Interpretação Geométrica
|
|
|
- Victorio Rosa Casqueira
- 8 Há anos
- Visualizações:
Transcrição
1 .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial o ; c gerar uma sequência { } unção de aproimações para α pela relação ϕ, pois a ϕ é tal que α se e somente se α ϕα. Eemplo: A unção de iteração em geral não é única. Para o eemplo tem-se como possíveis unções de iterações: a ϕ ; b ϕ ± ; c ϕ ; d ϕ. Interpretação Geométrica Seja a unção de iteração ϕ. Fazendo ϕ e ϕ ϕ. 8 i i o
2 i - i Observe que nos dois eemplos dos gráicos anteriores o processo iterativo converge para a raiz. i i Observe neste caso que o processo diverge.
3 Para uma unção pode eistir mais de uma unção de iteração ϕ, contudo não é para qualquer ϕ que o processo ϕ gera uma sequência convergente para a raiz α. Seja o eemplo: Esta unção tem como raízes os valores e. Seja a unção de iteração ϕ. Adotando como valor inicial o, 5 e o processo iterativo ϕ, tem-se:,75 8,5 59,9 75,9 Pode-se observar que, para esta unção de iteração, o processo é divergente. Pode-se chegar a mesma conclusão a partir da análise gráica. 5 o Como pode ser observado na igura, o processo é divergente. Tomando agora como unção de iteração: ϕ com, 5, tem-se: o,,99,7,9989 5,8
4 5 i i - o Para a nova unção de iteração, o processo é convergente. Estudo da Convergência Teorema Seja ϕ uma unção de iteração para e α uma raiz de isolada no intervalo [a, e centrada em α. Se: ϕ e ϕ são contínuas em [a,; ϕ M [ a, ; o [ a, Então a sequência {, } para a raiz α. o,,..., gerado pela unção de iteração ϕ converge Eemplos Caso: Seja a unção de iteração ϕ do eemplo anterior. O método de Iteração Linear converge para a raiz α? De acordo com o Teorema, deve-se encontrar um intervalo [a,, centrado em α, que satisaça as condições e do teorema. a ϕ e ϕ são contínuas no conjunto dos números R eais.
5 b ϕ < < < <. Não eiste um intervalo [a, centrado em, tal que ϕ [ a,, portanto ϕ não satisaz a condição do teorema. < Caso: Seja a unção de iteração ϕ do eemplo anterior. O método de Iteração Linear converge para a raiz α? Novamente, de acordo com o Teorema, deve-se encontrar um intervalo [a,, centrado em α, que satisaça as condições e do teorema. c ϕ e ϕ são contínuas em S { R tal que < }. d ϕ < < 5,75 < < 5, 75. É possível obter-se um intervalo [a, centrado em, tal que ϕ < [ a,, portanto ϕ satisaz a condição do teorema e o processo é convergente. Caso: Seja a unção de iteração ϕ do eemplo anterior. O método de Iteração Linear converge para a raiz α? Novamente, de acordo com o Teorema, deve-se encontrar um intervalo [a,, centrado em α, que satisação as condições e do teorema. e ϕ e ϕ são contínuas emr, para. ϕ < < > < e >. Não é possível obterse um intervalo [a, centrado em, tal que ϕ < [ a,, portanto ϕ não satisaz a condição do teorema e o processo não converge. Entretanto, pode-se veriicar que o processo converge para a raiz α. É possível encontrar-se um intervalo centrado em que satisaça todas as condições do teorema. Os critérios de parada para o Método de Iteração Linear pode ser o mesmo utilizado no Método da Bissecção... Método de Newton-Raphson NR Descrição:
6 5 Seja uma unção contínua no intervalo [a, e α o único zero da unção no intervalo. A primeira derivada e a segunda derivada também são contínuas em [a,. a Escolhe-se uma solução o para α zero da unção. b Epande-se a unção através da Série de Taylor em torno de....!! Considerando apenas os termos lineares:! Esta equação representa a equação da reta tangente a unção no ponto. Igualando essa equação a zero, encontra-se o ponto onde essa reta corta o eio das abscissas. Esse ponto é uma nova estimativa para o zero da unção, ou seja:! c Como, chega-se a epressão: c O processo é repetido até a convergência.
7 Interpretação Geométrica 8 teta o A partir do triângulo retângulo ormado pelos pontos, o e o, tem-se a seguinte relação: o tg θ tg θ o Entretanto, a partir da deinição de derivada no ponto o, tem-se que o, o que resulta na epressão do Método Newton-Raphson. processo. o o o Esta interpretação geométrica pode ser estendida para as outras iterações do
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Proa. Dra. Yara de Souza Tadano [email protected] Revisão Zeros de Funções A ideia central dos métodos que iremos aprender é partir de uma aproimação inicial para a raiz e em seguida
Cálculo Numérico. Zeros de funções reais
Cálculo Numérico Zeros de funções reais Agenda Introdução Isolamento de raízes Refinamento Bissecção Posição Falsa Método do ponto fixo (MPF) Método de Newton-Raphson Método da secante Introdução Um número
CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS
5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:
Semana 5 Zeros das Funções_2ª parte
1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO
Cálculo Numérico Ponto Fixo
Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente
CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante
Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes
1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo
ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
Aula 4. Zeros reais de funções Parte 1
CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f
Cálculo Numérico / Métodos Numéricos. Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01
Cálculo Numérico / Métodos Numéricos Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01 Idéia Seja f(x) uma função continua em [a,b], intervalo que contém a raiz da equação f(x)=0.
Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira
Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
Método da Secante Para Resolução de equações do tipo f(x)=0
Método da Secante Para Resolução de equações do tipo 0 Narã Vieira Vetter Guilherme Paiva Silva Santos Raael Pereira Marques [email protected] [email protected] [email protected] Associação
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f
Pretende-se calcular uma aproximação para a menor raiz positiva da equação
1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar
Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Zeros Posição Falsa e Ponto Fixo Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método da Posição Falsa 2 Método da Posição Falsa O processo consiste em dividir/particionar
Zero de Funções ou Raízes de Equações
Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f
Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227
Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um
UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição
UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos
2.3- Método Iterativo Linear (MIL)
.3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que
Ana Paula. October 26, 2016
Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de
Capítulo 06. Raízes: Métodos Abertos
Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto
Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1
Raízes de uma função Laura Goulart UESB 16 de Março de 2016 Laura Goulart (UESB) Raízes de uma função 16 de Março de 2016 1 / 1 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c R
Lista de Exercícios de Métodos Numéricos
Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento
CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra
CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,
Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função
Métodos iterativos para sistemas lineares.
Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central
5.1 Noção de derivada. Interpretação geométrica de derivada.
Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:
Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim
Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se
1 Distância entre dois pontos do plano
Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Equações Não-Lineares Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Localização
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
5.7 Aplicações da derivada ao estudo das funções.
Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +
Modelagem Computacional. Parte 2 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho
CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de
Introdução à Física Computacional
7600017 Introdução à Física Computacional Terceiro Projeto (prazo até 30/04/17) Instruções Crie um diretório PROJ3 #usp em /home/public/fiscomp17/proj3 Proteja seu diretório para nao ser lido por g e o
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:
s: damasceno.
Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere
TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.acebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 11.º Ano Fichas de Trabalho Compilação
Primeiro Teste de Cálculo Infinitesimal I
Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.
Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente
FUNÇÕES REAIS DE UMA VARIÁVEL REAL
FUNÇÕES REAIS DE UMA VARIÁVEL REAL Deinição inormal de unção Uma unção é uma regra que a cada elemento de um dado conjunto A associa um e um só elemento de um outro conjunto B. : A B ( ) Simbolicamente,
cotg ( α ) corresponde ao valor da abcissa do
Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado
Capítulo 6 - Equações Não-Lineares
Sistemas de Capítulo 6 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/
Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)
Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-
SME0300 Cálculo Numérico Aula 4
SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a
Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014
Cálculo Numérico Aula 6 Método das Secantes e Critérios de Parada 2014.1-22/04/2014 Prof. Rafael mesquita [email protected] Adpt. por Prof. Guilherme Amorim [email protected] Aula passada? Método Iterativo
Parte 1: Exercícios Teóricos
Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k
Apostila de Cálculo I
Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.
Capítulo 4 - Equações Não-Lineares
Capítulo 4 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/
Resolução Numérica de Equações Métodos Parte II
Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
Resolução Numérica de Equações Métodos Parte II
Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]
SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.
mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório
Introdução aos Métodos Numéricos
Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades
O método da falsa posição
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit O método da falsa posição
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
ÁLGEBRA LINEAR AULA 5 MÉTODOS ITERATIVOS
ÁLGEBRA LINEAR AULA 5 MÉTODOS ITERATIVOS Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 27 1 2 3 4 2 / 27 Seja o sistema linear Ax = b, onde: A: Matriz dos coeficientes, n n;
Método de Newton-Raphson
Método de Newton-Raphson Método de Newton-Raphson Joinville, 29 de Abril de 2013 Escopo dos Tópicos Abordados Solução de equações via métodos iterativos Método de Newton-Raphson 2 Operação de Sistemas
Solução numérica de equações não-lineares
Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade
