Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Tamanho: px
Começar a partir da página:

Download "Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS"

Transcrição

1 Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante para calcular o volume de um sólido e, no processo, chegar à definição de integral dupla. Considere uma função f de duas variáveis definida em um retângulo fechado [a,b] [c,d] {(,) I a < < b, c < < d } d c a b e vamos, inicialmente, supor f(,) >. O gráfico de f é a superfície de equação z f(,). z S seja, Seja S o sólido que está contido na região acima de e abaio do gráfico de S, ou S {(,,z) I (,), < z < f(,)} Nosso objetivo é determinar o volume de S.

2 O primeiro passo consiste em dividir o retângulo em sub-retângulos. Faremos isso dividindo o intervalo [a,b] em m subintervalos [ i-, i ], de mesmo comprimento (b a) / m, e o intervalo [c,d] em n subintervalos [ j-, j ], de mesmo comprimento (b a) / n. traçando retas paralelas aos eios coordenados passando pelos etremos dos subintervalos, formamos os sub-retângulos. [ i-, i ] [ j-, j ] {(,) i- < < i, j- < < j } cada um dos quais com área A. d j j- (, ) c a i- i b Se escolhermos um ponto arbitrário (, ) em cada, podemos aproimar a parte de S que está acima de cada por uma caia retangular fina (ou um prisma) com base e altura f(, ). O volume desta caia é dado pela sua altura vezes a área do retângulo da base: V f(, ) A. Se seguirmos com esse procedimento para todos os retângulos e somarmos os volumes das caias correspondentes, obteremos uma aproimação do volume total de S: V n i m j f (, ) A Essa dupla soma significa que, para cada sub-retângulo, calculamos o valor de f no ponto amostra escolhido, multiplicamos esse valor pela área do sub-retângulo e, então, adicionamos os resultados.

3 z f (, ) S V (, ) Nossa intuição diz que a aproimação V n i m j f ( aumentamos os valores de m e de n e, portanto, devemos esperar que: V n m,n i m lim f (, ) A. j, ) A melhora quando Usamos essa epressão para definir o volume do sólido S que corresponde à região que está acima do retângulo e abaio do gráfico de f. Mesmo f não sendo uma função positiva, podemos dar a seguinte definição: A integral dupla de f sobre o retângulo é f (, )da lim n m,n i m j f ( se esse limite eistir., ) A Pode ser provado que o limite eiste sempre que f for uma função contínua. Além disso, se f(,) >, então o volume do sólido que está acima do retângulo e abaio da superfície z f(.) é V f (, )da.

4 A soma n i m j f (, aproimação do valor da integral dupla. ) A é chamada soma dupla de iemann e é usada como Eemplo : O volume do sólido que está acima do quadrado [,] [,] e abaio do parabolóide elíptico z pode ser aproimado pela subdivisão de em quatro quadrados iguais e a escolha do ponto amostra como o canto superior de cada quadrado. (,) (,) (,) (,) Solução: Os quadrados estão ilustrados na figura acima e a área de cada um vale. O parabolóide é o gráfico de f(,). Aproimando o volume pela soma de iemann com m n, temos: V i j f (, ) A f(,) A f(,) A f(,) A f(,) A () 7() () () Esse é o volume das caias aproimadoras, como mostra a figura abaio:

5 Obtemos melhor aproimação do volume quando aumentamos o número de quadrados. A figura abaio mostra como as figuras começam a parecer mais com o sólido verdadeiro e as aproimações correspondentes vão se tornando mais precisas quando usamos, e 5 quadrados. INTEGAIS ITEAAS Se f for contínua no retângulo { (,) a < < b, c < < d }, então calculamos a integral dupla de f em através de integrais iteradas, como mostrado abaio: f (, )da b a d c f (, )d d d c b a f (, )d d Este resultado, conhecido como Teorema de Fubini, vale sempre que f for limitada em, podendo ser descontínua em um número finito de pontos de.

6 Eemplo : Calcule o valor da integral da, onde [,] [,] Solução: da d d d d ou da 7, 5 d d d 7 d d 9 7 ( ),5 9 9 d O valor obtido é o volume do sólido acima de e abaio do gráfico da função f(,) (Veja figura ao lado)

7 Eemplo : Calcule sen()da, onde [,] [,π]. Solução: π sen()da ( cos cos )d sen π π sen π sen()dd sen sen sen π [ cos ] sen π d Obs.: ) Se mudarmos a ordem de integração, invertendo as integrais iteradas, a resolução das mesmas irá requerer a aplicação de técnicas de integração, tornando o trabalho mais demorado. Portanto é importante observar o tipo de função que iremos integrar e fazer uma boa escolha da ordem de integração. ) O valor obtido nesta integral representa a diferença do volume da parte do sólido que está acima do retângulo e do volume da parte do sólido que está abaio de. Como o resultado foi zero, estes volumes são iguais.

8 Eemplo : etermine o volume do sólido S que é delimitado pelo parabolóide elíptico z, os planos e e os três planos coordenados. Solução: Observemos, primeiro, que S é o sólido que está abaio da superfície z e acima do retângulo [,] [,], como mostra a figura. Vamos calcular o volume deste sólido usando integral dupla: V da ( ) ( ) 8 88 d 88 d dd d INTEGAIS UPLAS EM EGIÕES GENÉICAS Para integrais simples, a região sobre a qual integramos é sempre um intervalo. Mas, para integrais duplas, queremos ser capazes de integrar a função f, não somente sobre retângulos, mas também sobre um região de forma mais geral, como mostra a figura abaio. Vamos supor que seja uma região limitada, o que significa que pode ser cercada por uma região retangular. efinimos, então, uma nova função F com domínio por F (, ) f (, ),, se (, ) está em se (, ) está em mas não está em

9 Se a integral dupla de F sobre eiste, então definimos a integral dupla de f sobre por f (, )da F(, )da Cálculo da erivada upla sobre egiões Planas Genéricas ) egiões planas inscritas em faias verticais: Consideremos uma região inscrita na faia vertical a < < b e entre o gráfico de duas funções contínuas de, ou seja: { (,) a < < b, g () < < g () } onde g e g são contínuas em [a,b]. Por eemplo, as regiões representadas abaio: g () g () g () a g () b a b a b g () g () A integral dupla de f em é calculada pelas seguintes integrais iteradas: sempre que f for contínua em. b g () f (, )da a g () f (, )dd

10 ) egiões planas inscritas em faias horizontais: Consideremos uma região inscrita na faia horizontal c < < d e entre o gráfico de duas funções contínuas de, ou seja: { (,) c < < d, h () < < h () } onde h e h são contínuas em [c,d]. Por eemplo, as regiões representadas abaio: d h () d h () d h () c h () c h () h () c A integral dupla de f em é calculada pelas seguintes integrais iteradas: sempre que f for contínua em. d h () f (, )da c h () f (, )dd Eemplo 5: Calcule ( )da onde é a região limitada pelas parábolas e. Solução: A região está inscrita na faia vertical < <, pois essas são as abscissas dos pontos de intersecção das duas parábolas e podemos escrever: { (,) < <, < < } Assim, calculamos a integral dupla através das seguintes integrais iteradas:

11 ( )da [ ] [ ( ) ( ) ] [ ] ( ) ( ) 5 5 ( )d d d 5 d d d Eemplo : etermine o volume do sólido que está abaio do parabolóide z e acima da região do plano limitada pela reta e pela parábola. Solução: é uma região inscrita na faia vertical < <, portanto: { (,) < <, < < } V Assim, o volume é: da ( ) ( ) d. 8 5 d 5 8 d d d 5 7 5

12 V Mas também podemos inscrever a região na faia horizontal < <, com: { (,) < <, } Portanto, o volume pode ser calculado como: 5 ( da d d d ( ) ( ) 5 d Eemplo 7: Calcule da, onde é a região limitada pela reta e pela parábola. Solução: A intersecção das duas curvas é calculada da seguinte maneira: [ ] [ ] e 8 ( ) ou ( 5 ) Portanto os pontos de intersecção das curvas são (-,-) e (5,). Novamente, a região pode ser considerada inscrita tanto em uma faia vertical como em uma faia horizontal. Mas a descrição de considerada inscrita na faia vertical - < < 5 é mais complicada, pois sua fronteira inferior é constituída por mais de uma curva. Assim, preferimos epressar como: { (,) - < <, < < } Logo:

13 da 8 8 d d d 5 ( )d d Eemplo 8: etermine o volume do tetraedro limitado pelos planos z,, e z. Solução: (,, ) Em uma questão como esta, é prudente desenhar dois diagramas: um do sólido tridimensional e outro da região plana sobre a qual o sólido está. Igualando as equações dos planos, duas a duas, obtemos as retas que contém as arestas do tetraedro: z T z ½ (,, ) (, ½, ) A figura acima, à esquerda, mostra o tetraedro T limitado pelos planos coordenados, z, o plano vertical e o plano z.

14 Como z intercepta o plano (de equação z ) na reta, vemos que T está sobre a região triangular, do plano, limitada pelas retas, e. O plano z pode ser escrito como z e a região como: { (,) < <, / < < / }. Portanto o volume de T é: V ( ) da ( ) dd [ ] d d ( ) / d d POPIEAES AS INTEGAIS UPLAS: ) [ f (, ) g(, )]da f (, )da g(, )da ) cf (, )da c f (, )da, onde c é uma constante ) f (, )da f (, )da f (, )da, se, onde e não se sobrepõem eceto, possivelmente, nas fronteiras.

15 Eemplo 9: Epresse, de duas maneiras, as integrais iteradas que resolvem cos da, π onde é a região do plano limitada pelos gráficos de,,, e. Solução: No gráfico abaio, aparecem as curvas que formam a fronteira de. π/ π/ A região que tem como fronteira todas as curvas citadas é a parte sombreada do plano. Portanto essa é a região. Assim, podemos descrevê-la de duas formas: ) Inscrita na faia vertical π/ e, nesse caso dividi-la em { (,) π/, } e { (,), } ) Inscrita na faia horizontal e, nesse caso, dividi-la em { (,), π/ } e { (,), π/ } Na forma ), as integrais iteradas são: cos da π cos da cos dd cos da cos dd

16 Na forma ), as integrais iteradas são: cos da cos da cos da π cos dd π cos dd APLICAÇÕES: MASSA E CENTO E MASSA E UMA LÂMINA Suponha uma lâmina colocada em uma região do plano e cuja densidade (em unidades de massa por unidade de área) no ponto (,) em é dada por ρ(,), onde ρ é uma função contínua sobre. Então a massa total m da lâmina é dada por: m ρ (, )da Além disso, o centro de massa dessa lâmina é o ponto (X,Y), onde M Y, sendo M m ρ (, ) da e M ρ (, ) da eios e, respectivamente. M X e m os momentos em relação aos Eemplo : etermine a massa e o centro de massa de uma lâmina triangular com vértices (,), (,) e (,), se a função densidade é ρ(,). Solução: (,) O triângulo está limitado pelas retas, e.. Podemos epressar por: { (,), } (,) (,) A massa da lâmina é: m ρ(, )da ( ) da

17 Portanto: ( ) ( ) ( ) ( ) 8 d d d d dd m Os momentos são: ( ) ( ) ( ) ( ) ( ) d d d d dd da )da (, M ρ ( ) ( ) ( ) ( ) ( ) [ ] d d d d dd da )da (, M ρ

18 Assim: M M X, Y m 8 8 m 8 8 Logo, o centro de massa da lâmina é o ponto (/8,/), indicado na figura: (,) (/8,/) (,) (,) Para complementar o estudo, faça a leitura das páginas 99 a 5 do livro ANTON, vol, e resolva os eercícios ímpares de nº a 5 e 9 a 9, das páginas 5 e e de nº a, a 7 e a 5 das páginas e. ESAFIO: Após ler a seção Área calculada como uma integral dupla, das páginas / e o quadro Valor médio da página, resolva os eercícios de nº 5 e 7 da pág. e 57 da pág. 5.

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

Integral de funções de uma variável

Integral de funções de uma variável Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =

Leia mais

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis.

INTEGRAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis. INTEGAIS MÚLTIPLAS OBJETIVOS Ampliar o conceito de integral definida para funções de duas ou três variáveis INTEGAIS DUPLAS Consideremos o problema de determinar o volume V do sólido compreendido entre

Leia mais

Cálculo III-A Módulo 1

Cálculo III-A Módulo 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Prezado aluno, Cálculo III-A Módulo Seja bem-vindo à nossa disciplina. Este teto possui - salvo

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo 3A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,]. +

Leia mais

Cálculo III-A Módulo 1 Tutor

Cálculo III-A Módulo 1 Tutor Eercício : Calcule as integrais iteradas: Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo Tutor a) e dd b) dd Solução: a) Temos:

Leia mais

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano

Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Capítulo 5 Integrais Múltiplas

Capítulo 5 Integrais Múltiplas Capítulo 5 Integrais Múltiplas 1. Revisão de Integral de Funções a uma Variável 1.1. Integral Indefinida Definição: Uma função será chamada de antiderivada ou primitiva de uma função num intervalo I se

Leia mais

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2

FEITEP - PROFESSOR GILBERTO TENANI CÁLCULO III - PRIMEIRO BIMESTRE /2 FEITEP - POFESSO GILBETO TENANI CÁLCULO III - PIMEIO BIMESTE - 206/2 Soma de iemann Estime o volume do sólido contido abaixo da superfície z = xy e acima do retângulo = {(x, y) 0 x 6, 0 y 4}. Utilize a

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis 9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2

Cálculo 3A Lista 4. Exercício 1: Seja a integral iterada. I = 1 0 y 2 Eercício : Seja a integral iterada Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo A Lista 4 I = ddd. a) Esboce o sólido cujo volume é

Leia mais

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula

ANÁLISE MATEMÁTICA III A OUTONO Sobre Medida Nula Departamento de Matemática Secção de Álgebra e Análise Última actualização: 6/Out/5 ANÁLISE MATEMÁTICA III A OUTONO 5 PATE II INTEGAÇÃO EM N EXECÍCIOS COM POSSÍVEIS SOLUÇÕES ABEVIADAS acessível em http://www.math.ist.utl.pt/

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

20., 1 y da da, 1 xy da Esboce o sólido cujo volume é dado pela integral iterada x 2y dx dy 24.

20., 1 y da da, 1 xy da Esboce o sólido cujo volume é dado pela integral iterada x 2y dx dy 24. 5. Eercícios etermine e 5 f, d f, d.. f,. f, e Calcule a integral iterada. p. 6 d d. 5. sen dd 6. p 7. ( cos ) d d 8. 9.. d d. v u v du dv. p. r sen u du dr. 5 Calcule a integral dupla. 5. sen da,, p,

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j). MAT1153 / 2008.1 LISTA DE EXECÍCIOS : EGIÕES DO PLANO, INTEGAIS DUPLAS E VOLUMES (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d) (2) Fazer

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013 MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

Traçado do gráfico de uma função; otimização

Traçado do gráfico de uma função; otimização 15 Traçado do gráfico de uma função; otimização Sumário 15.1 Traçado do gráco de uma função.......... 15. Problemas de otimização............... 15 1 Unidade 15 Traçado do gráfico de uma função 15.1 Traçado

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

Teorema de Fubini. Cálculo de Integrais

Teorema de Fubini. Cálculo de Integrais Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de Integrais Recordemos que o teorema de Fubini estabelece uma forma epedita

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3 FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia.

Cálculo IV EP3. Aula 5 Aplicações da Integrais Duplas. Estudar algumas aplicações físicas como massa, centro de massa e momento de inércia. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP3 Aula Aplicações da Integrais uplas

Leia mais

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii)

(j) e x. 2) Represente geometricamente e interprete o resultado das seguintes integrais: (i) 1x dx Resposta: (ii) MINISTÉRIO DA EDUCAÇÃO DESEMPENHO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a Dayse Batistus, Dr a.

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Cálculo III-A Módulo 3

Cálculo III-A Módulo 3 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 5 Aplicações da Integrais uplas Objetivo Estudar algumas aplicações

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

Cálculo Diferencial e Integral 2: Integrais Duplas

Cálculo Diferencial e Integral 2: Integrais Duplas Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d) Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,

Leia mais

Cálculo IV EP1 Aluno

Cálculo IV EP1 Aluno Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender

Leia mais

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES 008 LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES. Calcular a soma superior e inferir de f ( =. sen( no intervalo [0,] com divisões.,86 u.a. e,6 u.a.. Esboce o gráfico e aproime com

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões

Leia mais

Teorema de Fubini. Cálculo de volumes

Teorema de Fubini. Cálculo de volumes Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Fubini. Cálculo de volumes Teorema de Fubini O teorema de Fubini (cf. [,, 3] permite relacionar

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS E AULA FUNÇÕES E VÁIAS VAIÁVEIS - INTEGAÇÃO Cláudio Martins Mendes Segundo Semestre de 5 Sumário Funções de Várias Variáveis - Integração. Integrais Iteradas................................... Integrais

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA

CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

Álgebra Linear I - Lista 7. Respostas

Álgebra Linear I - Lista 7. Respostas Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,

Leia mais

Cálculo IV EP2 Tutor

Cálculo IV EP2 Tutor Eercício : Calcule + e +. Fundação Centro de Ciências e Educação Superior a istância do Estado do Rio de Janeiro Centro de Educação Superior a istância do Estado do Rio de Janeiro Cálculo IV EP Tutor da

Leia mais

QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS. 5. Em cada opção assinale se falsa ou verdadeira:

QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS. 5. Em cada opção assinale se falsa ou verdadeira: QUESTÕES ANPEC CÁLCULO A VÁRIAS VARIÁVEIS QUESTÃO Calcule o comprimento do vetor z e que minimiza o valor da função QUESTÃO Ache os valores de e correspondentes ao máimo da função 0 0 e satisfazem a equação

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

Capítulo O espaço R n

Capítulo O espaço R n Cálculo - Capítulo 1. - O espaço R n - versão 0/009 1 Capítulo 1. - O espaço R n 1..1 - Espaço R 3 1.. - Espaço R n Vamos, agora, generaliar o conceito de um espaço R primeiro para R 3 e depois para R

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

ln (1 + y) (x;y)!(0;0) x 2 + y 2 2) Veri que se as funções dadas são contínuas nos pontos indicados

ln (1 + y) (x;y)!(0;0) x 2 + y 2 2) Veri que se as funções dadas são contínuas nos pontos indicados Governo do Estado do Rio Grande do Norte Universidade do Estado do Rio Grande do Norte Faculdade de iências Eatas e Naturais epartamento de Matemática e Estatística isciplina álculo iferencial Integral

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta

UENP - Universidade Estadual do Norte do Paraná CLM - Campus Luiz Meneghel / CCT - Centro de Ciências Tecnológicas Disciplina de Matemática Discreta Termos Semelhantes(redução) a) + (não há termos semelhantes) b) ²+3-5 (não há termos semelhantes) c) +3+ => 5+ d) 5 + (3 ) - ( 9) 5 + 3 + 9 5 + 3 + 9 6 + 5 e) 8 [ - + ( + 3 7)] 8 [ - + +3 7] 8 + 3 + 7

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS

INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.

Leia mais

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com:

Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com: Avaliação 0 ) Médicos ligados aos desportos de desenvolveram empiricamente a seguinte fórmula para calcular a área da superfície de uma pessoa em função do seu peso e sua Altura. 0,45 0,75 S( P, A) 0,007P

Leia mais

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio Material Teórico - Módulo Cônicas Eercícios Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios Resolvidos Neste último material, resolvemos

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

Aula 10. Integração Numérica

Aula 10. Integração Numérica CÁLCULO NUMÉRICO Aula Integração Numérica Integração Numérica Cálculo Numérico 3/4 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2 Cálculo - Capítulo 3. - Aproimação quadrática 1 Capítulo 3. - Aproimação quadrática 3..1 - Aproimação quadrática para funções de uma variável 3.. - Aproimação quadrática para funções de duas variáveis

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr ENG00 Mecânica Geral Semestre 201.2 Lista de Eercícios 8 Centróides, Momentos de nércia, Círculo de Mohr 1 Prova P201.1 (P) - De determinada área (figura) são conhecidos os valores do momento de inércia

Leia mais

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA PROBLEMAS-EXEMPLO 1. Determinar o comprimento de arco das seguintes curvas, nos intervalos especificados. (a) r(t) = t î + t ĵ, de t = a t =. Resolução

Leia mais

Exercícios de Cálculo - Prof. Ademir

Exercícios de Cálculo - Prof. Ademir Exercícios de Cálculo - Prof. Ademir Funções, limites e continuidade. Considere f : IR IR definida por f(x) = x 4x + 3. (a) Faça um esboço do gráfico de f. (b) Determine os valores de x para os quais f(x)..

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Eército EsPCE Questão 1 Sabendo-se que Concurso 009 3 5 199 log log log... log 10000 + + + + =,

Leia mais