O método da falsa posição
|
|
|
- Raphael Valente Martinho
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT O método da falsa posição Prof. Doherty Andrade Resumo: Nestas notas apresentamos o método da falsa posição para determinar a solução de equações não lineares. Sumário 1 Introdução 1 2 Interpretação Geométrica 2 3 Convergência 3 4 Seleção dos subintervalos 4 5 Exemplo 4 1 Introdução Estamos interessados em resolver a equação não linear f(x) = 0. Como hipóteses básicas consideramos que f tenha apenas uma raiz em [a, b], que f : [a, b] R seja contínua e que f(a)f(b) < 0. Sabemos do teorema do valor intermediário que, nessas hipóteses, existe c (a, b) tal que f(c) = 0. Ou seja, a equação não linear f(x) = 0 tem uma solução, ou uma raiz, no intervalo (a, b). Vamos considerar nessa seção o método da falsa posição, também chamado de regula falsi, para determinar uma aproximação para essa raiz. O método da falsa posição pode ser considerado uma variação do método da bissecção ou uma variação do método das secantes. Como vimos, o método da bissecção tem convergência lenta, uma vez que seleciona sempre o ponto médio de cada intervalo. Então, podemos pensar em acelerar o método da bissecção selecionando um ponto que esteja mais
2 c KIT - Cálculo Diferencial e Integral aaaa 2 próximo da raiz. Fazemos isso considerando como aproximação c para a raiz, a média ponderada entre a e b com pesos f(b) e f(a), respectivamente:. (1.1) A média ponderada c, estará mais próxima do extremo que tem menor imagem pela função f. Pode ser considerado como variação do método das secantes, pois notamos que equação (1.1) é igual àquela obtida pelo método das secantes. A diferença entre os métodos está na escolha de subintervalos, que não existe no método das secantes. A fim de simplificar a equação (1.1), consideremos os possíveis sinais de f(a) e de f(b). Há dois casos: 1. f(a) < 0 e f(b) > 0 2. f(a) > 0 e f(b) < 0 No primeiro caso, f(a) < 0 e f(b) > 0, temos que f(a) = f(a) e f(b) = f(b), e, assim a expressão equação (1.1) fica: = f(b) f(a). (1.2) No segundo caso, f(a) > 0 e f(b) < 0, temos que f(a) = f(a) e f(b) = f(b), e, assim da equação (1.1) fica: = f(b) f(a). (1.3) Observamos que nos dois casos, tem-se, f(b) f(a). (1.4) 2 Interpretação Geométrica A aproximação dada pelo número x, obtido por meio da equação (1.4), é o ponto de intersecção da reta que passa pelos pontos (a, f(a)) e (b, f(b)) com o eixo OX.
3 c KIT - Cálculo Diferencial e Integral aaaa 3 De fato, a equação da reta y = Ax + B que passa por esses dois pontos, pode ser obtida por x y 1 a f(a) 1 = 0. (2.5) b f(b) 1 De onde segue que: xf(a) + by + ay xf(b) = 0. Portanto, isolando y, obtemos que a equação da reta é: y = 1 1 [f(b) f(a)] x + [bf(a) af(b)]. (2.6) b a b a No ponto de intersecção dessa reta com o eixo OX, devemos ter que y = 0 e assim, x = f(b) f(a). (2.7) Figura 1: ponto de intersecção 3 Convergência O método da falsa posição gera uma sequência de pontos x k obtidos por meio da equação (1.1). Sob quais condições essa sequência converge? O teorema a seguir responde a essa pergunta.
4 c KIT - Cálculo Diferencial e Integral aaaa 4 Teorema 3.1 Se f : [a, b] R contínua tal que f(a)f(b) < 0, então a sequência de pontos x k obtidos por meio do método da falsa posição, equação (1.1), é convergente. Para o caso de raiz simples, a ordem de convergência do método da falsa posição é a mesma do método da bissecção, isto é, p = Seleção dos subintervalos Em cada iteração calculamos o ponto x k e selecionamos o próximo intervalo de busca da solução. Suponha que estamos no intervalo [a k, b k ] com f(a k )f(b k ) < 0 e calculamos x k por meio da equação (1.1). Se f(a k )f(x k ) < 0, então pelo teorema do valor intermediário, a raiz se encontra no subintervalo [a k, x k ]. Se f(a k )f(x k ) > 0, então multiplicando por f(a k )f(b k ) < 0 obtemos que [f(a k )] 2 f(x k )f(b k ) < 0. De onde segue que f(x k )f(b k ) < 0. Pelo teorema do valor intermediário, a raiz se encontra no subintervalo [x k, b k ]. Resumindo temos: 1. se f(a k ) e f(x k ) têm sinais opostos, escolhemos para o próximo subintervalo o intervalo [a k, x k ]. 2. se f(a k ) e f(x k ) têm os mesmos sinais, escolhemos para o próximo subintervalo o intervalo [x k, b k ]. 5 Exemplo A equação 2x cos(πx) = 0 tem uma única (simples) raiz no intervalo [ 1, 1]. Veja a figura 1. Usando o método da falsa posição, obtemos a seguinte tabela.
5 c KIT - Cálculo Diferencial e Integral aaaa 5 k a k b k x k f(a k )f(x k ) > 0 mesmo sinal, escolha [x k, b k ] > > > < 0 sinais opostos, escolha [a k, x k ] > > 0 Segue que uma aproximação para a raiz é Referências [1] DE FIGUEIREDO, D. G., Análise I. Rio de Janeiro: L.T.C., [1] S. D. CONTE. Elementary Numerical Analysis. MacGraw-Hill, [2] K. ATKINSON. An Introduction to Numerical Analysis. John Willey& Sons, New York, 1983.
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração
2.3- Método Iterativo Linear (MIL)
.3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Resolução Numérica de Equações Métodos Parte II
Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
Lista de Exercícios de Métodos Numéricos
Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:
Cálculo Numérico. Zeros de funções reais
Cálculo Numérico Zeros de funções reais Agenda Introdução Isolamento de raízes Refinamento Bissecção Posição Falsa Método do ponto fixo (MPF) Método de Newton-Raphson Método da secante Introdução Um número
Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015
Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:
DCC008 - Cálculo Numérico
DCC008 - Cálculo Numérico Equações Não-Lineares Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora [email protected] Conteúdo Introdução Localização
f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].
1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução
Resolução Numérica de Equações Métodos Parte II
Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:
Ana Paula. October 26, 2016
Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de
SME0300 Cálculo Numérico Aula 4
SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a
Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.
Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente
Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Zeros Posição Falsa e Ponto Fixo Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método da Posição Falsa 2 Método da Posição Falsa O processo consiste em dividir/particionar
Equações não lineares
Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,
Cálculo Numérico Ponto Fixo
Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente
CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS
5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.
Exercícios sobre zeros de funções Aula 7
Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni
Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014
Cálculo Numérico Aula 6 Método das Secantes e Critérios de Parada 2014.1-22/04/2014 Prof. Rafael mesquita [email protected] Adpt. por Prof. Guilherme Amorim [email protected] Aula passada? Método Iterativo
CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante
Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Solução numérica de equações não-lineares
Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade
Lista 1 - Cálculo Numérico - Zeros de funções
Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
SME0300 Cálculo Numérico Aula 6
SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz
MINISTÉRlO DA EDUCACAO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO
prof. Jorge Roberto Grobe /09/4 4:2 cálculo numérico equações algébricas e transcendentes CAPITULO 4 4.0 SOLUÇÕES DE EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES 4. METODO DA BISSECÇÃO OU PESQUISA BINARIA Descrição:
O Teorema do Valor Médio
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit O Teorema do Valor
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Função Afim. Definição. Gráfico
Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função
O Teorema do Valor Intermediário
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Intermediário Suponha que f é uma função contínua em todo o intervalo fechado [a,b]. Isto significa que, para todo c (a,b),
UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição
UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim
Cálculo Numérico Aula 4 Zeros de Funções 2014.1-09/04/2014 Prof. Rafael mesquita [email protected] Adpt. por Prof. Guilherme Amorim [email protected] Últimas aulas... Aritmética de máquina Erros Sistema de
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas. Resolução de Equações Não Lineares
UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos
Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares
Aula 06: Funções e seus Gráficos
GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do
Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }
Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais
Zero de Funções ou Raízes de Equações
Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas
Solução aproximada de equações de uma variável
Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo [email protected] Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um
Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx
3 ZEROS REAIS DE FUNÇÕES REAIS OU SOLUÇÕES DE EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES
3 ZEROS REAIS DE FUNÇÕES REAIS OU SOLUÇÕES DE EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES Prof. Jorge Roberto Grobe 01/04/2015 11:00:45 CN24NB 11 a edição i Índice de ilustrações FIGURA 1: Interpretação Geométrica
Prof. Wagner Hugo Bonat. Bacharelado em Estatística Universidade Federal do Paraná. 15 de outubro de 2018
Sistemas de Equações não lineares Prof. Wagner Hugo Bonat Bacharelado em Estatística Universidade Federal do Paraná 15 de outubro de 2018 Conteúdo Wagner Hugo Bonat Sistemas de Equações não lineares 2/34
Testes Formativos de Computação Numérica e Simbólica
Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
Ilustraremos graficamente esses conceitos nos exemplos a seguir.
Capítulo 3 Equações não Lineares 3.1 Introdução Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f(x) = 0, onde f(x) pode ser um polinômio
Cálculo Numérico Algoritmos
Cálculo Numérico Algoritmos Valdenir de Souza Junior Abril de 2007 Sumário 1 Introdução 1 2 Raízes de Equações 1 2.1 Método da Bisseção......................... 2 2.2 Método de Newton-Raphson.....................
Modelagem Computacional. Parte 2 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Introdução aos Métodos Numéricos
Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Aspectos básicos
Cálculo Numérico / Métodos Numéricos. Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01
Cálculo Numérico / Métodos Numéricos Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01 Idéia Seja f(x) uma função continua em [a,b], intervalo que contém a raiz da equação f(x)=0.
Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função
A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário
A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário Renan de Oliveira Pereira, Ouro Preto, MG, Brasil Wenderson Marques Ferreira, Ouro Preto, MG, Brasil Eder Marinho
CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra
CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,
Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)
Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-
1.1 Conceitos Básicos
1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto
O Teorema de Dini. Doherty Andrade Palavras-chave: Dini. Convergência pontual. Convergência uniforme.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit O Teorema de Dini
Diferenciais em Série de Potências
Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de
Resolução de sistemas de equações não-lineares: Método de Newton
Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina
Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2
Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, [email protected] 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,
Interpretação Geométrica
.. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial
Computação Científica 65
Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo
Vamos revisar alguns fatos básicos a respeito de séries de potências
Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais
O teorema do ponto fixo de Banach e algumas aplicações
O teorema do ponto fixo de Banach e algumas aplicações Andressa Fernanda Ost 1, André Vicente 2 1 Acadêmica do Curso de Matemática - Centro de Ciências Exatas e Tecnológicas - Universidade Estadual do
Modelagem Computacional. Parte 8 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
