Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Tamanho: px
Começar a partir da página:

Download "Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I."

Transcrição

1 Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar uma função tal que ()=(), ou seja, desejamos fazer a operação inversa da derivada. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ()=(), para todo I. Exemplo: Encontre a antiderivada de ()=. Queremos encontrar uma função tal que sua derivada seja igual a - se ()= ã ()= =() () é primitiva de - se ()= + ã ()= =() () é primitiva de - se ()= + ã ()= =() () é primitiva de Na verdade, há uma infinidade de funções cuja derivada é. Assim, a antiderivada de ()= é uma família de funções que pode ser representada pela equação: ()= +, onde é uma constante Teorema Seja () uma antiderivada de num intervalo. Se () é outra antiderivada de, então: ()=()+, é Cálculo I - h 1

2 O processo de se determinar todas as antiderivadas de uma função é chamado antidiferenciação ou integração indefinida. Para indicar que a operação de integração deve ser executada sobre uma função, usamos a notação: () =()+ o que nos diz que a integral indefinida de () é a família de funções dada por ()+, onde ()=(). O sinal é chamado de sinal de integração, a função a ser integrada é chamada de integrando e a diferencial de,, lembra-nos que a operação é executada com respeito à variável independente. A constante é chamada de constante de integração. Uma vez que integração indefinida e diferenciação são processos inversos tem-se: () =(). Tabela de Algumas Integrais Indefinidas () =() Usando a propriedade das funções inversas integração indefinida e diferenciação, podemos, a partir de qualquer fórmula de derivada conhecida, obter uma fórmula correspondente de integral indefinida a qual chamamos de integral imediata. () () () =()+ 1 =+ com 1 ln() com >0 1 = +1 + = ln() + = + () () () =()+ () () () = ()+ () () () =()+ ln( ) 1 1 =ln( )+ 0 Cálculo I - h

3 Exemplos: 1) = 5+1 = 6 + ) = = 5 +1 ) () = () ln() + / 7/ = 7 / + 4) 1 = = += +. Principais Propriedades das Integrais Indefinidas 1). ()=.() = ) ()± () = () ± () Exemplos: 1) (5 +cos()) =5 + cos() =5 + cos() = (()+ )= = ()+ 5 + = = ()+ = ()+ =5 + ) =(8 ) = = 8 6 / + = = = = 4 / 1 + (8 6 + )= 4 / 1 + Cálculo I - h

4 ) ( 1) = +1 = + 1 = = + 1 = + = = + ( 1) + = Técnicas de Integração: Método da Substituição Seja uma função composta na forma () e primitiva de, ou seja, =. Uma vez que antiderivação e diferenciação são processos inversos tem-se: () =()+ Utilizando a regra da cadeia para derivar a função composta tem-se: () = (). () = ()+ Como é uma primitiva de tem-se que ()=(), então: () =(). ()=()+ Método da Substituição, =, ã (()). () =()+ çã: =() = () () =()+ Diretrizes para o método da substituição: 1) Decidir por uma substituição favorável =(). ) Calcular a diferencial = (). ) Transformar o integrando apenas em função de. 4) Calcular a antiderivada envolvendo. 5) Substituir por () na antiderivada. O resultado deve conter apenas a variável. Cálculo I - h 4

5 Exemplos: Calcular as integrais indefinidas indicadas abaixo: 1)() = = = () = 1 () = 1 cos()+= 1 cos()+ ) =4 =4 = 4 4 =1 4 = = ln() 4 ln() + ) +4 =+4 = = =1 / = 1 4) ( ) = = = ( ) =cos() = 1 cos() = = 1 ()+=1 ( )+ = 9 += 9 (+4) + 5). = = = () = () = ()+= + Cálculo I - h 5

6 6) 7+ 1 = 7+ = = 1 = = = ) = =( ) = 1 =ln( )+=ln( )+ 8) () = cos() () cos() =() =cos() = cos () cos () =1 =ln( )+=ln( () )+ 9)cos( )( ) =( ) =cos( )( ) = cos( )( ) = = += = + 10) +5 1 = 1 = = = 1 = =++15 =+17 9 = = = = = 9 ( 1) Cálculo I - h 6

7 5. Técnicas de Integração: Integração por Partes Se () e () são funções diferenciáveis, então pela regra do produto: Integrando ambos os lados: ().() = ().()+ (). () () () = () ()+ () () () ()= () ()+ () () () () =() () () () Integração por Partes =() =() ã çõ á, ã () () =() () () () =() = () =() = () =. Esta fórmula expressa a integral em função de outra integral,. Escolhendo adequadamente e pode ser mais fácil calcular a ª integral do que a 1ª integral. Quando escolhemos as substituições para e para, em geral pretendemos que seja o fator do integrando mais complicado que se sabia integrar. Exemplos: Calcule as integrais indicadas 1) () = = =() = () = cos() = () =.() () =.()+() = = cos()+()+ Cálculo I - h 7

8 ).5 = = =5 = 5 = 5 ln(5) = 5.5 =. ln(5) 5 ln(5) =. 5 ln(5) 1 ln(5).5 = 5. ln(5) 1 ln(5). 5 ln(5) += 5 ln(5) 1 (.(5) 1) ln(5) +=5 ln + (5) ). = = = = = = =1 = ( )= = = = = 4 += ( )+ 4) (4) = = =(4) =(4) = cos(4) 4 =4 =4 () cos () cos (4) = = = (4)= 1 4 cos(4) cos(4) = cos(4)+1 cos (4) 4 mas =4 =4 () (4) cos() = = 4 4 (4)= 1 cos(4)+(4) Cálculo I - h 8

9 5) ln() =ln() = 1 = = = ln()= ln().1 = = ln() = ln() 4 + 6) ( ) () =() = = =() =()/ ( )()=( ) () = = () = () () = =( ) () () =( ) () cos() += =( ).()+ cos() + 7)() = =() =cos() = = () =() cos () = =() cos () = sen() = = () =() cos() ( sen() () = (() cos()) () = (() cos())+ Cálculo I - h 9

10 6. Integral Definida Seja uma função contínua definida no intervalo,. Dividindo este intervalo em subintervalos de comprimentos iguais, a área da região sob o gráfico da função pode ser aproximada como sendo o somatório da área dos retângulos de comprimento e altura, assim: Esta aproximação será tanto melhor quanto maior for o número de subdivisões do intervalo. Define-se a Integral Definida de de para como sendo: lim A integral definida é um número e não uma função. 0 ã 0 á 0 ã 0 á Assim, a integral definida é a área líquida, ou seja, é a diferença entre as áreas das regiões limitadas pela curva do gráfico da função que se encontram acima e abaixo do eixo. y y=f (x) a c d b x Propriedade: Cálculo I - h 10

11 Teorema Fundamental do Cálculo Parte 1 ç,,ã çã () r ()= (), é á (,) ()=() Exemplo: Teorema Fundamental do Cálculo Parte çã,, é, =,ã: () =() = () () Normalmente utiliza-se a simbologia () =() () Exemplos: Calcule as integrais definidas indicadas: 1 A função é contínua em [1,. Calculando a antiderivada de () e considerando a constante de integração nula, tem-se: ()= = ( =0) Então, pelo teorema fundamental do cálculo, tem-se: = () 1 = 1 = = 17,69 ) = ln( 6 ln(6) ln()=ln6 = ln() Cálculo I - h 11

12 = = = ) ( ) Calculando a integral indefinida e fazendo a constante de integração nula tem-se: = = = (.) = = = Então (.) = = = ) =( 5) ( )() Calculando a integral indefinida e fazendo a constante de integração nula tem-se: = = =() = cos () ( )() = ( ).( cos()) ( cos()).( )= Então, = ( )cos() cos () = ( )cos() ()= = cos()+() ()=() ( )() = ( )()= cos()+() () = = cos()+cos() () cos(0)+0cos(0) (0)= =( 0) ( +0 0)= +=6 Cálculo I - h 1

13 7. Aplicações da Integral Definida: Áreas entre Curvas Vimos que a integral definida representa geometricamente a diferença entre as áreas das regiões limitadas pela curva do gráfico da função que se encontram acima e abaixo do eixo Região Limitada pela Curva e o Eixo x Seja uma função contínua no intervalo [, cujo gráfico encontra-se acima do eixo em [,, isto é, 0 para todo [,. Então, a área () da região que se encontra abaixo da curva do gráfico da função e acima do eixo, limitada lateralmente pelas retas e, é: Seja uma função contínua no intervalo [, cujo gráfico encontra-se abaixo do eixo em [,, isto é, 0 para todo [,. Então, a área () da região que se encontra abaixo do eixo e acima do gráfico da função, limitada lateralmente pelas retas e, é: Exemplos: Encontre a área da região limitada pelo o gráfico da função e o eixo, no intervalo indicado: 1 0,1 Gráfico acima do eixo em 0, 1 á cos 0, Gráfico acima do eixo em 0, á cos sen / 0 sen/ sen (unidade de área) Cálculo I - h 1

14 1 1,1 Gráfico acima do eixo em 1, 1 á , 4 Gráfico abaixo do eixo em 1, 4 á á ,5 9 4, , Gráfico acima do eixo em 1, á á á? - Devemos notar que o cálculo está errado, pois 0 em todo o seu domínio, portanto a integral deveria ser positiva. - O erro acontece porque o Teorema Fundamental do Cálculo aplica-se somente em funções contínuas no intervalo de integração,, logo ele não poderia ser aplicado aqui pois a função é descontínua em 1, pois 0. Cálculo I - h 14

15 7.. Região Limitada por Curvas Os conceitos de Integral Definida podem ser utilizados para a determinação da área de qualquer região plana limitada e fechada. Sejam e funções contínuas no intervalo [, e para todo [,. Então, a área da região limitada superiormente pela curva, inferiormente pela curva ), à direita pela reta e à esquerda pela reta é: Exemplos: 1 Encontre a área da região limitada superiormente por, inferiormente por e lateralmente por 1 e. Inicialmente temos que visualizar a região que se deseja calcular a área fazendo os esboços dos gráficos das funções envolvidas. Observando que em 1,, a área procurada é: Cálculo I - h 15

16 Encontre a área da região limitada pelo gráfico de e 8. De acordo com os esboços dos gráficos, observa-se que a região desejada situa-se abaixo da curva 8 e acima da curva e está limitada lateralmente pelos pontos de interseção entre elas. Assim, os limites de integração são as abscissas destes pontos. As abscissas dos pontos de interseção são obtidas igualando as equações e 8 e resolvendo a equação resultante em relação a Em 0 tem-se 0 e em tem-se 4, portanto os pontos de interseção são 0,0 e,4. A área da região é: Determinar a área da região limitada pelas curvas e 8. Observa-se no esboço traçado que a curva 8 encontra-se acima da curva. Os limites de integração são as abscissas dos pontos de interseção das curvas. Igualando as equações: 8 8 A área da região é: Cálculo I - h 16

17 4 Encontre a área da região limitada pelas curvas e. Limites de integração: Precisamos determinar as abscissas dos pontos de interseção entre as curvas o que pode ser calculado igualando as duas equações Resolvendo a equação Os pontos de interseção são: 1,, 0,0,4. Traçando o gráfico das funções, podemos observar que no intervalo 1, há duas regiões distintas limitas pelas curvas e. No intervalo 1, 0 a curva está acima da curva. A área entre as curvas é: No intervalo 0, a curva está acima da curva. A área entre as curvas é: A área desejada é a soma das áreas das duas regiões. 7.. á Cálculo I - h 17

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Capítulo 4 - Derivadas

Capítulo 4 - Derivadas Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação

Leia mais

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli INTEGRAL DEFINIDA APLICAÇÕES Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli Variação Total Em certas aplicações práticas, conhecemos a taxa de variação Q (x) de uma grandeza Q(x) e estamos

Leia mais

Aula 12 Introdução ao Cálculo Integral

Aula 12 Introdução ao Cálculo Integral Aula 12 Introdução ao Cálculo Integral Objetivos da Aula Contextualizar o cálculo integral, dando ênfase em sua definição como sendo a operação inversa da diferenciação e estudar algumas propriedades fundamentais.

Leia mais

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG.

GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Discente CPF Turma A2 Sala

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

12. Diferenciação Logarítmica

12. Diferenciação Logarítmica 2. Diferenciação Logarítmica A diferenciação logarítmica é uma técnica útil para diferenciar funções compostas de potências, produtos e quocientes de funções. Esta técnica consiste em executar os seguintes

Leia mais

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x Integral definida Cálculo de área Teorema Fundamental do cálculo A integral definida origina-se do problema para determinação de áreas. Historicamente, como descrito na anteriormente, constitui-se no método

Leia mais

Volumes de Sólidos de Revolução

Volumes de Sólidos de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia)

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia) 8. Derivada da Função Composta (Regra da Cadeia) Regra da Cadeia (primeira notação): Se e são funções diferenciáveis e = é a função composta definida por )=), então é diferenciável e é dada por )=) = ).

Leia mais

Substituição Simples.

Substituição Simples. MÓDULO - AULA 17 Aula 17 Técnicas de Integração Substituição Simples. Objetivo Mostrar como usar a técnica de integração chamada substituição simples. Motivação - O Teorema Fundamental, mais uma vez...

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Capítulo 19. Fórmulas de Integração Numérica

Capítulo 19. Fórmulas de Integração Numérica Capítulo 19 Fórmulas de Integração Numérica Você tem um problema Lembre-se que a velocidade de um saltador de bungee jumping em queda livre como uma função do tempo pode ser calculada como: v t gm gc.

Leia mais

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes.

Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Integração numérica: Fórmulas de Newton-Cotes. Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 5- Integração numérica: Fórmulas de Newton-Cotes. Objetivo: Apresentar o método de integração numérica baseado nas fórmulas

Leia mais

Dividir para conquistar. Eduardo Nobre Lages CTEC/UFAL

Dividir para conquistar. Eduardo Nobre Lages CTEC/UFAL Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Professor:

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Integral definida. Prof Luis Carlos Fabricação 2º sem

Integral definida. Prof Luis Carlos Fabricação 2º sem Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 12o Ano 2008-1 a Fase Proposta de resolução GRUPO I 1. Como se pretende ordenar 5 elementos amigos) em 5 posições lugares), existem 5 A 5 = P 5 = 5! casos possíveis. Como

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

Integração Usando Tabelas e Sistemas Algébricos Computacionais

Integração Usando Tabelas e Sistemas Algébricos Computacionais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração Usando

Leia mais

AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas

AT4-1 - Unidade 4. Integrais 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação. 1 Versão com 14 páginas AT4-1 - Unidade 4 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 14 páginas 1 / 14 Tópicos de AT4-1 1 2 / 14 Tópicos de AT4-1 1 3 / 14 Relação entre funções

Leia mais

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES.

Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 06/11/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. Universidade Federal do Espírito Santo Terceira Prova de Cálculo I Data: 6// Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :. (3 pontos) Calcule as integrais inde nidas (i) + d (ii) +

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

Resolvendo Integrais pelo Método de

Resolvendo Integrais pelo Método de Capítulo Resolvendo Integrais pelo Método de Substituição. Métodos da substituição em integrais indefinidas O teorema fundamental do cálculo permite que se resolva rapidamente a integral b a f(x) dx, desde

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Do ponto de vista analítico existem diversas regras, que podem ser utilizadas na prática. Porém, técnicas de integração

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: Curso Superior de Tecnologia em Sistemas de Telecomunicações Nome da disciplina: Cálculo Diferencial e Integral I Código: TEL015 Carga horária: 83 horas

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas

Leia mais

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é Revisão Determinação de uma tangente para o gráfico de uma função f '( x 0) = O coeficiente angular da reta tangente em P é Taxas de variação: derivada em um ponto A expressão abaixo é chamada de quociente

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

Apostila Cálculo Diferencial e Integral I: Integral

Apostila Cálculo Diferencial e Integral I: Integral Apostila Cálculo Diferencial e Integral I: Integral Apostila Cálculo Diferencial e Integral I: Integral Sumário 1 Integral 5 1.1 Antidiferenciação......................... 5 1.1.1 Exercícios.........................

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Matemática Disciplina: Cálculo Diferencial e Integral

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição

Integrais. Parte I I. Integrais Indefinidos [ELL] Definição Parte I I. Indefinidos [ELL] A taxa de crescimento da população Estafilococos é dada por 21, em milhares de indivíduos por minuto, onde representa o tempo, em minutos. Qual a função que devolve o número

Leia mais

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP)

MAT Aula 21/ Segunda 26/05/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 21/ Segunda 26/05/2014 Sylvain Bonnot (IME-USP) 2014 1 Teorema fundamental do cálculo Teorema (Teorema fundamental do cálculo, parte 1) Se f for contínua em [a, b] então a função g definida

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I 2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO f ( xdx ) a Na definição de integral definida, trabalhamos com uma função f definida em um intervalo limitado [a, b] e supomos que f não tem uma

Leia mais

CÁLCULO INTEGRAL DIFERENCIAL

CÁLCULO INTEGRAL DIFERENCIAL 1 CÁLCULO INTEGRAL Antes de iniciarmos o estudo do Cálculo Integral, vamos definir e calcular Diferencial, pois, para aplicar as regras de integração, precisaremos do conceito e da aplicação de Diferencial.

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para

Leia mais

Oscilações Exercícios

Oscilações Exercícios Fuja do Nabo: Física II P2 2014 Rogério Motisuki Oscilações Exercícios a) A velocidade será nula quando a inclinação da reta tangente for horizontal, pois = Do gráfico, esse ponto é o = 3. b) Para acharmos

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Prof. Alex Bernardi Cálculo Diferencial e Integral II Aula 2 1 Sólidos de Revolução 2 Integração por partes 3 Coordenadas Polares 4 Atividades 23/02/2017 1 Sólidos de Revolução Considere uma função positiva

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Integração Numérica. = F(b) F(a)

Integração Numérica. = F(b) F(a) Integração Numérica Do ponto de vista analítico, existem diversas regras que podem ser utilizadas na prática. Contudo, embora tenhamos resultados básicos e importantes para as técnicas de integração analítica,

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 1 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Integral de funções de uma variável

Integral de funções de uma variável Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em. Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Diferenciação Numérica Diogo Pineiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenaria de Computação e Automação ttp://www.dca.ufrn.br/ diogo

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA ME Nome Legível RG CPF Respostas sem justificativas

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x).

Como, neste caso, temos f(x) = 1, obviamente a primitiva é F(x) = x, pois F (x) = x = 1 = f(x). 4. INTEGRAIS 4.1 INTEGRAL INDEFINIDA A integral indefinida da função f(x), denotada por f x dx, é toda expressão da forma F(x) + C, em que F (x) = f(x) num dado intervalo [a,b] e C é uma constante arbitrária.

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Geometria Analítica I

Geometria Analítica I Geom. Analítica I Respostas do Módulo I - Aula 15 1 Geometria Analítica I 17/03/2011 Respostas dos Exercícios do Módulo I - Aula 15 Aula 15 1. Este exercício se resume a escrever a equação em uma das formas

Leia mais

Integração por Partes

Integração por Partes UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 010 - Época especial Proposta de resolução GRUPO I 1. O grupo dos 3 livros de Matemática pode ser arrumado de 3 A 3 = P 3 = 3! formas diferentes. Como a prateleira

Leia mais

Métodos Matemáticos I. Primitivas. Nos capítulos anteriores interessámos-nos por problemas do tipo:dada uma função, determinar a sua derivada.

Métodos Matemáticos I. Primitivas. Nos capítulos anteriores interessámos-nos por problemas do tipo:dada uma função, determinar a sua derivada. Métodos Matemáticos I Capítulo 3 Primitivas 2006/2007 Nos capítulos anteriores interessámos-nos por problemas do tipo:dada uma função, determinar a sua derivada. Ao longo deste capítulo daremos ênfase

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

dt dt dt F dp d mv m dv ma

dt dt dt F dp d mv m dv ma Texto complementar n o 5 I. A Segunda Lei de Newton Imagine a seguinte situação: você em um carro que está percorrendo a marginal do rio Pinheiros. Em determinados momentos a velocidade do carro aumenta,

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais