CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

Tamanho: px
Começar a partir da página:

Download "CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho"

Transcrição

1 CÁLCULO DIFERENCIAL E INTEGRAL

2 LIMITES Uma noção intuitiva de Limite Considere a unção () = Quando assume uma ininidade de valores, aproimando cada vez mais de zero, assume uma ininidade de valores, cada vez mais próimos de 3. Dizemos que o limite de (), quando tende a zero, é igual a 3, e escrevemos lim 0 ( ) 3

3 Suponhamos que () seja uma unção real deinida em uma reunião de intervalos, e que o é um ponto no interior ou no etremo de um destes intervalos. Dizemos que lim () L (LR) quando podemos azer () o arbitrariamente próimo de L, tomando suicientemente próimos de o, mantendo o. No eemplo anterior podemos azer () próimo de 3 o quanto quisermos, bastando azer cada vez mais próimo de zero. É importante destacar que não precisamos ter o pertencente ao domínio de () para calcularmos o limite de () quando tende a o.

4 Analisando graicamente outro eemplo Seja a unção () ( 4)( 6). 2( 6) lim 6 ( ) 1

5 Regra de L Hospital Quando um limite resulta em uma indeterminação ou / aplicamos a Regra de L Hospital, que consiste em calcular a primeira derivada das unções da razão e, após isso, substituir por o. (0/0 ) lim o ( ) g( ) lim o '( ) g'( ) 2 2 E: Calcular lim

6 É importante destacar que não precisamos aplicar L Hospital quando temos um quociente de polinômios. Porém esta regra é nosso único recurso para o cálculo de muitos limites. Eemplos: a) b) lim 0 lim sen 3 2 e 3 As regras de derivação para esse tipos de unções serão estudadas mais adiante.

7 Engenheiro(a) de Petróleo Júnior (2/2010)

8 Propriedades do Limite de uma unção Se lim () a L e lim g() a M,então: P.lim c 1 a c P.lim[c.()] c.lim () 2 a a c.l P.lim[( g)()] lim () lim g() L 3 a a a M P.lim[(.g)()] lim ().lim g() 4 a a a L.M

9 0) (M M L lim g() lim () () g P.lim a a a 6 n n a n L ) ( lim ) ( P.lim a 7 n n n a 5 L )] ( [lim ()].lim[() P a

10 Noção de continuidade Seja uma unção deinida em um intervalo aberto I e a um elemento de I. Dizemos que é contínua em a, se lim () (a). a Note que para que uma unção seja contínua em um ponto é necessário que esse ponto pertença ao domínio desta unção. Da deinição, decorre que, se é contínua em a, então as três condições deverão estar satiseitas: eiste eiste lim () lim () a (a) a (a)

11 Eemplos: a) A unção () = deinida em R é contínua em 1, pois lim () 1 lim(2 1) 3 (1) , se 1 b) A unção () deinida em R é descontínua 4, se 1 em 1, pois lim () lim(2 1) 3 4 (1). 1 1

12 Engenheiro(a) de Petróleo Júnior (2008)

13 DERIVADAS Seja uma unção deinida em um intervalo aberto I, e o um elemento de I. Chama-se derivada de no ponto o o limite se eistir e or inito. Notações: '( 0 ) lim '( ) ou o () -( - d d *OBS: Se uma unção é derivável em um ponto o do seu domínio, então é contínua em o. A recíproca dessa propriedade nem sempre é verdadeira. o o )

14 Eemplo: Calcule a derivada de () no ponto 0, sendo: a) () = 2 e 0 = 3; 2 b) () = + e 0 = 1; 14

15 Derivadas das unções elementares 1. Derivada da unção constante () c '() 0 2. Derivada da unção potência () n '() n. n1 3. Derivada da unção seno () sen '() cos 4. Derivada da unção cosseno () cos '() sen

16 5. Derivada da unção eponencial () a '() a.ln a Em particular : () e '() e. Interpretação geométrica A derivada de uma unção no ponto o é igual ao coeiciente angular da reta tangente ao gráico de no ponto de abscissa o. y y0 '(0).( 0) (Equação da reta tangente ao gráico de no ponto de abscissa o)

17 Engenheiro(a) de Petróleo Júnior (Junho/2008) 46

18 Engenheiro(a) de Petróleo Júnior (Maio/2010)

19 Interpretação cinemática 1) A derivada da unção horária do deslocamento s = s(t) no ponto t = to é igual à velocidade escalar do móvel no instante to. 2) A derivada da unção horária da velocidade v = v(t) no ponto t = to é igual à aceleração escalar do móvel no instante to.

20 Engenheiro(a) de Petróleo Júnior (Maio/2010)

21 Regras de Derivação 1. Derivada da soma () u( ) v( ) '() u'( ) v'( ) 2. Derivada do produto () u( ). v( ) '() u'( ). v( ) u( ). v'( ) Em particular:() c.v() '() c.v'(). Consequência :() [u()] n '() n.[u()] n-1.u'()

22 3. Derivada do quociente () u() v() '() u'().v() u().v' 2 [v()] () Consequências: a) Derivada da unção tangente () tg '() sec 2 b) Derivada da unção cotangente () cotg '() cossec 2

23 Eemplo: Calcule a derivada das unções a seguir: a) () 3.sen 2 Resp.: '() 3.sen (ln 3.sen 2.cos ) b) g() Resp.: tg g '() (8 2 7).tg (4 7).sec (sec 1).(sec 1) 2

24 Derivada da unção composta (Regra da cadeia) F() g(()) F'() g' (()). '() Eemplos: a)y sen( 2 ) ; dy d? b)y 3 2 ; dy d?

25 Engenheiro(a) de Petróleo Júnior (2/2010)

26 4. Derivada da unção logarítmica () log a '(). 1 ln a Em particular : () ln '() 1 Outras derivadas: () arc sen '() () () arc cos arc tg '() '()

27 Engenheiro(a) de Petróleo Júnior (Maio/2010)

28 Derivadas sucessivas Seja a unção, deinida em R, talque ()

29 Estudo da variação das unções Seja () uma unção Real, deinida num intervalo I. 1. Crescimento '( ) 0 é crescente '( ) 0 é decrescente '( ) 0 é constante 2. Concavidade ''( ) 0 tem concavidade voltada para cima ''( ) 0 tem concavidade voltada para baio

30 3. Pontos etremos, críticos ou etremantes Seja o um ponto pertencente ao domínio de. Se o é raiz da primeira derivada de (), ou seja, (o)=0, então o é um possível etremante de. A análise para a veriicação se o é ponto de máimo ou mínimo, depende da substituição de o na órmula da segunda derivada de. ''( ''( ''( o o o ) ) ) o o nada é pontode máimo local de é pontode mínimo local de podeser concluído sobre o A reta tangente ao gráico de em o é paralela ao eio.

31 4. Ponto de inleão Seja uma unção contínua no intervalo I = [a;b] e derivável num ponto o de I. Po é ponto de inleão de se Po é o ponto no qual a concavidade troca de sinal. Se ''( o ) 0 e '''( o ) 0, então o é abscissa de um pontode inleão. E: Analise o crescimento, a concavidade, etremantes e 3 2 ponto de inleão de da unção ( ) 5.

32 Engenheiro(a) de Petróleo Júnior (2008)

33 Engenheiro(a) de Petróleo Júnior (Maio/2010)

34 Engenheiro(a) de Petróleo Júnior (2/2010)

35 Integral indeinida INTEGRAIS O processo de obter uma unção a partir de sua derivada é chamado de antiderivação ou integração indeinida. Uma unção F para a qual F () = () para qualquer no domínio de, é chamada de primitiva ou antiderivada de. E :F() é uma primitiva de () 2 5, pois F'() 2 5. Propriedade: Se F é uma primitiva de uma unção contínua, então qualquer outra primitiva de tem a orma G() = F() + c, onde c é uma constante.

36 Se é uma unção contínua, então a sua integral indeinida é dada por () d F() c A ligação que eiste entre derivadas e primitivas permite usar regras já conhecidas de derivação para obter regras correspondentes para a integração. Assim temos o que chamamos de integrais imediatas, as quais são apresentadas na tabela a seguir.

37 Integrais imediatas

38

39 Engenheiro(a) de Petróleo Júnior (1/2011)

40 Algumas técnicas de integração 1) Integração por substituição E: Calcule: a) 7.sen 7 d b) e 2. d 15 c) (3 7).3d

41 Engenheiro(a) de Petróleo Júnior (Maio/2010)

42 Engenheiro(a) de Petróleo Júnior (2/2010)

43 2) Integração por partes u dv u.v v du E: Calcule: a). e d b) (3 7).cos d

44 Integral deinida A integral deinida de uma unção () é uma integral restrita a valores em um intervalo especíico [a;b]. Notação: b a () d Interpretação geométrica A integral deinida de uma unção () contínua e positiva, para variando de a até b, ornece a área limitada pelo gráico de (), o eio e as retas = a e = b. E: Calcule a área imitada pelo gráico de retas y =0, = 1 e = 4. ( ) e as

45 Engenheiro(a) de Petróleo Júnior (Junho/2008) 43 Quanto vale a área da região limitada pelo eio das abscissas, as retas = 0 e, e o gráico da unção de R em R cuja lei é () = cos(2)? ) ) 4 3 ) 4 1 ) 2 1 ) E D C B A

46 Área de regiões entre curvas: Suponha que e g sejam deinidas e contínuas em [a, b], tais que ( ) g( ), [ a, b]. Então a área da região limitada pelos gráicos de e g e pelas retas = a e = b é dada por b A [() g()] a d

47

48

49 Engenheiro(a) de Petróleo Júnior (maio/2010)

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

Estudar tendências no comportamento de funções.

Estudar tendências no comportamento de funções. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Proessor:

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

Funções polinomiais, racionais e trigonométricas

Funções polinomiais, racionais e trigonométricas Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das

Leia mais

Capítulo 6 - Derivação de Funções Reais de Variável Real

Capítulo 6 - Derivação de Funções Reais de Variável Real Capítulo 6 - Derivação de Funções Reais de Variável Real Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2010/2011 Matemática

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Funções de varias variáveis

Funções de varias variáveis F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra Noções de Cálculo Diferencial e Integral para Tecnólogos João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra 9 de dezembro de 20 Sumário APRESENTAÇÃO 9 Funções e suas derivadas. Velocidade média

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS 14 O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS Gil da Costa Marques 14.1 Introdução 14. O crescimento/decrescimento de uma função num intervalo e os pontos de etremo 14.3 A concavidade do gráfico

Leia mais

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é Revisão Determinação de uma tangente para o gráfico de uma função f '( x 0) = O coeficiente angular da reta tangente em P é Taxas de variação: derivada em um ponto A expressão abaixo é chamada de quociente

Leia mais

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. 3. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Definição : Taxa de variação média. Considere x variável independente e y

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

cotg ( α ) corresponde ao valor da abcissa do

cotg ( α ) corresponde ao valor da abcissa do Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I Cálcul Diferencial e Integral II Página 1 Universidade de Mgi das Cruzes UMC Camps Villa Lbs Cálcul Diferencial e Integral II Parte I Engenharia Civil Engenharia Mecânica marilia@umc.br 1º semestre de

Leia mais

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto Capítulo 1 Limites nitos 1.1 Limite nito num ponto Denição 1. Seja uma função f : D f R R, x y = f(x, e p R tal que p D f ou p é um ponto da extremidade de D f. Dizemos que a função f possui ite nito no

Leia mais

Derivadas. Incremento e taxa média de variação

Derivadas. Incremento e taxa média de variação Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Dierencial e Integral I RESUMO DA AULA TEÓRICA 1 Livro do Stewart: Seções 4.1 a 4.. MÁXIMOS E MÍNIMOS ABSOLUTOS: revisão da aula teórica 6 Deinição: O máximo absoluto de uma unção em um

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

, ou seja, o ponto x 1

, ou seja, o ponto x 1 4 DERIVADAS, DIFERENCIAIS E SUAS APLICAÇÕES 4.1 Retas Tangentes e Taxas de Variação Muitos problemas de Cálculo envolvem a determinação da taxa de variação de uma função em determinado momento. Tais problemas

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

A derivada de uma função

A derivada de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no

Leia mais

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x) Capítulo II Funções reais de variável real.1 Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder

Leia mais

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes LIMITE DE UMA FUNÇÃO. Cristianeguedes.pro.br/cefet LIMITE DE UMA FUNÇÃO Cristineguedes.pro.br/ceet Vizinhnç de um ponto Pr um vlor rbitrrimente pequeno >, vizinhnç de é o conjunto dos vlores de pertencentes o intervlo: - + OBS: d AB = I A B I Limite de

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

Primitivas e a integral de Riemann Aula 26

Primitivas e a integral de Riemann Aula 26 Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS FUNÇÕES DE DUAS OU MAIS VARIÁVEIS Uma unção de duas ou mais variáveis é simbolizada por uma epressão do tipo w z... que siniica que w é uma unção de z... Como ocorre nas unções de uma variável nas unções

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

MAT096. Tutoria de Cálculo Diferencial e Integral

MAT096. Tutoria de Cálculo Diferencial e Integral UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Eatas e Tecnológicas - CCE Departamento de Matemática MAT096 Tutoria de Cálculo Diferencial e Integral Apostila DMA - UFV 010 Sumário 1 Função 4 1.1 Noções

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO DE MATEMÁTICA E ESTATÍSTICA

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO DE MATEMÁTICA E ESTATÍSTICA ARI JÚNIOR DOS SANTOS MACHADO LIMITES E DERIVADAS PARA O ENSINO MÉDIO BELÉM- PARÁ

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

A integral indefinida

A integral indefinida A integral indefinida Introdução Prof. Méricles Thadeu Moretti MTM/CFM/UFSC. A integração é uma operação fundamental na resolução de problemas de matemática, física e outras disciplinas, além de fazer

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais