Plotar Gráficos com Recursos Computacionais
|
|
|
- Alana Sacramento Domingues
- 9 Há anos
- Visualizações:
Transcrição
1 Plotar 1 Gráficos com Recursos Computacionais Plotar (esboçar) o gráfico de uma função nem sempre é uma tarefa fácil. Para facilitar nosso trabalho, podemos utilizar softwares matemáticos especialmente elaborados com este propósito. Como exemplos de softwares matemáticos, podemos citar o Graphmatica, o Winplot, o Origin, o Maple, o Mathematica, o MATLAB e o Derive. Além desses, podemos contar também com a ajuda das calculadoras gráficas. Em nosso estudo, vamos utilizar apenas gráficos gerados pelo Graphmatica, pois este programa oferece uma facilidade muito grande no seu uso. Buscamos aqui retratar alguns dos problemas encontrados na disciplina de Cálculo Diferencial e Integral 1, relacionados ao traçado de gráficos. Nosso objetivo não é apontar os problemas do Graphmatica, em particular, ou de qualquer outro software, mas sim mostrar que o conhecimento teórico, sobre o traçado de gráficos, é fundamental para decidir quando um software apresenta resultados confiáveis ou não. Queremos com isso, mostrar que nem tudo que é obtido através de um software pode servir para uma análise adequada. Escolha da Janela de Observação Um aspecto importante para o traçado de gráficos é a escolha do intervalo em que o gráfico será feito. Para que tenhamos uma imagem correta do comportamento da função, precisamos analisá-la no "melhor" intervalo possível. A escolha de tal intervalo deve ser feita de modo que os aspectos importantes da função apareçam no gráfico, e isso será determinante na qualidade da análise que faremos. Esse domínio, onde enxergamos o desenho da função, é chamado de janela de observação. A seguir, mostraremos exemplos de três diferentes escolhas da janela de observação para uma mesma função: 1 Plotar - Mapear ou diagramar. Conectar ponto a ponto valores coordenados. Graphmatica não é um programa gratuito, mas seus responsáveis disponibilizam uma versão avaliativa, totalmente funcional. 1
2 Janela: -8 x 8 e -8 y 8 Janela: -3 x 3 e -8 y 8 Janela: -3 x 0 e -18 y Os três gráficos acima representam a mesma função f(x) x3 5x 3, apesar de não ser essa a impressão que temos. O que muda de um para outro é a janela de observação, dando-nos a falsa idéia de que são gráficos de funções diferentes. Observe que se considerarmos os gráficos apresentados nas duas primeiras janelas de observação, para estudarmos o comportamento da função, estaremos cometendo erros na análise, ainda que o programa tenha esboçado corretamente estes dois gráficos. Dessa forma, ao fazermos um gráfico, utilizando uma ferramenta gráfica 3, devemos levar em conta que janelas de observação diferentes podem produzir imagens muito diferentes de um gráfico. Portanto, a escolha de uma janela de observação adequada, baseada em uma análise teórica da função, é fundamental para que possamos confiar no gráfico produzido pelo software. Gráficos com Escalas Diferentes Outro cuidado que devemos ter para com a elaboração de gráficos, utilizando uma ferramenta gráfica, está relacionado com a escolha de escalas adequadas. Os exemplos a seguir apontam para a importância de conhecermos o funcionamento do software, bem como para a necessidade de contarmos com recursos teóricos que nos permitam fornecer os dados necessários para que o programa produza um gráfico correto. Como primeiro exemplo, vamos considerar os dois gráficos, descritos a seguir, referentes à equação x y 4: 3 O termo ferramenta gráfica refere-se tanto a uma calculadora gráfica quanto a um programa gráfico para computador.
3 Observe que no gráfico à esquerda usamos escalas diferentes para os dois eixos, dando-nos a falsa impressão de que a curva produzida pelo software é uma elipse. Já no gráfico à direita, utilizamos escalas iguais nos dois eixos e com isso, observamos que a curva é uma circunferência e não uma elipse. Como outro exemplo, para entendermos a importância de se escolher escalas adequadas, x y vamos considerar os dois gráficos descritos abaixo, referentes à equação O gráfico à esquerda foi elaborado utilizando escalas diferentes para os dois eixos, ficando a x y impressão de que a curva traçada é uma circunferência. Analisando a equação 1, 9 16 podemos observar que esta se refere a uma elipse e não a uma circunferência. Assim, considerando escalas iguais para os dos eixos, o gráfico à direita nos mostra que se trata de uma elipse (como já havíamos concluído através da análise da equação). 3
4 Consideremos outro exemplo para entender como a escolha de escalas adequadas, para os eixos coordenados, tem um papel importante na análise de gráficos elaborados por uma ferramenta gráfica. 1 Observe os gráficos das retas f(x) 3x e g(x) x descritos na ilustração abaixo: 3 A escala no eixo x é igual a escala no eixo y. A escala no eixo x não é igual a escala no eixo y. Como essas retas têm coeficientes angulares que são recíprocos negativos, então elas são perpendiculares. Observe que na figura à direita, as retas não parecem ser perpendiculares porque as escalas nos eixos x e y são diferentes. Fica claro que o uso de escalas diferentes, no traçado de uma curva, pode nos dar uma idéia errada da curva em questão. Nos exemplos acima, conseguimos evitar esse erro, pois o traçado dessas curvas é bem conhecido. Assim, de modo geral, para confiarmos no gráfico produzido pelo programa gráfico é necessário observar se ele foi esboçado usando-se escalas iguais para os dois eixos coordenados ou não. Problemas Frequentes no Traçado de Gráficos Apresentamos aqui alguns exemplos de problemas que são freqüentes na elaboração de curvas utilizando uma ferramenta gráfica. 3 O primeiro exemplo representa o gráfico da função f(x) x 3x x 1. 4
5 Observe que, olhando para o gráfico você poderia deduzir que se trata de uma reta, o que não é verdade. Analisando a equação dada, notamos que se trata de um polinômio de grau 3 que não tem como representação gráfica uma reta. Segue daí a importância de se ter um conhecimento teórico prévio, para utilizarmos uma ferramenta gráfica de maneira adequada. A imagem correta da curva está descrita na ilustração abaixo. O segundo exemplo representa o gráfico da função f(x) x 3x x. Gráfico incorreto de f(x) Gráfico correto de f(x) Observe que, como o denominador da função é zero em x =, então o gráfico de f tem uma assíntota vertical em x = que não aparece no gráfico (à esquerda) feito pelo programa. Assim, quando usar uma ferramenta gráfica, tenha cuidado para interpretar corretamente o gráfico de uma função com uma assíntota vertical. O terceiro exemplo representa o gráfico da função f(x) x x 1 : x 1 5
6 Gráfico incorreto de f(x) Gráfico correto de f(x) Observe que para todos os valores de x diferentes de x = 1, o gráfico de f coincide com o gráfico x 1 da função g(x). Assim, o gráfico de f tem uma assíntota vertical em x = -1 que não aparece x 1 no gráfico (à esquerda) feito pelo programa. Além disso, a função não está definida para x = 1 e, portanto, o gráfico de f tem um ponto de descontinuidade em x = 1 que também não aparece no gráfico feito pelo programa. O quarto exemplo representa o gráfico da função 1 f(x) cos x. Quando você utiliza uma ferramenta gráfica para estudar o comportamento de uma função, próximo de um valor de x, nem sempre poderá confiar nas imagens produzidas por ela. Para determinar 1 lim cos x 0 x, a partir da imagem fornecida por uma ferramenta gráfica, provavelmente você poderá obter uma resposta incorreta uma vez que o gráfico tem infinitas oscilações em qualquer intervalo que contenha 0. 6
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma
Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.
O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
3. Limites e Continuidade
3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico
Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
Função Afim. Definição. Gráfico
Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função
Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi
Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10
Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6
CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9
www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula discutiremos como obter as equações das retas tangentes a uma curva planar que é o gráfico de uma função. 1. Introdução
REPRESENTAÇÕES PARAMÉTRICAS DE CURVAS PLANAS COM O WINPLOT
15 A 19 DE AGOSTO DE 016 REPRESENTAÇÕES PARAMÉTRICAS DE CURVAS PLANAS COM O WINPLOT Leandro Ferreira da Silva Acadêmico de Matemática da Universidade Estadual de Mato Grosso do Sul, Unidade de Nova Andradina.
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016
Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
AULA 7- LIMITES VERSÃO: OUTUBRO DE 2016
CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 7- LIMITES VERSÃO: 0.2 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: [email protected]
AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação
AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras
Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada
1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da
Cálculo Diferencial e Integral I CDI I
Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão [email protected] Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa
Exercícios de Cálculo - Prof. Ademir
Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..
( 5,2 ). Quantas soluções existem?
Escola Secundária com º ciclo D Dinis 0º Ano de Matemática A Funções e Gráficos Generalidades Funções polinomiais Função módulo Considere as funções da família y = a(x b) Tarefa nº De que tipo de funções
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva
Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.
Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Derivada : definições e exemplos
Derivada : definições e exemplos Retome-se o problema Dada uma curva y f ( x curva ( =, determinar em cada ponto x f ( x, a tangente à e analise-se este problema numa situação simples: Considere-se a parábola
Plano Cartesiano. Relação Binária
Plano Cartesiano O plano cartesiano ortogonal é constituído por dois eixos x e y perpendiculares entre si que se cruzam na origem. O eixo horizontal é o eixo das abscissas (eixo OX) e o eixo vertical é
Aula 21 Máximos e mínimos relativos.
Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior
Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear
Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo
Cálculo Diferencial - 2016.2 - Lista de Problemas 1.2 1 Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo Questão 01 O ponto P (2, 1) está sobre a curva y = 1/(1 x). (a) Se Q é o ponto (x, 1/(1
Universidade Federal de Juiz de Fora Departamento de Matemática
Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova
Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)
R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
SCS Sistemas de Controle / Servomecanismos. Aula 04 Diagrama do lugar geométrico das raízes
Aula 04 Diagrama do lugar geométrico das raízes Definição: O lugar das raízes de um sistema é um gráfico que representa a trajetória das raízes de sua equação característica pólos da função de transferência
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
Funções Reais a uma Variável Real
Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos
CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial
Noções Elementares Sobre Derivadas
Noções Elementares Sobre Derivadas da Silva, M.Ilsangela Departamento de Matemática Universidade Estadual Vale do Acaraú 7 de dezembro de 2007 [email protected] pré-prints do Curso de Matemática de
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
Derivadas 1
www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com
GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS
GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do
Aula 5 Limites infinitos. Assíntotas verticais.
MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto
Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.
Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar
MATEMÁTICA A - 11o Ano. Propostas de resolução
MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função
Material Teórico - Círculo Trigonométrico. Seno, cosseno e tangente. Primeiro Ano do Ensino Médio
Material Teórico - Círculo Trigonométrico Seno, o e tangente. rimeiro Ano do Ensino Médio Autor: rof. Fabrício Siqueira Benevides Revisor: rof. Antonio Caminha M. Neto 0 de outubro de 08 Seno, o e tangente
MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de
Cálculo diferencial de Funções de mais de uma variável
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade
Polinômios e Funções Racionais
Capítulo 7 Polinômios e Funções Racionais 7. Polinômios Ao iniciarmos nosso estudo sobre funções, consideramos o problema de construir uma caia sem tampa a partir de um pedaço quadrado de plástico maleável
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6
P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Tem-se, ( Assim,. Resposta: B 2. Considere-se a variável aleatória : «peso dos alunos do.º ano» ( e os
Operadores Diferenciais Aplicações Rebello 2014
Operadores Diferenciais Aplicações Rebello 2014 Os operadores diferenciais representam um conjunto de ferramentas indispensáveis na engenharia não só na parte de avaliar e classificar um campo vetorial
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P
