Curso de Biomedicina
|
|
|
- Heitor Farias
- 7 Há anos
- Visualizações:
Transcrição
1 Curso de Biomedicina Centro de Ciências da Saúde Universidade Católica de Petrópolis Matemática - Biomedicina Funções Polinomiais do 2o. Grau Maio de 2018 Luís Rodrigo de O. Gonçalves [email protected] Petrópolis, 16 de Maio de 2018
2 Sumário 1 Definição Principais pontos da parábola Estudo do sinal da função Exercícios
3 FUNÇÃO QUADRÁTICA DEFINIÇÃO
4 Definição 2 I Dados três números reais a, b e c, com a 6= 0 I Denominamos função quadrática (ou do 20 grau) à função: f (x) = ax2 + bx + c I Sendo que: X a, b e c são números reais; X x é a variável independente; X y ou f (x) é a variável dependente
5 Definição I O gráfico da função quadrática é uma curva denominada parábola. I Cuja concavidade é definida em função do valor de a, ou seja, quando: X a > 0 : concavidade voltada para cima - CVC X a < 0: concavidade voltada para baixo - CVB 3
6 FUNÇÃO QUADRÁTICA PRINCIPAIS PONTOS DA PARÁBOLA
7 Principais Pontos de uma parábola - Interseção com o eixo x I A intercessão com o eixo x corre quando y = 0 I Neste caso teremos: X ax2 + bx + c = 0 I Para o calculo de x devemos utilizar a formula: 4
8 Principais Pontos de uma parábola - Interseção com o eixo x I A intercessão com o eixo x corre quando y = 0 I Neste caso teremos: X ax2 + bx + c = 0 I Para o calculo de x devemos utilizar a formula: X x= b ± 4 2a I Sendo: b + 4 2a b 4 X x2 = 2a X x1 = I Onde: 4
9 Principais Pontos de uma parábola - Interseção com o eixo x I A intercessão com o eixo x corre quando y = 0 I Neste caso teremos: X ax2 + bx + c = 0 I Para o calculo de x devemos utilizar a formula: X x= b ± 4 2a I Sendo: b + 4 2a b 4 X x2 = 2a X x1 = I Onde: ] X 4 = b2 4ac 4
10 Principais Pontos de uma parábola - Interseção com o eixo x Interseção com o eixo x - 4 > 0 I Quando 4 > 0, a parábola intercepta o eixo x em dois pontos x1 e x2 5
11 Principais Pontos de uma parábola - Interseção com o eixo x 6 Interseção com o eixo x - 4 = 0 I Quando 4 = 0, a parábola tangencia o eixo no ponto x = b 2a
12 Principais Pontos de uma parábola - Interseção com o eixo x Interseção com o eixo x - 4 < 0 I Quando 4 < 0, o gráfico não possui ponto em comum com o eixo x. 7
13 Principais Pontos de uma parábola - Interseção com o eixo y e o vértice I Cruzamento com o eixo y X É o ponto correspondente à x = 0 y = c I O vértice da parábola é definido pelo par de pontos: b 2a 4 X Ordenada: yv = 4a X Abscissa: xv = 8
14 Domínio e Imagem 9 Domínio e Imagem Domínio: x < Imagem = a>0 a<0,, Im= yv, Im=, yv
15 FUNÇÃO QUADRÁTICA EXEMPLOS
16 Exemplo: 10 I Dada a função y = x2 6x + 8, determine: 1. Concavidade: 2. Valor de: I a= I b= I c= 3. Cruzamento com o eixo x 4. Cruzamento com o eixo y 5. Vértice da parábola 6. Representação Gráfica 7. Domínio 8. Imagem
17 Exemplo: I Dada a função y 11 = x2 6x + 8, determine: 1. Concavidade:
18 Exemplo: 11 I Dada a função y = x2 6x + 8, determine: 1. Concavidade: 1.1 Como a = 1; a > Logo, a concavidade está voltada para cima (CVC) 2. Valor das Constantes:
19 Exemplo: 11 I Dada a função y = x2 6x + 8, determine: 1. Concavidade: 1.1 Como a = 1; a > Logo, a concavidade está voltada para cima (CVC) 2. Valor das Constantes: I I I a=1 b = 6 c=8
20 Exemplo: Cruzamento com o eixo x X Como: x = b ± 4 2a X Sendo: 4 = b2 4ac X Temos que : 4 =??
21 Exemplo: Cruzamento com o eixo x X Como: x = b ± 4 2a X Sendo: 4 = b2 4ac X Temos que : 4 =?? 4 = (6)2 4(1)(8) = =4
22 Exemplo: Cruzamento com o eixo x X Logo: x =??
23 Exemplo: Cruzamento com o eixo x X Logo: x =?? b ± 4 x= 2a ( 6) ± 4 = 2(1) 6±2 = 2
24 Exemplo: 3. Cruzamento com o eixo x X Consequentemente: x1 e x2 =?? 14
25 Exemplo: Cruzamento com o eixo x X Consequentemente: x1 e x2 =?? = 2 =4 x1 =
26 Exemplo: Cruzamento com o eixo x X Consequentemente: x1 e x2 =?? = 2 =4 x1 = = 2 =2 x2 =
27 Exemplo: 5. Cruzamento com o eixo y X Fazendo: x = 0 15
28 Exemplo: 5. Cruzamento com o eixo y X Fazendo: x = 0 X Obtemos: y = c y = 8 6. Vértice da Parábola 15
29 Exemplo: Cruzamento com o eixo y X Fazendo: x = 0 X Obtemos: y = c y = 8 6. Vértice da Parábola b 2a (6) = 2(1) =3 xv =
30 Exemplo: Cruzamento com o eixo y X Fazendo: x = 0 X Obtemos: y = c y = 8 6. Vértice da Parábola b 2a (6) = 2(1) =3 xv = 4 4a 4 = 4(1) = 1 yv =
31 Exemplo: Representação Gráfica 8. Domínio:
32 Exemplo: Representação Gráfica 8. Domínio: X D =, + 9. Imagem:
33 Exemplo: Representação Gráfica 8. Domínio: X D =, + 9. Imagem: X Im = 1, +
34 FUNÇÃO QUADRÁTICA ESTUDO DO SINAL DA FUNÇÃO
35 Estudo do Sinal da Função I Quando: a < 0 17
36 Estudo do Sinal da Função I Quando: a < 0 X y > 0 x1 < X < x2 X y = 0 X = x1 ou X = x2 X y < 0 X < x1 ou X > x2 17
37 Estudo do Sinal da Função I Quando: a < 0 X y > 0 x1 < X < x2 X y = 0 X = x1 ou X = x2 X y < 0 X < x1 ou X > x2 17 I Quando: a > 0
38 Estudo do Sinal da Função I Quando: a < 0 X y > 0 x1 < X < x2 X y = 0 X = x1 ou X = x2 X y < 0 X < x1 ou X > x2 17 I Quando: a > 0 X y < 0 x1 < X < x2 X y = 0 X = x1 ou X = x2 X y > 0 X < x1 ou X > x2
39 FUNÇÃO QUADRÁTICA EXEMPLO
40 Estudo do Sinal da Função - Exemplo I Vamos estudar o sinal da função y = x
41 Estudo do Sinal da Função - Exemplo I Vamos estudar o sinal da função y = x2 + 9 I Neste caso: X Temos a concavidade voltada para baixo, pois a = 1 a < 0 X Só precisamos encontrar os pontos de intersecção com o eixo x 18
42 Estudo do Sinal da Função - Exemplo I Vamos estudar o sinal da função y = x2 + 9 I Neste caso: X Temos a concavidade voltada para baixo, pois a = 1 a < 0 X Só precisamos encontrar os pontos de intersecção com o eixo x I Fazendo y = 0, temos: 18
43 Estudo do Sinal da Função - Exemplo 18 I Vamos estudar o sinal da função y = x2 + 9 I Neste caso: X Temos a concavidade voltada para baixo, pois a = 1 a < 0 X Só precisamos encontrar os pontos de intersecção com o eixo x I Fazendo y = 0, temos: x2 + 9 = 0 x2 = 9 x2 = 9 x = ±3
44 Estudo do Sinal da Função - Exemplo I Desta forma temos o gráfico: 19
45 Estudo do Sinal da Função - Exemplo I Desta forma temos o gráfico: I Observando o gráfico concluímos que: 19
46 Estudo do Sinal da Função - Exemplo I Desta forma temos o gráfico: I Observando o gráfico concluímos que: X X X y > 0 para: 3 < x < 3 y < 0 para: x < 3 ou x > 3 y = 0 para: x = 3 ou x = 3 19
47 FUNÇÃO QUADRÁTICA EXERCÍCIOS
48 Exercícios I Para as funções abaixo determine: (i) os principais pontos da parábola, (ii) o domínio, (iii) o conjunto imagem e (iv) a representação gráfica 1. f = {(x, y) < y = x2 + 2x 1} 2. f = {(x, y) < y = x2 5x + 4} 3. f = {(x, y) < y = x2 + 4} 4. f = {(x, y) < y = x2 16} 5. f = {(x, y) < y = x2 + x} 6. f = {(x, y) < y = x2 x} 7. f = {(x, y) < y = x2 } 8. f = {(x, y) < y = 2x2 8x} 20
49 Exercícios I Em uma certa plantação, a produção, P, de milho depende da quantidade, q, de fertilizante utilizada, e tal dependência pode ser expressa por: P (q) = q q Considerando que, nessa lavoura, a produção é medida em kg e a quantidade de fertilizante em g/m2, determine: 1. (a) Os coeficientes dos termos da função; (b) a concavidade; (c) o ponto em que a curva corta o eixo P; (d) os pontos em que a curva corta o eixo q; (e) o vértice da parábola; 2. O esboço do gráfico; 3. A quantidade de fertilizante para que a produção seja máxima, bem como a será a produção máxima. 21
50 Exercícios I Um vendedor anotou as vendas de um eletrodoméstico nos 30 dias em que trabalhou na seção de utilidades de uma loja de departamentos e notou que o número de aparelhos vendidos, y, em função do número de dias, t, pode ser obtido utilizando-se a equação: y = 0, 5t2 8t I Assim sendo, determine : 1. (a) Os coeficientes dos termos da função; (b) a concavidade; (c) o ponto em que a curva corta o eixo t; (d) os pontos em que a curva corta o eixo y; (e) o vértice da parábola; 2. O esboço do gráfico 22
51 Exercícios I Em um ano, o valor, v, de uma ação negociada na bolsa de valores, no decorrer dos meses, t, é dado pela expressão v = t2 10t Sabendo que o valor da ação é dado em reais, determine: 1. (a) Os coeficientes dos termos da função; (b) a concavidade; (c) o ponto em que a curva corta o eixo t; (d) os pontos em que a curva corta o eixo v; (e) o vértice da parábola; 2. O esboço do gráfico 23
52
53 Curso de Biomedicina Centro de Ciências da Saúde Universidade Católica de Petrópolis Matemática - Biomedicina Funções Polinomiais do 2o. Grau Maio de 2018 Luís Rodrigo de O. Gonçalves [email protected] Petrópolis, 16 de Maio de 2018
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.2 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
PROFESSOR: JARBAS 4 2 5
PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net FUNÇÃO QUADRÁTICA Seja a, b e c números reais
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Função Quadrática Há várias situações do dia-a-dia
Faculdades Integradas Campos Salles
Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização. y = ax² + bx + c
47 6. Função Quadrática É todo função que pode ser escrita na forma: f: R R y = ax² + bx + c Em que a, b e c são constantes reais e a 0, caso contrário a função seria afim. Já estudamos um tipo de função
Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:
1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +
Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
Função de 2º Grau. Parábola: formas geométricas no cotidiano
1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de. Patricia Araripe e Pollyane Vieira. 15 de fevereiro de 2019
Função do 2 o grau: Equação e Inequação 2 a Edição do Curso de Difusão Pré-Cálculo aos alunos de graduação da ESALQ Patricia Araripe e Pollyane Vieira 15 de fevereiro de 2019 Definição (1) (Função) Dados
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
Função Quadrática e Proporcionalidade Inversa ( )
Função Quadrática e (18-01-08) F. Quadrática e Matemática e Estatística 2007/2008 Função Quadrática Chama-se função quadrática a qualquer função f de R em R dada por uma lei da forma f(x) = ax 2 + bx +
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
4-Função Quadrática. Laura Goulart. 11 de Fevereiro de 2019 UESB. Laura Goulart (UESB) 4-Função Quadrática 11 de Fevereiro de / 12
4-Função Quadrática Laura Goulart UESB 11 de Fevereiro de 2019 Laura Goulart (UESB) 4-Função Quadrática 11 de Fevereiro de 2019 1 / 12 Denição de função quadrática A função f : A R B R dada por f (x) =
Formação Continuada em Matemática
Formação Continuada em Matemática Função Polinomial do 2º grau Tarefa 1 Júlio César da Silva Pinto Tutor: Yania Molina Souto SUMÁRIO o Introdução o Desenvolvimento o Avaliação o Fontes de Pesquisa Introdução
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Universidade Católica de Petrópolis. Matemática 1. Funções Funções Polinomiais v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Funções Polinomiais v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo de O. Gonçalves [email protected]
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:
C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)
Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).
FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO
CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
f x x x f x x x f x x x f x x x
Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:
FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.
Equação de Segundo Grau. Rafael Alves
Equação de Segundo Grau Rafael Alves Equação do 2º Grau As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. 2x + 1 = 0 (Equação de 1º grau) 2x² + 2x + 6 = 0 (Equação de
Formação Continuada Nova Eja. Matemática Nova Eja- Módulo 1 1 Bimestre/ 2014 PLANO DE AÇÃO 4
Formação Continuada Nova Eja Matemática Nova Eja- Módulo 1 1 Bimestre/ 2014 PLANO DE AÇÃO 4 Equações do 2 Grau Nome: Walter Campos Tutor: Josemeri Araújo Silva Regional: Noroeste Fluminense S u m á r i
Escola Secundária com 3º Ciclo D. Dinis. Ano 10º Ano Lectivo 2008 /2009 Matemática B Turma D
Escola Secundária com 3º Ciclo D. Dinis Actividade Investigativa- Função quadrática:família de funções Ano 10º Ano Lectivo 008 /009 Matemática B Turma D Função quadrática Uma função real de variável real
Curso de Administração Universidade Católica de Petrópolis. Matemática 1. Funções - Parte II v. 0.1
Curso de Administração Universidade Católica de Petrópolis Matemática 1 Funções - Parte II v. 0.1 Luís Rodrigo de O. Gonçalves [email protected] Petrópolis, 22 de Agosto de 2016 Content 1 Função
Acadêmico(a) Turma: Capítulo 6: Funções
1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais. Prof Jorge Jr.
MATEMÁTICA Função do 1º grau e 2º grau conceitos iniciais Prof Jorge Jr. A CONTA DE ENERGIA ELÉTRICA Devido ao aumento da energia elétrica, Maria Eduarda resolveu registrar as suas despesas com a conta
12º REVISA CAESP EXATAS
1º REVISA CAESP EXATAS Nome: N o Turma: 9º ano B Prof.(ª): Debora Daiana Klering Wiest Data de Entrega: 0/09/018 Matemática/Álgebra GABARITO 01 Uma função quadrática passa pelos pontos ( 1, 0), (, 0) e
TEMA 4 FUNÇÕES FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 10.º Ano Fichas de Trabalho Compilação
Função Polinomial do 2º Grau
FORMAÇÃO CONTINUADA EM MATEMÁTICA PROJETO SEEDUC Matemática 1º Ano 3ºBimestre/01 Plano de Trabalho Função Polinomial do º Grau 04/09/01 Tarefa 1 Cursista: Darling Domingos Arquieres - Matrícula: 911917-3
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
Função Polinomial do 2º Grau
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 3º bimestre / 2012 Plano de Trabalho Função Polinomial do 2º Grau y = x² + x Tarefa 1 Cursista : Nelson Gonçalves Dias
ALUNO(A): Prof.: Andre Luiz 04/06/2012
1. FUNÇÃO 1.1 Definição A função dada por ( ), com a, b, c reais e a 0. Vejamos alguns exemplos: a) ( ) ( ) b) ( ) ( ) c) ( ) ( ) d) ( ) ( ) e) ( ) ( ) Vamos a outro exemplo: Ex2.: Um objeto que se desloca
Módulo 4 Ajuste de Curvas
Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2
EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...
Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),
Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Revisão de Pré-Cálculo PÁRABOLAS. Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior
Revisão de Pré-Cálculo PÁRABOLAS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Março, 2018 Direitos reservados. Reprodução
Hewlett-Packard FUNÇÃO QUADRÁTICA. Aulas 01 a 07 + EXTRA. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO QUADRÁTICA Aulas 01 a 07 + EXTRA Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 2016 Sumário O CONCEITO DE FUNÇÃO QUADRÁTICA... 2 (Função polinomial do 2 grau)... 2 EXERCÍCIO
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
Nivelamento Matemática Básica
Faculdade de Tecnologia de Taquaritinga Av. Dr. Flávio Henrique Lemos, 8 Portal Itamaracá Taquaritinga/SP CEP 900-000 fone (6) -0 Nivelamento Matemática Básica ELIAMAR FRANCELINO DO PRADO Taquaritinga
Prof: Danilo Dacar
Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.
Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira. 1- ( VUNESP) A parábola de equação y = ax² passa pelo vértice da parábola y = 4x - x². Ache o valor de a: a) 1 b) 2
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Ou seja, D(f) = IR e Im(f) IR.
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática
6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES
47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
SIMULADO OBJETIVO S4
SIMULADO OBJETIVO S4 9º ano - Ensino Fundamental º Trimestre Matemática Dia: 5/08 - Sábado Nome completo: Turma: Unidade: 018 ORIENTAÇÕES PARA APLICAÇÃO DA PROVA OBJETIVA - º TRI 1. A prova terá duração
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.
9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros
Nuno Marreiros 9º ANO FUNÇÕES Função Quadrática Ponto de partida Já foi estudada a função de proporcionalidade direta bem como a função de proporcionalidade inversa. Hoje vamos aprender e estudar um pouco
FUNÇÃO POLINOMIAL DO 2º GRAU
Formação continuada Projeto SEEDUC FUNÇÃO POLINOMIAL DO 2º GRAU Cursista: Darling Domingos Arquieres [email protected] 1º ano do Ensino Médio Tutor: Yania Molina Souto Data: 26/08/2014 SUMÁRIO INTRODUÇÃO...3
Lista de exercícios: Funções do 2º Grau
Lista de eercícios: Funções do º Grau 1 1. Marque quais são as funções do º grau: (R= b, c, d, e, i, j, k,l) a. e. i. b. 6 9 f. 5 10 c. g. 1 j. 5 k. 1 1 d. h. 5 1 l. 1. Quais dos pontos pertencem à parábola
Matemática para contabilidade/mário INTRODUÇÃO. Vejamos os problemas.
INTRODUÇÃO Vejamos os problemas. 1- Seja a oferta de mercado de uma utilidade dada por: S = -20 + 2p, com p R$270,00. Poderíamos querer saber: a) A partir de que preço haverá oferta? b) Qual o valor da
Inequação do Segundo Grau
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Funções quadráticas. Matemática - UEL Compilada em 18 de Março de 2010.
Matemática Essencial Funções quadráticas Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 A função quadrática
0, a parábola tem concavidade voltada para BAIXO.
FUNÇÕES QUADRÁTICAS. DEFINIÇÃO É uma função da forma f x ax bx c, com a,b,c e a 0. OBSERVAÇÃO a é dito coeficiente líder da função quadrática Exemplo: fx 4x 5x 8. GRÁFICO O gráfico de uma função quadrática
Matemática A Semiextensivo V. 2
Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/2012. Plano de Trabalho Função Polinomial do 2º Grau
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/01. Plano de Trabalho Função Polinomial do º Grau Tarefa 1 Aluno: Raquel dos Santos Ramos Tutor: Denílson Herinque Cortes Introdução O plano
MATEMÁTICA FRENTE 1. na equação
MATEMÁTICA FRENTE 1 AULA 04 1. (G1 - ifal 017) Determine o valor de k raiz seja o dobro da outra: a) 1. b) 18. c) 4. d) 8. e) 3. na equação x 1x k 0, de modo que uma. (G1 - ifal 017) Em uma partida de
