 18. A 09. C 19. A 10. A 0. C Sistema ELITE de Ensino

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

84 x a + b = 26. x + 2 x

84 x a + b = 26. x + 2 x Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 10 Páginas Entrelinha 1,5, sem figuras nem imagens

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 9 Páginas Braille Duração da Prova: 90 minutos.

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 2. Por Professora Maria Antônia Conceição Gouveia

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 2. Por Professora Maria Antônia Conceição Gouveia FUVEST VESTIBULAR 6 RESOLUÇÃO DA PROVA DA FASE Por Professora Maria Antônia Conceição Gouveia QUESTÃO Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja,

Leia mais

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros. Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

MAT 2A SEMI AULA Interseção com eixo y. x = 0. f (0) = = zeros da função: y = 0. x 2 + 3x = 0 x( x + 3) = 0

MAT 2A SEMI AULA Interseção com eixo y. x = 0. f (0) = = zeros da função: y = 0. x 2 + 3x = 0 x( x + 3) = 0 MAT A SEMI AULA 03 03.01 Interseção com eixo y x 0 f (0) 0 4 0 + 10 10 03.0 zeros da função: y 0 x + 3x 0 x(x + 3) 0 x 0 ou x 3 (0; 0) e (3; 0) 03.04 y 0 x + 4 0 x 4 x R 03.04 x v b ( ) a 1 1 x v 1 1 +

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

RESPOSTAS ESPERADAS MATEMÁTICA

RESPOSTAS ESPERADAS MATEMÁTICA Questão 1 O trapézio em questão tem,8 m de base maior e m de base menor A diferença entre as bases é de 0,8 m, o que, dada a simetria do trapézio, implica uma diferença de 0,4 m de cada lado, como mostrado

Leia mais

CPV conquista 93% das vagas do ibmec

CPV conquista 93% das vagas do ibmec conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO DO ENSINO BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

Matemática E Intensivo V. 2

Matemática E Intensivo V. 2 Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n

Leia mais

Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO QUADRÁTICA Aulas 01 a 07 + EXTRA Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2016 Sumário O CONCEITO DE FUNÇÃO QUADRÁTICA... 2 (Função polinomial do 2 grau)... 2 EXERCÍCIO

Leia mais

MATEMÁTICA. Questão 01. Questão 02 PROVA 3 - CONHECIMENTOS ESPECÍFICOS RESPOSTA: 24 - NÍVEL MÉDIO 01) INCORRETA. RESPOSTA: 25 - NÍVEL MÉDIO

MATEMÁTICA. Questão 01. Questão 02 PROVA 3 - CONHECIMENTOS ESPECÍFICOS RESPOSTA: 24 - NÍVEL MÉDIO 01) INCORRETA. RESPOSTA: 25 - NÍVEL MÉDIO PROVA 3 - CONHECIMENTOS ESPECÍFICOS É uma forma de os professores do Colégio Platão contribuírem com seus alunos, orientando-os na resolução das questões do vestibular da UEM. Isso ajuda o vestibulando

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que 01. (UFRGS/1999) O algarismo das unidades de (6 10 + 1) é (A) 1. (B). (C) 3. (D) 6. (E) 7. 0. (UFRGS/1999) Considere as densidades abaixo. I. 4 4 < 8 8 II. 0,5 < 0, 5 III. -3 < 3 - Pode-se afirma que (A)

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014

1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a NOTAÇOES R : conjunto dos números reais N : conjunto dos números naturais C : conjunto dos números complexos i : unidade imaginária: i2 = z : módulo do número z E C det A : determinante da matriz A d(a,

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013 CPV especializado na ESPM ESPM Resolvida Prova E 3/junho/03 MATEMÁTICA. O valor numérico da expressão (x + 4x + 4). (x x) x 4 para x = 48 é: a) 4800 b) 00 c) 400 d) 3500 e) 800 Fatorando a expressão, temos:.

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

Prova da UFRGS

Prova da UFRGS Prova da UFRGS - 01 01. O algarismo das unidades de 9 10 é a) 0. b) 1.. d). e) 9. 0. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a a) 1,9.10 9. b)

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Tem-se, ( Assim,. Resposta: B 2. Considere-se a variável aleatória : «peso dos alunos do.º ano» ( e os

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

TD segunda fase UECE A) [0, 1]. B) [2, 3]. C) [3, 4]. D) [-1, 0]. 2, 2 é igual a A) 4. B) 10. C) 8. D) 6. A) p 2 - x 2 ou. B) p 2 + x 2 ou.

TD segunda fase UECE A) [0, 1]. B) [2, 3]. C) [3, 4]. D) [-1, 0]. 2, 2 é igual a A) 4. B) 10. C) 8. D) 6. A) p 2 - x 2 ou. B) p 2 + x 2 ou. Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Universitário UECEVest Fone: 3101.9658 / E-mail: uecevest@uece.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

Questão 21. Questão 24. Questão 22. Questão 23. alternativa D. alternativa C. alternativa A. alternativa D. a) 1/1/2013 d) 1/1/2016

Questão 21. Questão 24. Questão 22. Questão 23. alternativa D. alternativa C. alternativa A. alternativa D. a) 1/1/2013 d) 1/1/2016 Questão a) //0 d) //0 b) //0 e) //07 c) //0 Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 0 caixas, com frascos em cada caixa. Sabendo-se que cada caixa

Leia mais

PROVA DE MATEMÁTICA I

PROVA DE MATEMÁTICA I PROVA DE MATEMÁTCA 0. Numa festa, cada prato de arroz foi servido para duas pessoas; cada prato de maionese, para três pessoas; cada prato de carne, para quatro pessoas, e cada prato de doces, exatamente

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 08 Continuidade e O Teorema do Valor Intermediário [0] (2008.) (a) Dê um exemplo de uma função

Leia mais

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais

Leia mais

QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01.

QUESTÃO 03. QUESTÃO 02. QUESTÃO 04. Questões de Física: QUESTÃO 01. QUESTÃO 03. Analise o circuito elétrico e as afirmações que seguem. Leia as questões deste Simulado e, em seguida, responda-as preenchendo os parênteses com V (verdadeiro), F (falso) ou B (branco). Questões

Leia mais

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 Matemática Semi-Extensivo V. Exercícios 01 (x, x; (, 1; (7, d, = d, x x x x = x + 4x + 4 + x + x + 1 = x 14x + 49 + x 4x + 4 4x = 48 x = (, 0 (1, 1; G(, ; M(, 1 (x, y = x = 1 x x = 5 = y x y 1 = 1 y x

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais