Função Polinomial do 2º Grau
|
|
|
- Denílson Cesário Nunes
- 7 Há anos
- Visualizações:
Transcrição
1 FORMAÇÃO CONTINUADA EM MATEMÁTICA PROJETO SEEDUC Matemática 1º Ano 3ºBimestre/01 Plano de Trabalho Função Polinomial do º Grau 04/09/01 Tarefa 1 Cursista: Darling Domingos Arquieres - Matrícula: Tutor: Cynthia Sodré Alexandre
2 SUMÁRIO INTRODUÇÃO... 3 DESENVOLVIMENTO... 4 AVALIAÇÃO... 1 BIBLIOGRAFIA... 13
3 INTRODUÇÃO Neste trabalho tem como finalidade familiarizar os estudantes com a função polinomial do º grau com aquisição da linguagem algébrica consigam expressar a relação entre as grandezas e resolver as situações-problema. O estudo de funções tem aplicações em diversas áreas do conhecimento, utilizando-a podemos analisar, interpretar e descrever diversos fenômenos naturais e sociais, como também fazer previsões de seu comportamento para o uso em desenvolvimentos tecnológicos, projetos de pesquisa e interações com o meio que vivemos. Aprendizagem da função polinomial do º grau faz com os alunos compreendam essa função apresenta um tipo variação regular de crescimento especial, no momento que uma grandeza x cresce, a outra cresce também e depois ambas decresce e vice-versa, aparência de uma montanha russa. Segundo o PCN Aprender Matemática de uma forma contextualizada, integrada e relacionada a outros conhecimentos traz em si o desenvolvimento de competências e habilidades que são essencialmente formadoras, à medida que instrumentalizam e estruturam o pensamento do aluno, capacitando-o para compreender e interpretar situações, se apropriar de linguagens específicas, argumentar, analisar e avaliar, tirar conclusões próprias, tomar decisões, generalizar e para muitas outras ações necessárias à sua formação. desta forma, as questões aqui trabalhadas serão apresentadas de formas contextualizadas para melhor compreensão do aluno sobre o conteúdo. 3
4 DESENVOLVIMENTO Atividade 1 Habilidade Relacionada: identificar uma função polinomial do º grau. H57 Resolver problemas envolvendo função do º grau. Pré-Requisitos: Resolução de equações do º grau. Tempo de Duração: 100 minutos Recursos Educacionais Utilizados: Vídeo do Telecurso Ensino Médio Matemática Aula 31 e livro didático. Organização da Turma: individual Objetivos: Apresentar todos os conceitos sobre o assunto para que o aluno compreenda a sua importância e sua aplicabilidade no dia-a-dia. Metodologia Adotada: 1º: Vídeo Aula º: Apresentação do Conteúdo Uma função para ser do º grau precisa assumir algumas características, pois ela deve ser dos reais para os reais, definida pela fórmula f(x) ax + bx + c, sendo que a, b e c são números reais com a diferente de zero. Concluímos que a condição para que uma função seja do º grau é que o valor de a, da forma geral, não pode ser igual a zero. Então, podemos dizer que a definição de função do º grau é: f: R R definida por f(x) ax + bx + c, com a Є R* e b e c Є R. Numa função do segundo grau, os valores de b e c podem ser iguais a zero, quando isso ocorrer, a equação do segundo grau será considerada incompleta. Veja alguns exemplos de Função do º grau: f(x) 5x x + 8; a 5, b e c 8 (Completa) f(x) x x; a 1, b e c 0 (Incompleta) f(x) x; a 1, b 0 e c 0 (Incompleta) Gráfico O gráfico de uma função polinomial do º grau, f(x) ax + bx + c, com a 0, é uma curva chamada parábola. Lembrando f(x) y Exemplo: Vamos construir o gráfico da função y x + x: Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos. 4
5 x y Observação: Ao construir o gráfico de uma função quadrática y ax + bx + c, notaremos sempre que: se a > 0, a parábola tem a concavidade voltada para cima; se a < 0, a parábola tem a concavidade voltada para baixo; Zero e Equação do º Grau Chama-se zeros ou raízes da função polinomial do º grau f(x) ax + bx + c, a 0, os números reais x tais que f(x) 0. Então as raízes da função f(x) ax + bx + c são as soluções da equação do º grau ax + bx + c 0, as quais são dadas pela chamada fórmula de Bhaskara: Temos: Observação A quantidade radicando quando quando quando de raízes reais de uma função quadrática depende do valor obtido para o, chamado discriminante, a saber: é positivo, há duas raízes reais e distintas; é zero, há só uma raiz real; é negativo, não há raiz real. 3º: Questão 1) Um goleiro chuta uma bola que descreve um arco de parábola, como mostra a figura a seguir. Supondo que sua altura y, em metros, x segundos após o chute, seja dada por y -x + 6x, determine o tempo que a bola levará para atingir o chão novamente? Solução: Quando a bola atingir novamente o chão a altura será zero, ou seja, y 0. -x + 6x 0 a -1; b 6; c 0 x0 x6 Observe que x 0 representa o ponto inicial do chute, então, a bola 5
6 levará 6 segundos para atingir o chão. ) Observe a foto de uma gota em queda livre. Nesta foto, foi utilizado um método que permite visualizar as posições de uma gota em queda livre de acordo com variação do tempo. Esse tipo de fotografia é chamado de estroboscópica. A lei que relaciona a posição (em metro) do objeto em função do tempo (em segundo) é s(t) 4,9.t. Calcule a posição s da gota para quando t 1, t e t 3. Solução: s(1) 4,9. 1 4,9. 1 4,9 (passado 1 segundo a gota está 4,9 m distante da torneira). s() 4,9. 4, ,6 (passado segundos a gota está 19,6 m distante da torneira). s(3) 4,9. 3 4, ,1 (passado 3 segundos a gota está 44,1 m distante da torneira). 4º: Exercícios de Fixação: livro didático adotado pela escola. Atividade Habilidade Relacionada: H57 Resolver problemas envolvendo função do º grau. C4 Resolver problemas que envolvam a determinação do valor yv como o valor máximo em uma função do º grau. C5 - Resolver problemas que envolvam a determinação do valor yv como o valor mínimo em uma função do º grau. C6 - Resolver problemas que envolvam a determinação do valor xv como o valor máximo em uma função do º grau. C7 Resolver problemas que envolvam a determinação do valor xv como o valor mínimo em uma função do º grau. Pré-Requisitos: Conceito de Função Polinomial do º grau Tempo de Duração: 100 minutos Recursos Educacionais Utilizados: Vídeo Roda de Samba, livro didático e folha de exercícios. Organização da Turma: Individual Objetivos: Aplicar o conceito de máximo ou mínimo de uma função polinomial do º grau na resolução de problemas. Metodologia Adotada: 1º: Vídeo Aula Roda de Samba º: Apresentação do Conteúdo Vértice e Construção da Parábola É possível construir o gráfico de uma função do º grau sem montar a tabela de pares (x, y), mas seguindo apenas o roteiro de observação seguinte: 1. O valor do coeficiente a define a concavidade da parábola;. Os zeros definem os pontos em que a parábola intercepta o eixo dos x; O vértice V indica o ponto de mínimo (se a > 0), ou máximo (se a< 0); A reta que passa por V e é paralela ao eixo dos y é o eixo de simetria da parábola; Para x 0, temos y a 0 + b 0 + c c; então (0, c) é o ponto em que a parábola corta o eixo dos y. 6
7 3º: Questão 1) O custo diário de produção de uma indústria de aparelhos de telefone é dado pela função C(x) x 86x + 500, onde C(x) é o custo em reais e x é o número de unidades fabricadas. Quantos aparelhos devem ser produzidos diariamente para que o custo seja mínimo? Qual é o custo mínimo? Solução: Como a 1 > 0, a parábola tem um ponto de mínimo V cujas coordenadas são (xv, yv). Temos: xv 43 b 4ac (-86) yv 651 Assim, devem ser produzidos 43 aparelhos de telefone diariamente para um custo mínimo de R$ 651,00. ) Sabe-se que, sob um certo ângulo de tiro, a altura atingida por uma bala, em metros, em função do tempo, em segundos, é dada por h(t) -0t + 00t. Qual é a altura máxima atingida pela bala? Em quanto tempo, após o tiro, a bala atinge a altura máxima? Solução: Como a -0 < 0, a parábola tem um ponto de máximo V cujas coordenadas são (xv, yv). Temos: xv 5 b 4ac (-0) yv 500 Assim, a bala atingiu 500m de altura máxima em 5 segundos após o tiro. 4º: Exercícios de Fixação: livro didático adotado pela escola. Atividade 3 Habilidade Relacionada: Determinar a lei de formação de uma função polinomial do º grau a partir de pontos dados ou analisados do gráfico. Pré-Requisitos: Resolução de equações e reconhecimentos dos coeficientes da função polinomial do º grau Tempo de Duração: 100 minutos Recursos Educacionais Utilizados: Livro didático, quadro e folha de exercícios. Organização da Turma: Individual Objetivos: Analisar o gráfico de uma função polinomial do º grau para determinar sua lei de formação. Metodologia Adotada: 1º: Apresentação do Conteúdo Relembrar o conteúdo que foi trabalhado até agora e acrescentar o conteúdo abaixo: 7
8 Para x 0, temos y a 0 + b 0 + c c; então (0, c) é o ponto em que a parábola corta o eixo dos y. Numa função polinomial do º grau quando é positivo há duas raízes reais e distintas, x1 e x, a abscissa vértice é a média aritmética entre as raízes, ou seja, as raízes são eqüidistantes do xv. º: Questões: 1) O gráfico da função f(x) ax + bx + c é a parábola de a figura a seguir. Determine os valores de a, b e c: Solução: f(x) ax + bx + c Pelo gráfico temos: f(0) 0 > c 0 e vértice (4, 1) Xv >4 yv b-8. > 8a - b > b -8a > 1 > 1 > 1 >1-16a > a >a > b 6 Logo, f(x) x + 6x ) O gráfico da função f(x) ax + bx + c é o apresentado abaixo. Determine os valores de a, b e c: Solução: Os pontos (0,0), (,1) e (4,0) pertencem ao gráfico, logo: f(x) ax + bx + c f(0) a.0 + b.0 + c 0 > c 0 f() a. + b. + c 1 > 4a + b > 4a + b 1 f(4) a.4 + b.4 + c 0 > 16a + 4b > 16a + 4b 0 > 4b -16a > b > b -4a 4a +.(-4a) 1 > 4a 8a 1 > -4a 1 > a b -4. > b 1 f(x) x+x 8
9 Solução: Neste gráfico temos x1 0 e x 80 e como o x do vértice é o ponto médio das raízes da função então: Xv 40 Resposta: Após 40 segundos. Solução: Neste gráfico temos: Concavidade da parábola voltada para baixo > a< 0(negativo), com isso, desconsideramos os itens (d) e (e) Vértice: (0,4), assim: (a) xv, desconsidera esse item. (b) xv -1, desconsidera esse item. (c) xv 0, logo será esse item para o resultado da questão. 3º: Exercícios de Fixação: livro didático adotado pela escola. Atividade 4 Habilidade Relacionada: - Identificar uma função polinomial do º grau. H57 Resolver problemas envolvendo função do º grau; - Determinar e/ou identificar valor máximo ou mínimo de uma função polinomial do º grau; - Determinar a lei de formação de uma função polinomial do º grau a partir de pontos dados ou analisados do gráfico. 9
10 Pré-Requisitos: Conhecimento de equação do º grau e conceitos da função polinomial do º grau. Tempo de Duração: 100 minutos Recursos Educacionais Utilizados: Livro didático, caderno com o conteúdo e folha de exercícios. Organização da Turma: Grupo de 3 alunos. Objetivos: Revisar e fixar o conteúdo trabalhado Metodologia Adotada: 1) A figura abaixo ilustra uma ponte suspensa por estruturas metálicas em forma de arco de parábola. Os pontos A, B, C, D e E estão no mesmo nível da estrada e a distância entre quaisquer dois consecutivos é 5m. Sabendo-se que os elementos de sustentação são todos perpendiculares ao plano da estrada e que a altura do elemento central CG é 0m, a altura de DH é: (A) 17,5m (B) 15,0m (C) 1,5m (D) 10,0m (E) 7,5m ) O lucro mensal de um fabricante de sapato é dado por L(x) - x + 130x 75, em que x é o valor de cada par de sapatos vendido. Assim, o lucro mensal do fabricante é uma função do preço de venda. Qual deve ser o preço de venda para maximizar o lucro mensal? Qual o lucro mensal máximo? (a) R$ 50,00; R$ 900,00 (b)r$ 1500,00; R$ 65,00 (c)r$ 65,00; R$ 1500,00 (d)r$ 136,50; R$ 15,00 10
11 11
12 6) Um projétil é lançado do solo, verticalmente para cima, obedecendo à função y 50x x, onde y é a altura em metros e x é o tempo em segundos, (desprezando-se a resistência do ar). Determine: a) b) c) a altura máxima atingida pelo projétil; o tempo em que o projétil levará para atingir o solo. a altura em que se encontra o projétil após segundos do seu lançamento. GABARITO: 1- (B) - (C) 3- (C) 4- (B) 5- (A) 6- a) 31,5m b) 5s c) 9m 1
13 AVALIAÇÃO A avaliação é uma ferramenta essencial para obter informações sobre como está a realização do processo ensino-aprendizagem tanto para o professor como para o aluno. As atividades 1( página 4) e (página 6) comecei a aula lançando a pergunta da questão do dia para questionar os alunos de como resolver-la e depois passei o vídeo citado em que cada atividade. Fiz desta forma para estimular os alunos a assistir o vídeo e verificarem se estavam corretos na maneira em que pensaram em resolver a questão. Então, antes e depois do vídeo, analisei a participação dos alunos e de como eles entenderam o conteúdo do dia. Desta maneira avaliativa, o professor tem como direcionar e aperfeicoar o processo de ensino-aprendizagem para solucionar dificuldades dos alunos. Já atividade 3 (página 7), para introduzir o conteúdo, recapitulei as atividades anteriores, desde o vídeo até as questões já trabalhadas. Foi uma forma de fixar a matéria e adquirir novos conhecimentos sobre assunto tratado. Aqui foi importante, também, pois foi uma aula onde os alunos participaram com perguntas, opiniões, dúvidas para construirmos juntos os conceitos do conteúdo. E, para finalizar, a atividade 4 coloquei algumas questões do assunto para que eles discutissem em grupo em que através da socialização aluno-aluno confirmaram o conhecimento adquirido. Neste momento, avaliei o que eles, como um todo, realmente aprenderam da matéria e cooperação entre eles. 13
14 BIBLIOGRAFIA SMOLE, K. S. & DINIZ, M. I. Matemática Ensino Médio. São Paulo: Saraiva, 007. DANTE, L. R. Matemática. São Paulo: Ática, 008. BARROSO, J. M. Conexões com a Matemática. São Paulo: Moderna, 010. PAIVA, M. Matemática. São Paulo: Moderna, 004. PCN+ Ensino Médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais. Brasília: MEC/Semtec, 00. Endereços eletrônicos
FUNÇÃO POLINOMIAL DO 2º GRAU
Formação continuada Projeto SEEDUC FUNÇÃO POLINOMIAL DO 2º GRAU Cursista: Darling Domingos Arquieres [email protected] 1º ano do Ensino Médio Tutor: Yania Molina Souto Data: 26/08/2014 SUMÁRIO INTRODUÇÃO...3
Formação Continuada em Matemática
Formação Continuada em Matemática Função Polinomial do 2º grau Tarefa 1 Júlio César da Silva Pinto Tutor: Yania Molina Souto SUMÁRIO o Introdução o Desenvolvimento o Avaliação o Fontes de Pesquisa Introdução
Função Polinomial do 2º Grau
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 3º bimestre / 2012 Plano de Trabalho Função Polinomial do 2º Grau y = x² + x Tarefa 1 Cursista : Nelson Gonçalves Dias
FUNÇÃO POLINOMIAL DO 2º GRAU
Formação Continuada em Matemática SEEDUC CECIERJ Matemática 1º Ano 3º Bimestre / 2014 Plano de Trabalho FUNÇÃO POLINOMIAL DO 2º GRAU Tarefa 1 Cursista : Ana Cristina França Pontes Vieira Tutor : Rodolfo
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net FUNÇÃO QUADRÁTICA Seja a, b e c números reais
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
Fundação CECIERJ/Consórcio CEDERJ
Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 1: Plano de Trabalho Matemática 1 Ano - 3 Bimestre/2014 Função Polinomial do 2 Grau Cursista: Soraya de Oliveira Coelho Tutor:
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Quadrática PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Função Quadrática Há várias situações do dia-a-dia
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 1º Ano 3º Bimestre/2012 FUNÇÃO POLINOMIAL DO 2º GRAU
1 FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/CONSÓRCIO CEDERJ Matemática 1º Ano 3º Bimestre/2012 FUNÇÃO POLINOMIAL DO 2º GRAU Plano de Trabalho Tarefa 1 Cursista : ROSANA DOS SANTOS RODRIGUES Tutor:
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
PLANO DE TRABALHO SOBRE FUNÇÃO POLINOMIAL DO 2º GRAU
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: COLÉGIO ESTADUAL POETA MÁRIO QUINTANA PROFESSOR: AMANDA DA ROZA PINTO MATRÍCULA: 0928350-8/3048586-6 SÉRIE: 1º ANO
PROFESSOR: JARBAS 4 2 5
PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/2012. Plano de Trabalho Função Polinomial do 2º Grau
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/01. Plano de Trabalho Função Polinomial do º Grau Tarefa 1 Aluno: Raquel dos Santos Ramos Tutor: Denílson Herinque Cortes Introdução O plano
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ MATEMÁTICA 1º ANO 3ºBIMESTRE/2014 PLANO DE TRABALHO 1
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ MATEMÁTICA 1º ANO 3ºBIMESTRE/2014 PLANO DE TRABALHO 1 FUNÇÕES POLINOMIAIS DO 2º GRAU TAREFA 1 CURSISTA: CARLA MUNIZ DE JESUS GRUPO:1
FUNÇÃO DO 2º GRAU. y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e. O gráfico de uma função quadrática é uma parábola
FUNÇÃO DO 2º GRAU A função do 2º grau está presente em inúmeras situações cotidianas, na Física ela possui um papel importante na análise dos movimentos uniformemente variados (MUV), pois em razão da aceleração,
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Matemática. FUNÇÃO de 1 GRAU. Professor Dudan
Matemática FUNÇÃO de 1 GRAU Professor Dudan Função de 1 Grau Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma : onde a e b são números reais
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] Um pouco de História... Babilônia (1.800 a.c) alguns métodos de resolução de equações
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:
de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x
Atividade extra Exercício 1 (FAAP-SP) Uma indústria produz, por dia, x unidades de determinado produto, e pode vender sua produção a um preço de R$100,00 a unidade. O custo total, em reais, da produção
Formação Continuada Nova Eja. Matemática Nova Eja- Módulo 1 1 Bimestre/ 2014 PLANO DE AÇÃO 4
Formação Continuada Nova Eja Matemática Nova Eja- Módulo 1 1 Bimestre/ 2014 PLANO DE AÇÃO 4 Equações do 2 Grau Nome: Walter Campos Tutor: Josemeri Araújo Silva Regional: Noroeste Fluminense S u m á r i
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:
Aula 5 Exercícios e Aplicações de Funções Quadráticas. Fabio Licht
Aula 5 Exercícios e Aplicações de Funções Quadráticas Fabio Licht Construção do gráfico da função do 2.º grau Passo a passo 1º passo: determinar as raízes da função 2º passo: estudo da concavidade 3º passo:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ PLANO DE TRABALHO 1º ANO 3º BIMESTRE Função Polinomial do 2º grau COLÉGIO: CIEP BRIZOLÃO 337 BERTA LUTZ PROFESSORA: RAQUEL
Equação de Segundo Grau. Rafael Alves
Equação de Segundo Grau Rafael Alves Equação do 2º Grau As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. 2x + 1 = 0 (Equação de 1º grau) 2x² + 2x + 6 = 0 (Equação de
PLANO DE AULA. Universidade Federal do Pampa. Campus Caçapava do Sul
PLANO DE AULA Universidade Federal do Pampa Campus Caçapava do Sul Disciplina: Matemática Nome: Misael Forma Data da aula: 07/07/2017 Duração: 45 minutos Local: Dinarte Ribeiro Conteúdo: Funções. Conteúdo
Exercícios de Aprofundamento Matemática Funções Quadráticas
1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale
FUNÇÃO POLINOMIAL DO 2º GRAU
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/CONSÓRCIO CEDERJ MATEMÁTICA 1º ANO 3º BIMESTRE/2012 PLANO DE TRABALHO 1 FUNÇÃO POLINOMIAL DO 2º GRAU CURSISTA: ZUDILEIDY CAMARA SIAS SARAIVA TUTOR: FLÁVIO
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ SEEDUC-RJ PLANO DE TRABALHO SOBRE. Funções do segundo grau
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ SEEDUC-RJ COLÉGIO: Ciep Brizolão 488 - Ezequiel Freire PROFESSOR = Luiz Carlos Martins Professor de Matemática Ensino Médio MATRÍCULA:
Formação continuada em MATEMÁTICA. Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ Matemática 1º Ano 3º Bimestre/ 2013 Função Polinomial do 2º Grau Tarefa 1 Cursista: Sandra Maria Vogas Vieira Tutor: Marcelo Rodrigues
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.
Matemática I Lista de exercícios 02
Matemática I 2011.1 Lista de exercícios 02 1. O conjunto {( 1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {( x, y) R R x = y} (B) {( x, y) R R x > y} (C) {( x, y) R R x y} (D) {(
Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data:
Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Questão 1 Quantas soluções inteiras a inequação x 2 + x 20 0 admite? (A) 2 (B) 3 (C) 7 (D) 10 (E) 13 Questão 2 A função quadrática
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:
FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ( a = 3, = -5 e c = 6 )
FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:
FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Quadrática Noções Básicas 9 ano E.F. Professores Cleber Assis e Tiago Miranda Função Quadrática Noções Básicas 1 Exercícios Introdutórios Exercício 1. Os coeficientes de x (a), de x (b) e
12º REVISA CAESP EXATAS
1º REVISA CAESP EXATAS Nome: N o Turma: 9º ano B Prof.(ª): Debora Daiana Klering Wiest Data de Entrega: 0/09/018 Matemática/Álgebra GABARITO 01 Uma função quadrática passa pelos pontos ( 1, 0), (, 0) e
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.2 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
- FUNÇÕES QUADRÁTICAS -
TAREFA 01 PLANO DE TRABALHO - FUNÇÕES QUADRÁTICAS - "Educai as crianças, para que não seja necessário punir os adultos. (Pitágoras) PROJETO SEEDUC/FORMAÇÃO CONTINUADA TUTORA: CHYNTIA SODRE ALEXANDRE CURSISTA:
FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:
FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ) g(x) = x 2 5x c) h(x)
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Curso de Biomedicina
Curso de Biomedicina Centro de Ciências da Saúde Universidade Católica de Petrópolis Matemática - Biomedicina Funções Polinomiais do 2o. Grau Maio de 2018 Luís Rodrigo de O. Gonçalves [email protected]
Matemática I Lista de exercícios 03
Matemática I 2014.1 Lista de exercícios 03 1. O conjunto {(1,2), (2,3), (3,4), (4,5), (5,6)} é um subconjunto do conjunto: (A) {(x, y)î R R x = y} (B) {(x, y)î R R x > y} (C) {(x, y)î R R x ³ y} (D) {(x,
C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:
Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão
MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS
MATEMÁTICA ROTEIRO DE RECUPERAÇÃO ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS NOTA ALUNO(A): Nº: DATA: / /2017 I INTRODUÇÃO Este roteiro tem como
Lista de Função Quadrática e Módulo (Prof. Pinda)
Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)
Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,
MATEMÁTICA FRENTE 1. na equação
MATEMÁTICA FRENTE 1 AULA 04 1. (G1 - ifal 017) Determine o valor de k raiz seja o dobro da outra: a) 1. b) 18. c) 4. d) 8. e) 3. na equação x 1x k 0, de modo que uma. (G1 - ifal 017) Em uma partida de
Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t t,
Atividade extra Exercício 1 Uma bola quando chutada por um jogador de futebol descreve uma parábola de equação h(t) = 40t + 00t, onde h(t) é a altura da bola em função do tempo (t) em segundos. Quanto
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
Lista de exercícios sobre função quadrática Prof. Márcio Prieto
1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço
Aluno(a): N o : Ano: 9º Turma: Data: 29/08/15 Unidade: III AVALIAÇÃO AV2
Tema do Ano: "É nos sonhos que tudo começa." Projeto Interdisciplinar do 9 o ano (Ensino Fundamental): Quantos mundos cabem em sua mochila? Aluno(a): N o : Ano: 9º Turma: Data: 9/08/15 Unidade: III Disciplina
f(x) x x 2 e que se encontra representada
Escola Secundária com º ciclo D. Dinis 0º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Aula 5 do plano de trabalho nº Resolver os exercícios 5,, 8, 9 e
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. (UFRJ) Hortência arremessa uma bola de basquete cujo centro segue uma trajetória
3º EM. Prof. Fabio Henrique LISTA 06. Fabio Henrique
3º EM LISTA 06 Fabio Henrique 1. A temperatura, 2 em graus Celsius, de um objeto armazenado em um determinado local é modelada pela função x f(x) 2x 10, 12 com x dado em horas. A temperatura máxima, em
Fundação CECIERJ/ Consórcio CEDERJ. Matemática 3º Ano - 3º Bimestre / Plano de Trabalho. Geometria Analítica. Tarefa 2
Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Geometria Analítica Tarefa 2 Cursista: Jocimar de Avila Tutora: Danúbia 1 S u m á r i o Introdução.....................................
b e g(x) = x possuem um unico ponto em
Prof. Valdex Santos Aluno: Turma: 1. Planeja-se construir duas estradas em uma regi~ao plana. Colocando coordenadas cartesianas na regi~ao, as estradas cam representadas pelas partes dos gracos da parabola
11º REVISA CAESP EXATAS
11º REVISA CAESP EXATAS Nome: N o Turma: 9º ano A Prof.(ª): Debora Daiana Klering Wiest Data de Entrega: 10/09/018 Matemática/Álgebra GABARITO 01 Os alunos do 9º ano de uma escola foram divididos em 5
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2015 NOTA AULA PRÁTICA No. 06 FUNÇÕES (PARÁBOLAS) PROF. ANGELO BATTISTINI NOME RA TURMA NOTA 1 Objetivos: Nesta aula estudamos um tipo específico de função matemática, a parábola.
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Resolver os exercícios 45, 4, 47, 46 e 49 das páginas 5 a 57 45. Considere
Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010
1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA., a 0 é chamada função do função
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA 1. DEFINIÇÃO A função quadrática. f : R R definida por f ( x) = ax + x + c, a 0 é chamada função
Função de 2º Grau. Parábola: formas geométricas no cotidiano
1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando
MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO
MATEMÁTICA - 1 o ANO MÓDULO 17 FUNÇÃO DO 2 O GRAU - DEFINIÇÃO y c x y y x x x x x x y y x =x x x =x x y y x x eixo de simetria eixo de simetria y x x v x f(x) x y v y v y v v x x v x x Como pode cair
Matemática 1º ano 3º Bimestre/ 2012 Plano de Trabalho FUNÇÃO POLINOMIAL DO 2º GRAU
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ Consórcio CEDERJ Matemática 1º ano 3º Bimestre/ 2012 Plano de Trabalho FUNÇÃO POLINOMIAL DO 2º GRAU Acesso 29/08/2012- http:www.professoraricleide.blogspot.com
Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I
Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo
Mat.Semana 5. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 5 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03
Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1
Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
FORMAÇÃO CONTINUADA EM MATEMÁTICA
FORMAÇÃO CONTINUADA EM MATEMÁTICA MATEMÁTICA 1 ANO/ 2 BIMESTRE/ 2013 (grupo 5) PLANO DE TRABALHO 1 FUNÇÃO POLINOMIAL DO 1 GRAU TAREFA: 1 CURSISTA: Cátia Pereira da Silva Souza TUTORA: Leziete Cubeiro da
Olimpíada Marista de Matemática
Colégio Marista Nossa Senhora da Penha Eduardo Albert Filipe Nascimento João Moulin Rafael Calazans Thiago Prates Olimpíada Marista de Matemática Vila Velha, 2017 Função Quadrática 1) Definição: Uma função
Cursista: Jacqueline Garcia Pereira. 2º ano do Ensino Médio. Grupo 4. Tutor: Deivis de Oliveira Alves. Número de matrícula:
Formação continuada Projeto SEEDUC Cursista: Jacqueline Garcia Pereira 2º ano do Ensino Médio Grupo 4 Tutor: Deivis de Oliveira Alves Número de matrícula: 2422699 SUMÁRIO INTRODUÇÃO...3 DESENVOLVIMENTO...4
LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:
C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)
Equação de 2 grau. Assim: Øx² - 5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6.
Rumo ao EQUAÇÃO DE 2 GRAU Equação de 2 grau A equação de 2 grau é a equação na forma ax² + bx + c = 0, onde a, b e c são números reais e x é a variável (incógnita). O valor da incógnita x é determinado
PLANO DE TRABALHO MATRIZES E DETERMINANTES
FORMAÇÃO CONTINUADA EM MATEMÁTICA MATEMÁTICA 2º AN0-3º BIMESTRE-2012 PLANO DE TRABALHO MATRIZES E DETERMINANTES CURSISTA: Roseli Aparecida Sevenini Silva TUTOR(A):Edileizer 1 SUMÁRIO INTRODUÇÃO --------------------------------
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções
PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências e Habilidades Gerais da Disciplina
PLANO DE ENSINO 2016 Disciplina: Matemática 8 a série Professor: Fábio Girão Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Colégio Estadual Dr. Phillippe Uébe PROFESSOR: José Alves Novaes Júnior MATRÍCULA: 0009282740 SÉRIE: 1 ano TUTOR
As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.
Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na
FORMAÇÃO CONTINUADA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ. Matemática 1º ano 3ºBimestre / Plano de Trabalho 1. Cursista Isa Louro Delbons
FORMAÇÃO CONTINUADA MATEMÁTICA FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ Matemática 1º ano 3ºBimestre / 2014 Plano de Trabalho 1 Cursista Isa Louro Delbons Grupo - 02 Tutora Yania Molina Souto 1 Função do Segundo
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO
CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística
