Oscilações Exercícios
|
|
|
- Artur di Azevedo Rijo
- 8 Há anos
- Visualizações:
Transcrição
1 Fuja do Nabo: Física II P Rogério Motisuki Oscilações Exercícios a) A velocidade será nula quando a inclinação da reta tangente for horizontal, pois = Do gráfico, esse ponto é o = 3. b) Para acharmos os parâmetros da equação, precisamos substituir pontos do gráfico. 1: = 0 = 0,5 0,5 = +0 = 0,5 2: = 1 = 0 0 = 0,5+ 0 = 0,5+ = 0,5 c) Continuando o raciocínio do item b, procuramos outro ponto para substituir: 3: = 4 = 0,2 0,2= 0,5 0,5 4 = 0,2 1,5 = = ln $ Portanto % = = 1&'/ Além disso, sabemos que é um amortecimento crítico portanto: ) & = * = 2 = 0,5 $ & = * = 0,25 +/ d) Para acharmos a velocidade, basta derivar a equação horária e substituir = 0: =,, = 2 ++ = =,/ 0,75+0,25 0 = 0,75/
2 a) Do gráfico, 1 = 6 b) Atenção: não é um gráfico de posição. A aceleração é dada por = * 3cos* + 7 Portanto, o valor máximo do gráfico é igual a * 3, onde * = 8 9 = 8 : : 10 = * 3 3 = ;² = 90 ;² > c) Já temos a amplitude e a frequência, só precisamos achar a fase inicial. Como o gráfico que temos é de aceleração, precisamos substituir pontos na expressão certa para achar a fase. 1: = 0 = 5 5 = 10cos7 cos7 = = 2; 3?@ 4; 3 Para decidir entre essas duas fases, temos duas alternativas: substituir um segundo ponto do gráfico, ou analisar a tendência do gráfico. Analisamos quando = 0 e obtivemos duas possibilidades. Olhando no gráfico vemos que o gráfico atinge um ponto de máximo logo após = 0, portanto a fase inicial precisa ser 8 :. Se a fase inicial fosse A8, o gráfico atingiria um ponto de zero em vez de um ponto de máximo. : Logo: = 3cos* +7 = B 8² cosc8 : + 8 : D > d) Derivando e substituindo: = * 3sen* + 7 = : 8 FC8 : D = : : 8 >/ e) É mais fácil calcular a energia potencial máxima do sistema, quando a posição atinge a amplitude, a energia cinética será zero, portanto: Precisamos ainda achar a constante da mola: H I J = * = 8 : & = * = 8² Logo K = IL² = $ 8² : C,B 8² D =,M 8² N :
3 a) Para achar equações diferenciais, precisamos usar o torque ou a força. Como é um problema angular, é muito mais fácil usar o torque. Definindo como positivo o sentido antihorário, o torque exercido pela força peso na barra é: O = P'.- R 3 FS. O momento de inércia em torno daquele ponto O, é dado pelo teorema dos eixos paralelos: T U = T VW +P,² = PR² 12 +P-R 3.² = 7 36 PR² Portanto, temos: O = TX P' R 3 FS = 7 36 PR, S,, S, = 12' 7R b) A partir da equação achada no item a, segue que: * ² = 12' 7R * = ) 12' 7R Portanto: 1 Y = 8 Z [ = 2;H M\ $] c) A solução é da forma: S = 3cos* +7 FS 12' 7R S Temos duas informações para substituir e achar os outros parâmetros o ângulo inicial é S e a velocidade inicial é nula. S ^ = 3>? 7 ^3>? 7 = S ^3 = S 0 = * 3 F7 F7 = 0 7 = 0 S = S cos_) 12' 7R `
4 d) A pergunta é esquisita, pois como não há atrito, a energia mecânica é constante para qualquer ângulo. É mais fácil calcular a energia mecânica quando ou a cinética, ou a potencial for zero. Neste caso, como não temos informações de velocidade sem precisar calcular, o mais simples é calcular a energia potencial no ponto de amplitude máxima: Nesse ponto, a energia potencial gravitacional é: K = P'h, onde h é a distância vertical do centro de massa até a altura de referência. A referência é tomada de forma que a mínima energia gravitacional durante o movimento seja 0. Ou seja, a altura de referência é a mínima atingida pelo centro de massa, quando o ângulo é 0. Quando o ângulo for a amplitude, S, a altura h será: h = R 3 -R 3 coss.= R 3 1 coss Para ângulos pequenos, cos = 1 ², portanto: h R 3 b1 1+S 2 c = R 6 S ² Assim, a energia mecânica da oscilação é: K = 1 6 P'RS ² e) Basta usar o mesmo raciocínio utilizado no item b, porém trocando o momento de inércia e o torque. O torque agora é: O = P'.- R 2 FS. Usando o teorema dos eixos paralelos: T d = T VW +P,² = PR² 12 +P-R PR².² = 2 3 Logo, temos: O = TX P' R 2 FS = 1, S 3 PR,, S, = 3' 2R FS 3' 2R S Assim, da equação diferencial tiramos: * ² = :] * \ = H :] \ Portanto: 1 d = 8 Z [ = 2;H \ :] Usando o resultado do item b, calculamos a razão: 1 d 1 Y = 2;H 2R 3' 2;H 7R 12' = ) = ) 8 7
5 O que é mais importante: Achar a equação diferencial Use seus conhecimentos de mecânica para marcar forças no desenho. Agora decida entre usar torque resultante ou força resultante: Se você quiser achar: ângulo S f O = TX posição f g = P Identificar qual solução usar 4 possibilidades: MHS: Amortecimento subcrítico * > : = 3cos* +7 = 3 cos*+7?f, * = )* 4 Amortecimento crítico * = : Amortecimento supercrítico * < : = 3+i = k3 l +i l m?f, n = ) Achar os outros parâmetros da equação 4 * Para achar 3,i 7 é possível somente com informações do enunciado ou de um gráfico, substituindo nas equações e resolvendo. Para achar * pode ser necessário usar informações de um gráfico também, mas há a possibilidade de serem obtidas através da montagem da equação diferencial. Essa montagem nem sempre é necessária, visto que: * : Frequência angular que o sistema oscilaria caso não tivesse atrito (caso MHS). = p,?f,% é? >?rs>sf, g = % J Calcular a energia da oscilação Numa oscilação: K = K tuv +K wy Geralmente é mais fácil calcular a energia total num ponto onde uma delas é zero, e na maioria dos casos é mais fácil quando é a cinética que é zero. Lembre que a energia cinética é nula nos pontos de amplitude. Calcular outras grandezas do problema físico Período T e frequência f: 1 = $ x = 8 Z
Fuja do Nabo: Física II P Rogério Motisuki Ondulatória Exercícios
Fuja do Nabo: Física II P1 014 Rogério Motisuki Ondulatória Exercícios P 01) a) Basta observar o gráfico e visualmente perceber que há dois comprimentos de onda em 1m, ou seja: λ = 0,5m Fazendo o mesmo
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).
FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s
Questão Valor Grau Revisão
PUC-RIO CB-CTC G1 DE FIS 1033 Nome: GABARITO Turma: Matrícula: Questão Valor Grau Revisão 1ª 3,0 2ª 4,0 3ª 3,0 TOTAL Identidades trigonométricas: sen (2 ) = 2 sen ( ) cos ( ) As respostas sem justificativa
1. Movimento Harmônico Simples
Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.
Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar
Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.
Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula
Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre
Física I P3 Exercícios
Fuja do Nabo Rogério Motisuki Física I P3 Exercícios P3 011) a) Como são corpos pontuais, basta somar o produto, onde é a distância até o eixo de rotação: b) 4 3 4 5 8 A única força agindo sobre o haltere
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
Física para Engenharia II - Prova P a (cm/s 2 ) -10
4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
1. Calcule o trabalho realizado pelas forças representadas nas figuras 1 e 2 (65 J; 56 J). F(N)
ÍSICA BÁSICA I - LISTA 3 1. Calcule o trabalho realizado pelas forças representadas nas figuras 1 e 2 (65 J; 56 J). () () 10 8 x() 0 5 10 15 ig. 1. roblea 1. 2 6 10 ig. 2. roblea 1. x() 2. U bloco de assa
CINEMÁTICA E DINÂMICA
PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)
Departamento de Física - ICE/UFJF Laboratório de Física II
1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
Física I Prova 3 19/03/2016
Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:
AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui
Apresentação Outras Coordenadas... 39
Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.
Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência
Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular
Universidade Federal do Rio de Janeiro Instituto de Física Oficinas de Física 2015/1 Gabarito Oficina 8 Dinâmica Angular 1) (a) A energia mecânica conserva-se pois num rolamento sem deslizamento a força
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
Física I Prova 3 7/06/2014
Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12
FEP Física para Engenharia II. Prova P1 - Gabarito
FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso
Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química
Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros
Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais
Exemplos de aplicação das leis de Newton e Conservação da Energia
Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este
Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.
Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial
Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 07/01/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 07/01/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
PROGRAD / COSEAC Padrão de Respostas Física Grupo 04
1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração
Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):
Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova
Física I Prova 2 25/10/2014
Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Mecânica Básica Resumo Teórico
Fuja do Nabo: Física I P 014 Rogério Motisuki Mecânica Básica Resumo Teórico Conceitos principais: Força Potencial Energia Momento Força () Força conservativa Uma força é conservativa se o trabalho que
Um exemplo de Oscilador harmônico é o pêndulo simples, que realiza movimento harmônico simples.
Oscilações INTRODUÇÃO Neste material vamos aprender mais sobre oscilações, envolvendo osciladores harmônicos, energia e movimento, pêndulos, movimento harmônico amortecido,oscilações forçadas e ressonância.
Resumo e Lista de Exercícios. Física II Fuja do Nabo P
Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante
Física I Prova 2 25/10/2014
Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte - PF de Física I - 017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [,7 ponto] Dois corpos de massas m 1 = m e m = m se deslocam em uma mesa horizontal sem atrito. Inicialmente possuem velocidades de
EUF. Exame Unificado
EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas
Em primeiro lugar devemos converter a massa do corpo dada em gramas (g) para quilogramas (kg) usado no Sistema Internacional (S.I.
Um corpo de massa 100 g é abandonado no ponto sobre uma superfície cilíndrica, com abertura de 150 o, sem atrito, cujo o eixo é horizontal e normal ao plano da figura em O. Os pontos e O estão sobre o
CURSO de FÍSICA - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 8 e 1 o semestre letivo de 9 CURSO de FÍSICA - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém: PROVA DE REDAÇÃO enunciada
Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura:
Parte - P3 de Física I - 018-1 NOME: DRE Gabarito Teste 1 Assinatura: Questão 1 - [,7 pontos] Uma barra de comprimento L e massa M pode girar livremente, sob a ação da gravidade, em torno de um eixo que
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola
Solução Comentada da Prova de Física
Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO
Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física
SOLUÇÃO COMECE DO BÁSICO
SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [C] Dados: m = 00 kg; g = 10 m/s ; sen θ = 0,6 e cos θ = 0,8. Como o movimento é retilíneo e uniforme, pelo Princípio da Inércia (1ª lei de Newton), a resultante das
RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO Porto Alegre, 09 de Abril de 2015. Nome: Vítor
UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS
UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física
Experimento 3 Rolamento
Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere
Física I Prova 1 09/01/2016
Nota Física I Prova 1 09/01/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
Lista 14: Oscilações. Questões
Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução
LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156
1. (Uerj 01) Uma pessoa empurrou um carro por uma distância de 6 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa a variação da intensidade de
Aula 07. ASSUNTOS: Gravitação; Movimento em um campo gravitacional uniforme; Movimento periódico; MHS; Sistema massa mola
ASSUNTOS: Gravitação; Movimento em um campo gravitacional uniforme; Movimento periódico; MHS; Sistema massa mola 1. (UFC - 007) Uma partícula de massa m move-se sobre o eixo x, de modo que as equações
Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1
Coeficiente angular MA092 Geometria plana e analítica. e perpendiculares Resultado Uma reta não vertical, y = mx + q, tem coeficiente angular m dado pela tangente do ângulo α medido no sentido anti-horário
MATEMÁTICA 1ª QUESTÃO. O domínio da função real = 2ª QUESTÃO. O valor de lim +3 1 é C) 2/3 D) 1 E) 4/3 3ª QUESTÃO B) 3 4ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O domínio da função real = 9 é A) R B) R 3
Física para Zootecnia
Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição
Física I Prova 1 25/04/2015
Nota Física I Prova 1 25/04/2015 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
12. o ano - Física
12. o ano - Física - 2002 Ponto 115-2. a chamada I Versão 1 Versão 2 1. (B) (D) 2. (C) (C) 3. (A) (B) 4. (B) (A) 5 (A) (E) 6. (B) (C) II 1. 1.1 Figura 1: Legenda: N - reacção normal (força aplicada pela
ADL Sistemas de Segunda Ordem Subamortecidos
ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)
Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,0 ponto) PROAC / COSEAC - Gabarito. Engenharia de Produção e Mecânica Volta Redonda
Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Calcule a derivada segunda d dx x ( e cos x) 1 ( ) d e x cosx = e x cos x e x sen x dx d dx ( x x ) e cos x e senx = 4e x cos x + e x sen x +
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
Física 1. Rotação e Corpo Rígido Resumo P3
Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
Lista de Exercícios - OSCILAÇÕES
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração
Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.
MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário
FÍSICA MÓDULO 10 TRABALHO ENERGIA POTÊNCIA. Professor Ricardo Fagundes
FÍSICA Professor Ricardo Fagundes MÓDULO 10 TRABALHO ENERGIA POTÊNCIA Quando um agente externo realiza uma força sobre um sistema fazendo com que a velocidade do sistema sofra variações, dizemos que esse
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Física I. Dinâmica de Corpos Rígidos Lista de Exercícios
Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação
