Tipos de Processos Estocásticos

Tamanho: px
Começar a partir da página:

Download "Tipos de Processos Estocásticos"

Transcrição

1 Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 6: Inrodução ao Cálculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável cua mudança de valor ao longo do empo é incera é dia uma variável aleaória. Tempo discreo; variáveis discreas (árvores) Tempo discreo; variáveis conínuas Tempo conínuo; variáveis discreas Tempo conínuo; variáveis conínuas Mais realisa Podemos usar o arcabouço de cálculo que facilia a nossa vida para chegarmos em fórmulas fechadas Mas como há incereza, emos que ver o que muda nas conas Cálculo esocásico! Derivaivos - Alexandre Lowenkron Pág. 1

2 Processos Markovianos Num processo de Markov movimenos fuuros numa variável depende apenas de onde esamos agora, não de oda a hisória que nos roxe aé aqui E(P +1 /P ) = E(P +1 / P, P -1, P -, ) Se pensarmos em ermos de árvores, um processo Markoviano esaria numa árvore recombinane. um processo não-markoviano esaria numa árvore nãorecombinane. Vamos assumir que o processo esocásico do preço de uma ação é Markoviano. Derivaivos - Alexandre Lowenkron Pág. 3 Hipóese dos Mercados Eficienes: Versão Fraca Se o mercado for eficiene em sua versão fraca, é impossível produzir consisenemene reornos ausados ao risco superiores com regras de negociação baseadas na rageória (hisórico) dos preços. Em ouras palavras, análise écnica não funciona. Um processo de Wiener respeia aende a versão fraca das expecaivas Se houver empo, veremos o porquê e a evidência empírica Derivaivos - Alexandre Lowenkron Pág. 4

3 Processo esocásico em empo conínuo: Exemplo Preço de uma ação hoe é $4 Variável conínua nua em empo discreo: Ao fim de um ano considera-se que ela erá disribuição de probabilidade φ(4,1) onde φ(µ,σ) é a disribuição normal com média µ e desvio padrão σ. Perguna: Qual a disribuição de probabilidade do preço da ação ao final de anos? ½ ano? ¼ ano? ano? Tirando limie, definimos uma variável conínua em empo conínuo. Derivaivos - Alexandre Lowenkron Pág. 5 Variâncias & Desvios Padrões Em processos de Markov mudanças em períodos sucessivos de empo são independenes Isso significa que as médias e as variâncias são adiivas. Mas desvios padrões não são adiivos Derivaivos - Alexandre Lowenkron Pág. 6 3

4 Processo de Wiener (ou Brownian Moion) Consideremos uma variável z cuo valor muda coninuamene A mudança num pequeno inervalo de empo é z Tal variável segue um precesso de Wiener (ou Brownian Moion) se: 1. z = ε onde ε e' φ(,1). Os valores de z para quaisquer períodos disinos (sem inerseção) de empo são independenes Propriedades do Processo de Wiener Média de [z (T ) z ()] é Variância de [z (T ) z ()] é T Desvio Padrão de [z (T ) z ()] é T Derivaivos - Alexandre Lowenkron Pág. 7 Processo de Wiener generalizado No processo aé aqui apresenado, a média da axa de drif (mudança esperada por unidade de empo) é zero e a variância é 1. Podemos generalizar... O processo de Wiener Generalizado em média não nula e variância diferene de 1. Derivaivos - Alexandre Lowenkron Pág. 8 4

5 Generalized Wiener Processes Variável x segue um proceso de Wiener generalizado com drif a e a axa de variância de b enão: dx=a d+b dz Variação esperada média em x no inervalo de empo T: Variância da variação em x no inervalo de empo T: Desvio padrão da variação em x no inervalo T é: at b T b T Derivaivos - Alexandre Lowenkron Pág. 9 Processo Esocásico de Wiener Generalizado em Tempo Conínuo Derivaivos - Alexandre Lowenkron Pág. 1 5

6 Processo de Iô Vamos formalizar melhor a definição: Precessos de Iô Na realidade nem o drif nem a difusão precisam ser consanes no empo. Versão discrea do processo generalizado: X( k+1 )-X( k ) = µ( k+1, k ) k + σ( k+1, k ) [z ( k+1 ) z ( k )] X( k+1 )-X( k ) = µ( k+1, k ) k + σ( k+1, k ) z ( k ) Começando em = (processo é markoviano), emos: X ( k ) = X () + k 1 = µ (, X ) + k 1 = σ (, X ) z Derivaivos - Alexandre Lowenkron Pág. 11 Processo de Iô e Inegral de Iô Para chegar em empo conínuo: Tomamos o limie k A úlima expressão se orna: X ( ) = X () + µ (, X ) ds + σ (, X s= Ese úlimo ermo é a inegral de Iô. Precisamos saber como manipular a a inegral de Iô para apreçar derivaivos. Usualmene a noação uilizada para descrever al processo é: s= ) dz dx = µ (, X ) d + σ (, X ) dz s Derivaivos - Alexandre Lowenkron Pág. 1 6

7 Por que usar um processo de Iô e não um processo de Wiener para modelar a dinâmica do preço de uma ação? Impliciamene, se usássemos o processo de Wiener Generalizado, esaríamos forçando que a mudança no preço das ações permanecesse consane. Pelo menos a variação do preço da ação deve ser proporcional ao nível do preço daqui a um empo. Um exemplo do mais simples dos processos de Iô a serem ulizados: ds = µ S d+ σs dz Noe que o drif não é consane: Nem a difusão: µs σs Derivaivos - Alexandre Lowenkron Pág. 13 Obervação: Simulação de Mone Carlo de um processo de Iô Podemos discreizar o processo para enender o que ele significa. S = µ S + σsε Sea T = 1 ano e vamos dividir o ano em 1 inervalos. Suponha µ=.14, σ=.. Com os 1 inervalos: =.1 Podemos ober N raeórias para os processos soreando valores ε normais (,1) e usar em 34 Simulação de Mone Carlo 4 Simulações S =.14 S +. S ε Tendência Traeória 1 Traeória Traeória 3 Traeória Derivaivos - Alexandre Lowenkron Pág

8 Cálculo Diferencial Esocásico e o Lemma de Iô OK, enão agora emos um modelo para o processo de uma ação (ou qualquer aivo) em empo conínuo. Bom por duas razões: Hipóese razoável para o processo de do preço da ações (choques que aleram o preço, como noícias sobre a firma e sobre a economia são conínuos e imprevisíveis). Respeira a hipóese dos mercados eficienes. Nos permie uilizar o insrumenal de Cálculo Diferencial Mas o Cálculo em que ser adapado para raar a pare esocásica.. Em paricular, sabendo a lei de movimeno de S(), como podemos achar a lei de movimeno de um derivaivo C(S(), ) que dependa do aivo S()? Usando os resulados do Lema de Iô. Derivaivos - Alexandre Lowenkron Pág. 15 Expansão de Taylor Podemos usar a expansão de Taylor e para chegar a lei de movimeno de C(S(), ) C C C = S + S C + S S C + ½ S C + ½ S + Em cálculo usual, para pequenas variações odos os ermos de ordem superior (d, ds, dds, d 3, ds 3, ec..) poderiam ser ignorados. No enano agora em ds, há ermos esocásicos dw que não podem ser desconsiderados Derivaivos - Alexandre Lowenkron Pág. 16 8

9 Isomeria de Iô Em cálculo diferencial esocásico, não podemos ignorar os ermos aleaórios de ordem. Inuição: d em mordem de grandeza d dw() em ordem de grandeza dw() dw() em ordem de grandeza da variância de dw()! Ou sea, em ordem de grandeza d. Porano a regra que vamos usar será: d = d. dw = dw. d = dw = d Derivaivos - Alexandre Lowenkron Pág. 17 Lema de Iô Usando o fao que só podemos ignorar ermos cruzados e de ordem superior a, a expansão de Taylor fica: C dc = ds + d+ ½ ds S S Subsiuindo para a expressão de S() como um processo de Iô. ds = µ (, S ) d + σ (, S ) dz Subsiuindo na fórmula anerior, dc = S mas, pela ( µ (, d+ σ(, dw) + d+ ½ ( µ (, d+ σ(, dw) isomeria ( µ (, d+ σ(, dw) = σ (, d de Io, C S Derivaivos - Alexandre Lowenkron Pág. 18 9

10 Lema de Iô Chegamos assim na formula final do Lema de Iô: Em paricular, para o movimeno geomérico Browniano, ds. = µ S d + σs dz o Lema de Iô fica: dc = + µ (, + ½ σ (, d+ σ(, S S S C dw C dc = + µ S + ½ σ S d + σs dw S S S Derivaivos - Alexandre Lowenkron Pág. 19 Lema de Iô mulidimensional Se ivermos um processo que dependa de mais de um faor esocásico, dz(1), dz(), ec. Se supusermos ainda que a correlação enre dz(i) e dz() é ρ(i,) a isomeria de Iô será ausada para d = d. dw ( i) = dw ( i). d = i dw ( i) = d dw ( i) dw ( ) = ρ d i, i i, E enão usamos esa regra na expansão de Taylor mulivariada: dc = d + ds(1) + ds() +... S(1) S() C C + ½ ds(1) + ½ ds() +... S(1) S() C + ds(1) ds() +... S(1) S() Derivaivos - Alexandre Lowenkron Pág. 1

11 Exemplos Primeiro vamos resolver para o preço do aivo supondo a formulação geomérica para a dinâmica do aivo mas supondo que não há o ermo esocásico: ds() = µs()d ou sea, T s= A forma geral da solução de um processo geomérico será exponencial como esa. Agora vamos usar os resulados do lema de Iô para provar o conrário. Que se o preço de um aivo segue uma disribuição log-normal al que S() = S()e αt+σw(t) onde W(T) é normal (,T) T ds( s) = µ S( s) ds s= S( ) = S() e µ T Derivaivos - Alexandre Lowenkron Pág. 1 Vamos definir X() = αt+σw(t) S( ) = S() e sabemos : mas, S() e Exemplos Ou sea, se emos ds() = µs()d+ σs()dw(), o resulado será: S(T) = S()e X(T) X ( ) dx ( ) = αd + σdw f f ds( ) = d + dx X X ( ) ds( ) = + S() e X ( ) ( αd + σdw ) 1 ds( ) = α + σ S( ) d + σs( ) dw Onde X(T) é normal N[ (µ-1/ σ )T, σ T ] Dizemos que S(T) é lognormal. Queremos saber ds() = f(x()).lema de Iô!! = S( ) f + 1/ ( dx ) X + 1/ S() e X ( ) σ d Derivaivos - Alexandre Lowenkron Pág. 11

12 Exemplos 1. O preço de um fuuro de ação vence ndo em T G = S e r ( T ) dg = ( µ r) G d + σg dz. G = ln S dg σ = µ d + σ dz Derivaivos - Alexandre Lowenkron Pág. 3 1

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare : Renda Fixa Derivaivos - Alexandre Lowenkron Pág. Esruura a Termo das Taxas de Juros (curva de rendimeno Derivaivos - Alexandre Lowenkron

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 8: Derivaivos mais complexos: Tíulos com risco de crédio, Opções Americanas, sobre Índices, sobre Moedas, sobre Fuuros, com Duplo Indexador,

Leia mais

3 Processos Estocásticos

3 Processos Estocásticos 3 Processos Esocásicos Um processo esocásico pode ser definido como uma seqüência de variáveis aleaórias indexadas ao empo e ambém a evenos. É uma variável que se desenvolve no empo de maneira parcialmene

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

Apreçamento de Renda Variável usando abordagem não-determinística

Apreçamento de Renda Variável usando abordagem não-determinística GV INVEST 8 Apreçameno de Renda Variável sando abordagem não-deerminísica Aplicando-se ma abordagem não deerminísica para se separar as parcelas de cro e longo prazos na definição do preço da ação, concli-se

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária Dinâmica Esocásica Aula 9 Seembro de 015 Solução esacionária Bibliograia Capíulo 4 T. Tomé e M de Oliveira Dinâmica Esocásica e Irreversibilidade Úlima aula 1 Dedução da equação de Fokker-lanck Esudo da

Leia mais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais

2 Processos Estocásticos de Reversão à Média para Aplicação em Opções Reais Processos Esocásicos de Reversão à Média para Aplicação em Opções Reais Resumo Ese capíulo analisa alguns méodos usados na deerminação da validade de diferenes processos esocásicos para modelar uma variável

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / Professor: Rubens Penha Cysne. Lista de Exercícios 4 Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 207 Professor: Rubens Penha Cysne Lisa de Exercícios 4 Gerações Superposas em Tempo Conínuo Na ausência de de

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mestrado em Finanças e Economia Empresarial EPGE - FGV Derivativos Parte 5: Apreçamento de Opções: método binomial Derivativos - Alexandre Lowenkron Pág. Fundamentos de apreçamento: vetor de preços de

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Avaliação de Opções Asiáticas

Avaliação de Opções Asiáticas Universidade de Lisboa Faculdade de Ciências Deparameno de Maemáica ISCTE Business School Insiuo Universiário de Lisboa Deparameno de Finanças Avaliação de Opções Asiáicas Mesrado em Maemáica Financeira

Leia mais

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo Aplicação Uma famosa consuloria foi conraada por uma empresa que, enre ouras coisas, gosaria de enender o processo gerador relacionado às vendas de deerminado produo, Ainda, o conraane gosaria que a empresa

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

2 Referencial teórico 2.1. Modelo de Black

2 Referencial teórico 2.1. Modelo de Black Referencial eórico.1. Moelo e Black O moelo e Black (1976), uma variação o moelo e Black & Scholes B&S (1973), não só é amplamene uilizao no apreçameno e opções européias e fuuros e commoiies, ínices ec.,

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Modelos BioMatemáticos

Modelos BioMatemáticos Modelos BioMaemáicos hp://correio.fc.ul.p/~mcg/aulas/biopop/ edro J.N. Silva Sala 4..6 Deparameno de Biologia Vegeal Faculdade de Ciências da Universidade de Lisboa edro.silva@fc.ul.p Genéica opulacional

Leia mais

4 Filtro de Kalman. 4.1 Introdução

4 Filtro de Kalman. 4.1 Introdução 4 Filro de Kalman Ese capíulo raa da apresenação resumida do filro de Kalman. O filro de Kalman em sua origem na década de sessena, denro da área da engenharia elérica relacionado à eoria do conrole de

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara Insiuo de Física USP Física Moderna Aula 3 Professora: Mazé Bechara Aula 3 Bases da Mecânica quânica e equações de Schroedinger: para odos os esados e para esados esacionários. Aplicação e inerpreações.

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

3 Referencial teórico

3 Referencial teórico 3 Referencial eórico 3.1. Teoria das Opções Reais As opções reais propiciam uma análise das flexibilidades caracerísicas de deerminado projeo para que, conforme esa análise, um gerene enha um insrumeno

Leia mais

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener 25 3 Definições 3.1 Processos Estocásticos e Processo de Wiener Um processo estocástico corresponde a uma variável que evolui no decorrer do tempo de forma incerta ou aleatória. O preço de uma ação negociada

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Quinta aula. Ifusp, agosto de Equação de Langevin Movimento browniano

Quinta aula. Ifusp, agosto de Equação de Langevin Movimento browniano Dinâmica Esocásica Quina aula Ifusp, agoso de 16 Equação de Langevin Movimeno browniano Bibliografia: Dinâmica esocásica e irreversibilidade, T. Tomé e M. J. de Oliveira, Edusp, 14 Capíulo 3 Tânia Tomé

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Fluxos de Caixa Independentes no Tempo Média e Variância do Valor Presente Uso da Distribuição Beta Fluxos de Caixa Dependentes no Tempo Fluxos de

Fluxos de Caixa Independentes no Tempo Média e Variância do Valor Presente Uso da Distribuição Beta Fluxos de Caixa Dependentes no Tempo Fluxos de Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Valor Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com

Leia mais

4 Modelos teóricos para a ETTJ

4 Modelos teóricos para a ETTJ 4 Modelos eóricos para a ETTJ 4.1. Inrodução No capíulo 3, descrevemos e eemplificamos a ETTJ observada e alguns conceios a ela relacionados. Nesa seção, vamos descrever a eoria por rás dos modelos da

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO GUILHERME K. P. DE AGUIRRE MODELOS DINÂMICOS DE HEDGING: UM ESTUDO SOBRE A VOLATILIDADE

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO GUILHERME K. P. DE AGUIRRE MODELOS DINÂMICOS DE HEDGING: UM ESTUDO SOBRE A VOLATILIDADE FUNDAÇÃO GETÚLIO ARGA ECOLA DE ECONOMIA DE ÃO PAULO GUILHERME K. P. DE AGUIRRE MODELO DINÂMICO DE HEDGING: UM ETUDO OBRE A OLATILIDADE ÃO PAULO 01 GUILHERME K. P. DE AGUIRRE MODELO DINÂMICO DE HEDGING:

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

A entropia de uma tabela de vida em previdência social *

A entropia de uma tabela de vida em previdência social * A enropia de uma abela de vida em previdência social Renao Marins Assunção Leícia Gonijo Diniz Vicorino Palavras-chave: Enropia; Curva de sobrevivência; Anuidades; Previdência Resumo A enropia de uma abela

Leia mais

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade 3 Uma meodologia para validação esaísica da análise écnica: a busca pela homogeneidade Ese capíulo em como objeivo apresenar uma solução para as falhas observadas na meodologia uilizada por Lo e al. (2000)

Leia mais

Derivativos - MFEE Monitoria do dia 23/11/2009 Monitor: Rafael Ferreira

Derivativos - MFEE Monitoria do dia 23/11/2009 Monitor: Rafael Ferreira Derivativos - MFEE Monitoria do dia 3/11/009 Monitor: Rafael Ferreira Questão 1 11.3, Hull 5th ed. A company s cash position in millions of dollars follows a generalized Weiner process with a drift rate

Leia mais

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil

Fábio Luiz de Oliveira Bezerra 1 Av. Prof. Moraes Rego, 1235 Cidade Universitária CEP: Recife/PE Brasil AVALIAÇÃO DA ESTIMATIVA DO RISCO DE MERCADO DE AÇÕES E OPÇÕES DE COMPRA DA PETROBRÁS UTILIZANDO A METODOLOGIA VALUE AT RISK (VaR) COM SIMULAÇÃO DE MONTE CARLO Fábio Luiz de Oliveira Bezerra Av. Prof. Moraes

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Introdução aos Sinais

Introdução aos Sinais UNIVASF Análise de Sinais e Sisemas Inrodução aos Sinais Prof. Rodrigo Ramos godoga@gmail.com Classificação de Sinais Sinais Sinais geralmene ransporam informações a respeio do esado ou do comporameno

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ADMINISTRAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DISSERTAÇÃO DE MESTRADO NEGOCIAÇÃO ORIENTADA À VOLATILIDADE DE OPÇÕES SOBRE TAXA DE CÂMBIO DE

Leia mais

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores)

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores) INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Esaísica II - Licenciaura em Gesão Época de Recurso 6//9 Pare práica (quesões resposa múlipla) (7.6 valores) Nome: Nº Espaço reservado para a classificação (não

Leia mais

4 Modelo de fatores para classes de ativos

4 Modelo de fatores para classes de ativos 4 Modelo de aores para classes de aivos 4.. Análise de esilo baseado no reorno: versão original (esáica A análise de esilo baseada no reorno é um procedimeno esaísico que visa a ideniicar as ones de riscos

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

EXAME NACIONAL DE SELEÇÃO 2007

EXAME NACIONAL DE SELEÇÃO 2007 EXAME NACINAL E SELEÇÃ 007 PRVA E ESTATÍSTICA o ia: 8/0/006 - QUARTA FEIRA HRÁRI: 0h30 às h 45 (horário de Brasília) EXAME NACINAL E SELEÇÃ 007 o ia:8/0(quara-feira) Manhã:0:30h às h 45 ESTATÍSTICA Insruções.

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Derivativos - MFEE Monitoria do dia 30/11/2009 Monitor: Rafael Ferreira

Derivativos - MFEE Monitoria do dia 30/11/2009 Monitor: Rafael Ferreira Derivativos - MFEE Monitoria do dia 30//009 Monitor: Rafael Ferreira Questão Suponha que a lei de movimento de uma ação siga o movimento geométrico browniano: ds t = µs t dt + σs t dw t Você irá apreçar

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Circuitos elétricos oscilantes. Circuito RC

Circuitos elétricos oscilantes. Circuito RC Circuios eléricos oscilanes i + - Circuio C Processo de carga do capacior aé V c =. Como C /V c a carga de euilíbrio é C. Como variam V c, i e durane a carga? Aplicando a Lei das Malhas no senido horário

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman IV. MEODOLOGIA ECONOMÉRICA PROPOSA PARA O CAPM CONDICIONAL 4.1. A Função Máxima Verosimilhança e o Algorimo de Bernd, Hall, Hall e Hausman A esimação simulânea do CAPM Condicional com os segundos momenos

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

2. Referencial teórico

2. Referencial teórico Referencial eórico 1 Processos esocásicos De acordo com Hull (1998) qualquer variável cujo valor mude de maneira incera com o empo segue um processo esocásico Muias variáveis subjacenes a projeos podem

Leia mais

Considere uma economia habitada por um agente representativo que busca maximizar:

Considere uma economia habitada por um agente representativo que busca maximizar: 2 Modelo da economia Uilizaram-se como base os modelos de Campos e Nakane 23 e Galí e Monacelli 22 que esendem o modelo dinâmico de equilíbrio geral de Woodford 21 para uma economia abera Exisem dois países:

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

4 Método de geração de cenários em árvore

4 Método de geração de cenários em árvore Méodo de geração de cenários em árvore 4 4 Méodo de geração de cenários em árvore 4.. Conceios básicos Uma das aividades mais comuns no mercado financeiro é considerar os possíveis esados fuuros da economia.

Leia mais

3 Modelo Teórico e Especificação Econométrica

3 Modelo Teórico e Especificação Econométrica 3 Modelo Teórico e Especificação Economérica A base eórica do experimeno será a Teoria Neoclássica do Invesimeno, apresenada por Jorgensen (1963). Aneriormene ao arigo de Jorgensen, não havia um arcabouço

Leia mais

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES 8//7 SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES Teorema: Considere o seguine sisema de k equações a diferenças lineares de primeira ordem, homogêneo: x a x a x... a x k k x a x a x... a x k k x a x a x...

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

2 Conceitos Básicos. 2.1 Alguns Conceitos Básicos de Mercado Futuro

2 Conceitos Básicos. 2.1 Alguns Conceitos Básicos de Mercado Futuro Conceios Básicos.1 Alguns Conceios Básicos de Mercado Fuuro Uma operação de mercado Fuuro pode ser enendida basicamene como um compromisso de compra ou venda de deerminado aivo em cera daa fuura, sendo

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1)

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (V) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Esaísica Prof. Daniel Furado Ferreira 11 a Teoria da Decisão Esaísica 1) Quais são os erros envolvidos nos eses de hipóeses? Explique. 2) Se ao realizar um

Leia mais

2 Reforma Previdenciária e Impactos sobre a Poupança dos Funcionários Públicos

2 Reforma Previdenciária e Impactos sobre a Poupança dos Funcionários Públicos Reforma Previdenciária e Impacos sobre a Poupança dos Funcionários Públicos Em dezembro de 998 foi sancionada a Emenda Consiucional número 0, que modificou as regras exisenes no sisema de Previdência Social.

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais