Intervalos de confiança baseados em Deviance para os hiperparâmetros em modelos estruturais. Thiago Barbosa Ceccotti

Tamanho: px
Começar a partir da página:

Download "Intervalos de confiança baseados em Deviance para os hiperparâmetros em modelos estruturais. Thiago Barbosa Ceccotti"

Transcrição

1 Inervalos de confiança baseados em Deviance para os hiperparâmeros em modelos esruurais Thiago Barbosa Ceccoi

2 Universidade Federeal de Minas Gerais Insiuo de Ciências Exaas Deparameno de Esaísica Inervalos de confiança baseados em Deviance para os hiperparâmeros em modelos esruurais Thiago Barbosa Ceccoi Disseração apresenada ao Programa de Pós-Graduação em Esaísica da Universidade Federal de Minas Gerais para a obenção do íulo de Mesre em Esaísica.

3 Resumo Ese rabalho se propõe a comparar diferenes procedimenos para a obenção de inervalos de confiança para os hiperparâmeros em modelos esruurais. As meodologias geralmene empregadas incluem méodos baseados na disribuição assinóica dos esimadores de máxima verossimilhança, assim como inervalos uilizando a écnica boosrap. Conudo, o primeiro méodo apresena problemas de froneira para parâmeros de variância, além de não ser eficaz com dados não gaussianos e o segundo em um alo cuso compuacional. Ese rabalho apresena rês méodos para a consrução de inervalos de confiança baseados em verossimilhança. O primeiro é uma aproximação de uma região de confiança a parir do ese da razão de verossimilhança, o segundo é um inervalo de confiança marginal e o erceiro é baseado na função signed roo deviance profile. Eses méodos visam conornar problemas do méodo assinóico no caso de pequenas amosras e problemas de froneira do inervalo, além de serem alernaivas compuacionalmene menos cusosa que o méodo boosrap. É feia uma comparação, via simulação Mone Carlo, buscando esabelecer as vanagens e desvanagens de cada méodo. De maneira geral, pode-se concluir que o méodo assinóico não é recomendado para casos não-gaussianos e que o inervalo signed roo deviance profile é o méodo com melhores coberuras e apresena um empo compuacional expressivamene menor que o inervalo boosrap, ambém uilizado na lieraura para a consrução de inervalos de confiança. Esa disseração inroduz na lieraura um novo ipo de inervalo de confiança para os hiperparâmeros dos modelos esruurais, onde além de se eviar os problemas de froneira do méodo assinóico ganha-se em empo compuacional frene ao méodo alernaivo boosrap, sem perder a assimeria presene nese. Eses novos inervalos apresenam ambém melhores coberuras para os hiperparâmenros e funcionam muio bem para séries emporais pequenas. i

4 Absrac The objecive of his work is o compare differen confidence inerval procedures for hyperparameers of srucural models. The usual procedures include he asympoic mehod, based on he asympoic disribuiion of he maximum likelihood esimaor, as well as a boosrap based confidence inerval. This work presens hree mehods based on he likelihood es. The firs is a marginal aproximaion of confidence regions, he second is based on he profile deviance funcion and he hird mehod is he Signed roo Deviance Profile. Those mehods avoid he problems associaed wih he asympoic mehod for small samples, as inervals generaed ouside he parameric space. They are also an alernaive for boosrap mehods, being compuaionaly more efficien. A comparison is performed, via Mone Carlo simulaion, in order o esablish advanages and disadvanages for each mehod. The resuls show ha hese mehods possess a beer coverage rae han he asympoic and boosrap procedures. ii

5 Agradecimenos Expresso aqui minha graidão a odos os professores que me ajudaram e moivaram nese caminho, principalmene à Prof a. Glaura Franco e ao Prof. Thiago Rezende meus orienadores de mesrado. Agradeço aos colegas de mesrado e aos funcionários da secrearia, sempre disposos a ajudar e comparilhar experiências. Às iniuições de fomeno à pesquisa que fazem possível uma melhora cienífica no Brasil. Agradeço ambém a paciência, compreensão e ajuda de amigos e familiares. iii

6 Wha! you have solved i already? Well, ha would be oo much o say. I have discovered a suggesive fac, ha is all. I is, however, very suggesive. The deails are sill o be added. Sherlock Holmes, Sign of Four iv

7 Lisa de Figuras 2.1 Exemplo MNL. Série do consumo de elericidade na região nordese do Brasil Exemplo MTL. Série do logarimo naural do índice do cuso de vida na cidade de São Paulo Exemplo MEB. Série do logarimo naural da precipiação de SO 4 em Nova Iorque Exemplo de consrução da RC para (σ 2 η, σ 2 ɛ ) usando a RV Exemplo de consrução da RC aproximada para (σ 2 η, σ 2 ɛ ) usando o ICM, represenado pelo reângulo Exemplo de consrução do ICD para o parâmero σ 2 η Exemplo de consrução do ICS para o parâmero σ 2 η Exemplo de consrução do ICS para o parâmero σ 2 η Gráfico do ajuse (linha racejada) do MEB à série da log-receia arrecadada pelas EAPC (linha conínua) Hisograma para as esimaivas de σ 2 η obidas nas séries boosrap Análise de resíduos do modelo ajusado à série EAPC Série da log-incidência de casos de dengue em Belo Horizone Hisograma dos dados da Dengue Gráfico do ajuse (linha racejada) do MEB à série da Dengue (linha conínua) Análise de resíduos da série ajusada v

8 Lisa de Tabelas 5.1 Coberuras dos inervalos proposos para uma amosra de amanho n = Resulados da simulação MC para o MNL com erros Normais para as observações Resulados da simulação MC para o MTL com erros Normais para as observações Resulados da simulação MC para o MEB com erros Normais para as observações Tempo, em minuos, necessário para 1000 simulações dos IC nos modelos MNL, MTL e MEB Resulados da simulação MC para o MNL com erros Gama para as observações Resulados da simulação MC para o MTL com erros Gama para as observações Resulados da simulação MC para o MEB com erros Gama para as observações Tempo, em minuos, necessário para 1000 simulações dos IC nos modelos MNL, MTL e MEB com erro Gama nas observações Esimaiva de máxima verossimilhança dos hiperparâmeros, mediana, média e erro padrão das esimaivas dos hiperparâmeros das séries boosrap Inervalos de confiança para a série da log-receia arrecadada pelas EAPC Esimaiva de máxima verossimilhança dos hiperparâmeros, mediana, média e erro padrão das esimaivas dos hiperparâmeros das séries boosrap Inervalos de confiança para a série da log-incidência dos casos de dengue em Belo Horizone vi

9 Abreviauras EMV Esimador de Máxima Verossimilhança ME Modelos Esruurais MNL Modelo de Nível Local MTL Modelo de Tendência Linear Local MEB Modelo Esruural Básico FEE Forma de Espaço de Esados FK Filro de Kalman BFGS Algorimo Broyden-Flecher-Goldfarb-Shanno ICA Inervalo de Confiança Assinóico ICB Inervalo de Confiança Boosrap Percenílico IC Inervalo de Confiança RC Região de Confiança ICM Inervalo de Confiança Marginal ICD Inervalo de Confiança baseado na esaísica Deviance ICS Inervalo de Confiança Signed Roo Deviance Profile MC Mone Carlo vii

10 Sumário 1 Inrodução 2 2 Modelos Esruurais Inervalos de Confiança Assinóicos Inervalos de Confiança Boosrap Inervalos de confiança baseados na função deviance Inervalo de Confiança baseado na esaísica Deviance Inervalo Signed Roo Deviance Profile Méodos compuacionais Méodo numérico para cálculo da mariz de informação de Fisher Méodo Pégaso para obenção de raízes Busca Binária Esudo Mone Carlo Resulados para os erros com disribuição gaussiana Resulados para erros com disribuição não-gaussiana Aplicações Receia arrecadada pelas EAPC Log-incidência de casos de dengue em Belo Horizone Conclusões 35 Referências 35 1

11 Capíulo 1 Inrodução Uma série emporal é um conjuno de dados coleados e ordenados no empo. Séries emporais aparecem consanemene no coidiano, por exemplo em dados meeorológicos, axas de desemprego e preços de ações, assim como nas áreas de processamenos de sinais, finanças e para moniorameno epidemiológico, enre ouras. Exisem várias meodologias para a modelagem dese ipo de dados. Enre as mais conhecidas, desacam-se o alisameno exponencial, desenvolvido por Hol(1957) e Winers(1960), os modelos de Box & Jenkins (1976) e os modelos esruurais (Harvey,1989). Por ser um modelo que decompõe a série em componenes não-observáveis como sazonalidade, nível e endência, os modelos esruurais êm uma inerpreação mais inuiiva. Uma comparação da previsão de valores fuuros usando os modelos esruurais e os de Box & Jenkins mosra bons argumenos a favor do primeiro, segundo rabalho de Harvey & Todd (1983), um fao imporane, viso que a modelagem de séries emporais preende, em geral, prever valores fuuros. O mesmo rabalho mosra que a meodologia de Box & Jenkins pode apresenar problemas em séries pequenas gerando um modelo inapropriado. Assim, nese rabalho serão uilizados os modelos esruurais (Harvey, 1989). Eses modelos uilizam a forma de espaço de esados e o filro de Kalman (Kalman, 1960) para a consrução da função de verossimilhança. Sob a abordagem Bayesiana eses modelos são conhecidos como modelos dinâmicos (Wes & Harrison, 1997). As variâncias das disribuições desas componenes não-observáveis, de nível, endência, sazonalidade e erro, são dias hiperparâmeros. Ese esudo foca na consrução de inervalos de confiança para eses hiperparâmeros. A forma usual para calcular inervalos de confiança para os hiperparâmeros é baseada na disribuição assinóica do esimador de máxima verossimilhança (EMV). Conudo, para amosras pequenas, o EMV pode não saisfazer as propriedades assinóicas (Pfanzagl, 1994). Ese problema já foi discuido para o caso dos modelos esruurais em Quenneville & Singh (2000) e em Pfeffermann & Tiller (2005). Sendo assim, é necessário buscar ouras maneiras para calcular inervalos além do méodo assinóico. Uma oura opção para consrução de inervalos de confiança é uilizar o méodo de reamosragem boosrap (Efron, 1979). Uma adapação dese aos modelos esruurais, e ouros 2

12 modelos que possam ser escrios na forma de espaço de esados, foi feia por Soffer & Wall (1991). O rabalho deses auores possibiliou a consrução de inervalos de confiança boosrap para os parâmeros de esado (Pfeffermann & Tiller, 2005; Rodriguez & Ruiz, 2012), para as observações fuuras (Rodriguez & Ruiz, 2009) e para os hiperparâmeros (Franco e. al, 2008). Uma oura possibilidade para obenção de inervalos de confiança é baseada na disribuição assinóica do ese da razão de verossimilhança (Wilks, 1938), que é mais robuso para amosras pequenas. Ese méodo é conhecido como inervalo de confiança baseado na função deviance. Espera-se que eses inervalos sejam compuacionalmene mais eficienes que os consruídos pelo méodo boosrap, que necessia um processo de maximização da verossimilhança para cada reamosra. Esa eficiência é de imporância para análises de séries econômicas, por exemplo, onde decisões devem ser omadas em empo hábil. Além disso, ese méodo é araivo, pois permie que os inervalos de confiança sejam assiméricos e não enham problemas de froneira como os inervalos de confiança assinóicos. Ese méodo baseado na verossimilhança já foi uilizado na lieraura em análise de dados genéicos (Neale & Miller, 1997), para resolver o problema de separação em regressões logísicas (Heinze & Schemper, 2002), para a consrução de inervalos na presença de parâmeros de perurbação (Rolke e al., 2005) e comparado com o méodo boosrap para esimadores de população do ipo capura-recapura (Evans e al, 1996; Gimenez e al., 2005), enre ouros. Conudo, eses inervalos ainda não foram uilizados em modelos esruurais. Além do inervalo baseado na função deviance, serão avaliados ambém os inervalos consruídos via signed roo deviance profile (Chen & Jennrich, 1996). Uma vanagem dese méodo sobre o de verossimilhança usual é que os inervalos reornados por ele são de fácil inerpreação e não necessiam de um processo de maximização em dois passos. Ese ambém é um méodo ainda não aplicado aos modelos esruurais. Desa forma, ese rabalho preende aplicar e comparar os diversos méodos ciados acima quano à coberura e ampliude dos inervalos de confiança para os hiperparâmeros em modelos esruurais, via simulações Mone Carlo. Preende-se ambém esimar o empo compuacional gaso por cada um deles, faciliando a escolha deses méodos em casos reais onde empo de processameno é uma variável imporane. Esa disseração raará no Capíulo 2 sobre os Modelos Esruurais: a forma de espaço de esados e o filro de Kalman, consrução de inervalos de confiança assinóicos e os inervalos boosrap. No Capíulo 3 é feia uma descrição sobre os inervalos baseados em verossimilhança e o signed roo deviance profile. Seguindo com uma explicação dos méodos compuacionais no Capíulo 4 e simulações no Capíulo 5, aplicações a séries de dados reais no Capíulo 6 e concluindo no capíulo final com uma comparação enre os méodos. 3

13 Capíulo 2 Modelos Esruurais A decomposição de uma série emporal y via Modelos Esruurais (ME), em ermos de suas componenes não observáveis é dada por: y = µ + β + γ + ɛ ; ɛ N(0, σ 2 ɛ ), para = 1, 2,..., n, onde µ represena o nível, β sua endência e γ a componene sazonal de y. Os modelos mais simples são o Modelo de Nível Local (MNL), o Modelo de Tendência Linear local (MTL) e o Modelo Esruural Básico (MEB), já revisados em dealhe por Harvey (1990). Uma série y, = 1, 2,..., n que, aparenemene, oscile em orno de um nível consane pode ser simplesmene modelada por um MNL (ver Figura 2.1) y = µ + ɛ ; ɛ N(0, σ 2 ɛ ) µ = µ 1 + η ; η N(0, σ 2 η) onde ɛ e η são não-correlacionados para = 1, 2,..., n. Figura 2.1: Exemplo MNL. Série do consumo de elericidade na região nordese do Brasil. 4

14 Caso ese nível varie linearmene com o empo, uma modelagem via o MTL é indicada (ver Figura 2.2) y = µ + ɛ ; ɛ N(0, σɛ 2 ) µ = µ 1 + β 1 + η ; η N(0, ση) 2 β = β 1 + ξ ; ξ N(0, σξ) 2 onde ξ,ɛ e η são muuamene não-correlacionados para = 1, 2,..., n. Figura 2.2: Exemplo MTL. Série do logarimo naural do índice do cuso de vida na cidade de São Paulo. O MEB é o MTL acrescido de uma componene sazonal (ver Figura 2.3) y = µ + γ + ɛ ; ɛ N(0, σ 2 ɛ ) µ = µ 1 + β 1 + η ; η N(0, σ 2 η) β = β 1 + ξ ; ξ N(0, σ 2 ξ) γ = γ 1... γ (s 1) + ω ; ω N(0, σ 2 ω) onde s indica o número de períodos sazonais, e ω, ξ,ɛ e η são muuamene não-correlacionados para = 1, 2,..., n. Generalizando, pode-se escrever eses modelos básicos na forma de espaço de esados (FEE), o que reduz o número de equações e abrange uma classe maior de modelos, como a regressão linear, modelos ARMA e aé mesmo modelagem de séries mulivariadas. As equações da FEE são: y = z T α + ɛ ; ɛ N(0, h ) α = T α 1 + R η ; η N(0, Q ), onde = 1, 2,..., n, η é um veor de ruídos não correlacionados, com mariz de covariância Q diagonal e independene de ɛ ; T e R são marizes que indenificam o modelo e z um veor que idenifica o modelo. (1) 5

15 Figura 2.3: Exemplo MEB. Série do logarimo naural da precipiação de SO 4 em Nova Iorque. Noe que α é o veor que indica os componenes não observáveis do modelo, que podem ser esocásicos ou deerminísicos. A equação para y é conhecida como equação das observações e, para α, equação de esado. Além disso o veor de esados inicial α 0 é al que E(α 0 ) = a 0, var(α 0 ) = P 0 e E(η α ) = 0,. Nese rabalho é suposa homocedasicidade, h = h e Q = Q. Esudos sobre a modelagem e idenificação de modelos heeroscedasicos podem ser enconrados em Broo & Ruiz (2009). Para ilusrar a FEE, serão apresenados os MNL, MTL e MEB nesa forma. A FEE aplicada ao MNL é escria com as seguines variáveis: z T = 1, ɛ = ɛ, h = σ 2 ɛ, R = 1, T = 1, η = η, Q = σ 2 η, α = µ. Já para o MTL, fica claro que T e Q são marizes e α e z veores: z T = [1 0], ɛ = ɛ, h = σɛ 2, R = 1, [ ] [ ] [ ] 1 1 η σ 2 T =, η 0 1 =, Q ξ = η 0 0 σξ 2, α = [ µ β ]. 6

16 Finalmene, o MEB com s períodos sazonais apresena as seguines marizes: ση 2 µ σ 2 ξ 0 β σω 2 γ Q = 0, α = γ 1, h = σɛ 2, γ s+2 (s+1)x(s+1) (s+1)x η ξ 0 T = ω, η =, z T 1 = (s+1)x1 (s+1)x(s+1) R = 1, ɛ = ɛ, onde s é o número de períodos sazonais e 0 uma mariz de zeros. O Filro de Kalman (FK) (Kalman,1960) decompõe a série aravés de equações recursivas que aualizam sequencialmene o veor de esado α, não observado, baseado na informação Y 1 = {y 1, y 2,..., y 0 } disponível aé o empo 1. A esperança e a variância condicionais de α e y são dadas, respecivamene, por: a 1 = E(α Y 1 ) = T E(α Y ) = T a 1 P 1 = var(α Y 1 ) = T var(α 1 Y 1 )T T + R Q R T = T P 1 T T + R Q R T E(y Y 1 ) = z T a 1 F = var(y Y 1 ) = z T P 1 z + h. Para se ober as equações de aualização usa-se propriedades da disribuição normal mulivariada. [ Sejam] X e Z variáveis aleaórias ais que (X, Z) N(µ, Σ), onde µ = (µ 1, µ 2 ) T Σ11 Σ e Σ = 12. Enão, (X Z = c) N(µ Σ 21 Σ 1 2, Σ 1 2 ), onde µ 1 2 = µ 1 + Σ 12 Σ 1 22 (c µ 2 ) 22 e Σ 1 2 = Σ 11 Σ 12 Σ 1 22 Σ 21. Assim, omando X = α e Z = y obém-se as equações de aualização dos esimadores para α condicionados na informação disponível, Y : T (s+1)x1, a = E(α Y ) = a 1 + T 1 +1K υ P = var(α Y ) = P 1 P 1 z F 1 z T P 1, onde υ = y z T a 1 é o erro de previsão a um passo à frene e K = T +1 P 1 z F 1 mariz de ganho de Kalman. é a 7

17 Assim, segundo Harvey (1989) as equações simplificadas para o FK são: F = z T P 1 z + h K = T +1 P 1 z F 1 υ = y z T a 1 a +1 = T +1 a 1 + K υ P +1 = T +1 P 1 T T +1 K F K T + R +1 Q +1 R T +1. Com o FK é possível consruir a função de verossimilhança, de onde pode-se esimar os hiperparâmeros ψ = (h, Q 11,..., Q (p 1)(p 1) ) T ɛ R p +, onde p é o número de parâmeros do modelo. No caso do MEB, por exemplo: ψ = (h, Q 11, Q 22, Q 33 ) = (σ 2 η, σ 2 ɛ, σ 2 ξ, σ2 ω). A função de log-verossimilhança obida pelo FK é: logl(ψ; Y ) = n 2 log(2π) 1 2 Σn =1log F 1 υ 2 Σn 2 =1, F que por ser não-linear em ψ deve ser maximizada via méodos numéricos. Nese rabalho é usado o algorimo Broyden-Flecher-Goldfarb-Shanno (BFGS) (Shanno,1970). 2.1 Inervalos de Confiança Assinóicos Obidas as esimaivas de máxima verossimilhança para ψ, denoadas por ˆψ, pode-se consruir o inervalo de confiança assinóico (ICA). Usando o fao de que para grandes amosras ˆψ N(ψ, I 1 (ψ)), onde I(ψ) é a mariz de informação de Fisher e I kk seus elemenos da diagonal principal, o ICA para ψ k ; k = 1, 2,..., p, com nível 100(1 ρ)% é dado por: [ ˆψk z ρ/2 I 1 kk ( ˆψ); onde z ρ/2 é o quanil ρ/2 da Normal padrão. ˆψk + z ρ/2 I 1 kk ( ˆψ)) ], Conudo, o cálculo da mariz de informação de Fisher não é uma arefa rivial e para modelos complexos, como os discuidos nese rabalho, uiliza-se uma aproximação desa mariz para o cálculo do ICA. Harvey (1989) mosrou que a mariz de informação de Fisher esperada para os modelos esruurais é dada por: I ij (ψ) = 1 2 [ ( r F 1 F F 1 F )] ψ i ψ j [ + E T υ ψ i F 1 υ ] ; ψ j onde i, j = 1, 2,..., p, = 1, 2,..., n e r(a) é o raço da mariz A. Para o cálculo desa mariz, Harvey(1989) propôs uma forma numérica para o cálculo das derivadas de υ e F, faciliando assim o cálculo da mariz de informação. Ese méodo é 8

18 apresenado em dealhes no Capíulo 4. Uma oura aproximação baseada em um algorimo recursivo, para o cálculo da mariz de informação de Fisher, pode ser visa em Cavanaugh & Shumway (1996). Além da dificuldade com o cálculo da mariz hessiana, é esperado que, para amosras pequenas, as propriedades assinóicas do EMV não sejam saisfeias. Assim o ICA pode apresenar problemas diversos, como inervalos com limies fora do espaço paramérico o que é conhecido como problema de froneira. Além diso, por ser um inervalo simérico, pode não capar possiveis assimerias da disribuição do EMV. Para sanar o problema de froneira cosuma-se uilizar ransformações nos parâmeros, consruindo-se inervalos para ese novo parâmero ransformado, por exemplo via méodo dela, e depois reescalando ese inervalo para volar à escala original. Uma ransformação comum para parâmeros de variância, σ 2, é a uilização do logarimo naural. Uma vanagem desa ransformação é reduzir a assimeria da função de verossimilhança na direção de σ 2. Além disso, aplicando a função exponencial para reornar o inervalo para a escala de σ 2 obém-se um inervalo de confiança (IC) denro do espaço paramérico. Assim o ICA para log( ψ k ); k = 1, 2,..., p, com nível 100(1 ρ)% é dado por: [ log( ˆψ k ) z ρ/2 I 1 kk ( ˆψ)/(2 ˆψ k ); log( ˆψ k ) + z ρ/2 I 1 kk ( ˆψ)/(2 ˆψ ] k ), onde z ρ/2 é o quanil ρ/2 da Normal padrão. O ICA ransformado, para ψ, em como exremos (e LI ) 2 e (e LS ) 2, onde LI é o limie inferior do ICA para log( ψ k ) e LS é o limie superior dese mesmo inervalo. Esa abordagem apresena, conudo, um problema quando o valor da esimaiva ˆψ k é muio pequeno. Nese caso, ela pode gerar inervalos para ψ k com valores exremos, por exemplo endendo a infinio. Frene a esas dificuldades do ICA, ais como problemas de cálculo numérico, de froneira e amosras pequenas, ouros méodos para consrução dos IC são esudados. 2.2 Inervalos de Confiança Boosrap É esperado que, para amosras pequenas, o EMV não aenda às propriedades assinóicas, logo o ICA pode apresenar vários problemas. Uma alernaiva neses casos é uilizar o méodo boosrap para consruir a disribuição empírica do EMV. O boosrap é um méodo de reamosragem proposo por Efron (1979). Para al reamosragem exisem duas opções: reamosrar da disribuição geradora dos dados, caso conhecida, ou reamosrar denro da amosra. Esa úlima forma é conhecida como boosrap não-paramérico, que será o uilizado nese rabalho por ser uma écnica mais geral. Ese méodo baseia-se no fao de que a disribuição boosrap F converge, em probabilidade quando o número de replicações boosrap ende ao infinio, para a disribuição empírica esimada dos dados ˆF. Esa por sua vez converge, em probabilidade quando o amanho 9

19 amosral ende ao infinio, para a disribuição dos dados F (Efron & Tibshirani, 1993). As reamosras são obidas supondo que cada observação enha igual massa de probabilidade, dia disribuição empírica ˆF. Seja X = (X 1, X 2,..., X n ) uma amosra aleaória de uma disribuição qualquer. A amosra boosrap é calculada com reposição sobre a amosra original e é represenada como X = (X 1, X 2,..., X n). A proposa original do boosrap supõe independência enre as observações. Como dados de uma série emporal carregam inerdependência é necessário fazer uma adapação do méodo original. No caso de modelos esruurais, Soffer & Wall (1991) propuseram consruir as séries boosrap aravés de reamosragem dos resíduos do modelo ajusado. O méodo é apresenado a seguir. Do FK, enconram-se as inovações υ N(0, F ). Noe que o FK reorna eses valores para valores fixos dos hiperparâmeros, υ = υ (ψ). Padronizando as inovações de forma a garanir média 0 e variância 1, em-se: e ( ˆψ) = υ ( ˆψ) ῡ ( ˆψ) F ( ˆψ), onde = 1,..., n e ˆψ é o EMV de ψ. Reamosrando de e ( ˆψ) em-se os erros boosrap e ( ˆψ), que serão uilizados nas equações do FK para gerar y. Seja S = [a, y 1 ] T, onde a é uma esimaiva para o veor de esados α. Tome S +1 = [ T 0 z 0 ] S + [ ] T υ z T F 1 F F e. (2) Subsiuindo e por e em (2) calcula-se y. Usa-se, enão, o FK em y para ober a função de verossimilhança e, a seguir, as esimaivas de máxima verossimilhança dos hiperparâmeros na série boosrap. Inervalos de confiança boosrap podem ser consruídos pelo méodo percenílico (ICB) (Efron & Tibshirani, 1993). Nesse méodo geram-se B séries y, com suas B esimaivas boosrap de ˆψ, ˆψ. Um ICB para ψ k ; k = 1,..., p, com 100(1 ρ)% de confiança, é simplesmene [ ˆψ k( ρ 2 ); ˆψ k(1 ρ 2 )], ou seja, os percenis ρ e (1 ρ ) da disribuição boosrap de ˆψ 2 2 k. O ICB não apresena problemas de froneira e pode ser assimérico. 10

20 Capíulo 3 Inervalos de confiança baseados na função deviance O méodo assinóico para consruir inervalos de confiança é baseado na disribuição assinóica do EMV. Conudo, a disribuição do EMV em amosras pequenas pode diferir da disribuição assinóica. Além disso, por ser um inervalo simérico, o ICA pode coner valores fora do espaço paramérico, o que é conhecido como problema de froneira. Sabe-se ambém que o boosrap pode ser compuacionalmene muio cusoso caso sejam necessárias muias reamosragens. Uma alernaiva mais robusa para amosras pequenas pode ser derivada da razão de verossimilhança. Seja θ um veor de parâmeros de dimensão p e ˆθ o seu EMV. Considere o seguine ese de hipóese: H 0 : θ = θ 0 H 1 : θ θ 0. Tome ˆθ 0 como sendo o EMV para θ sob H 0. A razão Λ = L(ˆθ 0 ) L(ˆθ) é chamada de razão de verossimilhança (RV). Desa forma, uma região de confiança (RC) para θ com 100(1 ρ)% de confiança pode ser obida pelos valores de θ que saisfazem 2log(Λ) χ 2 ρ(p) onde χ 2 ρ(p) é o quanil ρ da disribuição Qui-quadrado com p graus de liberdade (Wilks, 1938). A Figura 3.1 mosra um exemplo para o limie da região de confiança de 95% obida para um MNL (θ = (ση, 2 σɛ 2 ) = (0, 5; 1)), iso é, as raízes da função 2log(Λ) χ 2 0,05(2). Conudo, regiões de confiança não êm uma fácil inerpreação e seu cuso compuacional pode ser alo. Logo uma possível alernaiva é consruir IC marginais para cada parâmero fixando os parâmeros desconhecidos nas suas respecivas EMV. Desa forma, a 11

21 Figura 3.1: Exemplo de consrução da RC para (σ 2 η, σ 2 ɛ ) usando a RV. função 2log(Λ) fica em função de um único parâmero e, consequenemene, é uilizada a disribuição Qui-quadrado com 1 grau de liberdade (p = 1). Eses serão os inervalos uilizados na simulação, realizada no Capíulo 5 denoados como inervalos de confiança marginais (ICM). Por exemplo no caso do MNL, um ICM para ση 2 com 100(1 ρ)% de confiança é composo pelos valores de ση 2 que saisfazem ( L(σ 2 η, ˆσ 2 ) ɛ ) 2log χ 2 L(ˆσ η, 2 ˆσ ɛ 2 ) ρ(1). A coberura do ICM pode ambém ser aferida na região gerada pela inerseção de odos os inervalos marginais para cada parâmero, de forma que odos erão a mesma coberura. Esa inerseção dos ICM é uma aproximação da região de confiança que seria gerada com a disribuição χ 2 (p). A Figura 3.2 mosra um exemplo para os inervalos de confiança de 95% aproximados obidos para os parâmeros ση 2 e σɛ 2 de um MNL (θ = (ση, 2 σɛ 2 ) = (0, 5; 1)) junamene com a RC já apresenada na Figura 3.1. A alura do reângulo represena o ICM para σɛ 2 e sua largura represena o ICM para ση. 2 O ICM, considerando χ 2 0,05(1), para ση 2 foi [0,07; 0,74] e para σɛ 2 foi [0,72; 1,77]. Pode-se observar que o ICM gera uma subesimação da RC uma vez que foi usado 1 grau de liberdade. 12

22 Figura 3.2: Exemplo de consrução da RC aproximada para (σ 2 η, σ 2 ɛ ) usando o ICM, represenado pelo reângulo. 3.1 Inervalo de Confiança baseado na esaísica Deviance Quando um modelo esaísico é consruído para explicar as relações enre as variáveis do esudo pode haver o ineresse em inferir sobre apenas pare do veor paramérico para a compreensão do fenômeno em esudo. Nese caso, pode-se definir um veor de parâmeros de ineresse (λ) e um veor de parâmeros de perurbação (δ), al que θ = (λ, δ) é o veor de parâmeros do modelo. Por exemplo, seja o veor paramérico dado por θ = (θ 1, θ 2,..., θ p ). Nese caso, pode-se omar λ = θ k como parâmero de ineresse e δ = θ ( k), ou seja o veor θ sem a k-ésima componene, como parâmero de perurbação. A função Deviance, dada por D(θ k ) = 2[logL(θ k, θ ( k) ) logl(ˆθ)] em disribuição χ 2 (1). O valor θ( k) é o EMV da função de verossimilhança resria a θ k fixado no valor que deseja-se calcular a Deviance. Desa maneira, como cada avaliação de D(θ k ) necessia de uma maximização para enconrar θ ( k) é compuacionalmene mais ineressane considerar θ ( k) fixo no EMV irresrio ˆθ ( k). Esa aproximação desconsidera possíveis não-orogonalidades enre os parâmeros. Para os modelos esruurais θ = ψ = (h, Q 11,..., Q (p 1)(p 1) ) T, logo um inervalo de confiança para ψ k, com 100(1 ρ)% de confiança, é composo pelos valores de ψ k que saisfazem 13

23 D(ψ k ) = 2[logL(ψ k, ˆψ ( k) ) logl( ˆψ)] χ 2 ρ(1), em que ˆψ ( k) é o EMV irresrio de ψ ( k). Os exremos do inervalo são os valores de ψ k que saisfazem a igualdade D(ψ k ) = χ 2 ρ(1), logo é necessário um algorimo para enconrar o zero da função. Eses serão os inervalos uilizados na simulação realizada na Seção 5, denoados como inervalos de confiança baseados na esaísica Deviance (ICD). A Figura 3.3 mosra um exemplo para o quanil χ 2 0,05(1) = 3, 84, enconrando as raízes da função D(σ 2 η) para o MNL (ψ = (0, 5; 1)). Os limies inferior e superior do IC são os valores de σ 2 η que saisfazem a igualdade D(σ 2 η) = χ 2 0,05(1). Figura 3.3: Exemplo de consrução do ICD para o parâmero σ 2 η. Um algorimo robuso, simples e compeiivo em relação a méodos mais complexos é o Méodo Pégaso para obenção de raízes (Dowell & Jarra, 1972), que será descrio em dealhes no Capíulo 4. Espera-se ambém que ese méodo seja mais rápido que o méodo boosrap, uma vez que a função de verossimilhança já foi consruida usando o FK e não será necessário fazer várias reamosragens boosrap seguidas de maximização das novas funções de verossimilhança. Para simplificar os cálculos, acabou-se usando aproximações no ICM e no ICD. A diferença enre eles, basicamene, é a coberura e a região. No ICM é consruída uma RC e a coberura aferida nela, enquano no ICD são consruídos IC para cada hiperparâmero e a coberura é aferida em cada um deles separadamene. 14

24 3.2 Inervalo Signed Roo Deviance Profile Uma alernaiva ao ICD é o IC Signed Roo Deviance Profile (Chen & Jennrich, 1996), baseado na esaísica sinal da razão de verossimilhança, sinal(θ ˆθ) L(ˆθ 0 ) (Barndorff-Nielsen, L(ˆθ) 1986). Seja ˆθ o EMV de θ. A função Signed Roo Deviance Profile, para θ k é definida como: z (θ k ) = sinal(θ k ˆθ k ) 2(logL(θ k, θ ( k) ) logl(ˆθ)), onde k = 1, 2,..., p e θ ( k) é o EMV da função de verossimilhança resria a θ k fixado no valor que deseja-se calcular a função. Novamene, subsiui-se θ ( k) por ˆθ ( k) visando um menor empo compuacional. No exo de Chen & Jennrich (1996) é proposa uma maneira de enconrar o IC sem uilizar processos de maximização. Esa abordagem conudo necessia da mariz hessiana, que como dio no Capíulo 2 não é uma arefa rivial. Os valores de θ k que saisfazem z 0 z (θ k ) z 0, onde z 0 é o quanil ρ/2 da Normal Padrão, perencem ao IC Signed Roo Deviance Profile(ICS) para θ k. Pode-se enão escrever o ICS de coberura 100(1 ρ)% para os modelos esruurais fazendo θ k = ψ k ; k = 1, 2,..., p em função de z : onde z 0 é o quanil ρ/2 da Normal Padrão. z 1 ( z 0 ) ψ k z 1 (z 0 ), (3) A Figura 3.4 ilusra o procedimeno acima no caso do MNL (ψ = (0, 5; 1)) para σ 2 η e assumindo um nível ρ = Os limies do IC são os valores de σ 2 η que saisfazem z (σ 2 η) = 1, 96 e z (σ 2 η) = 1, 96. Ese ipo de IC em uma consrução e inerpreação direa, ao conrário do ICM, que no caso muliparamérico pode gerar dificuldades de inerpreação, e é uma melhoria sobre o ICD. O ICS ambém em a vanagem de poder ser assimérico e não apresena problemas de froneira. 15

25 Figura 3.4: Exemplo de consrução do ICS para o parâmero σ 2 η. 16

26 Capíulo 4 Méodos compuacionais A Seção 3 cia os vários méodos compuacionais auxiliares para o cálculo dos inervalos proposos. Esa seção explicará brevemene a ideia por rás deses algorimos. 4.1 Méodo numérico para cálculo da mariz de informação de Fisher Para a consrução do ICA é necessário calcular a mariz de informação de Fisher: I ij (ψ) = 1 2 [ ( r F 1 F F 1 F )] ψ i ψ j [ + E T υ ψ i F 1 υ ] ; ψ j onde i, j = 1, 2,..., p, = 1, 2,..., n e r(a) é o raço da mariz A. O méodo descrio por Harvey (1989) para consrução das derivadas de F e υ consise em adicionar a um parâmero ψ i um valor de perurbação δ i, fixados os ouros parâmeros. A escolha de δ i, nese caso, foi documenada em Franco e.al. (2008). A seguir, obém-se novos valores para υ e F : υ (i) e F ψ i = F (i) F δ i e F (i), respecivamene e uiliza-se a aproximação υ ψ i = υ(i) υ δ i no cálculo da mariz de informação de Fischer. O Algorimo 1 ilusra o procedimeno descrio acima. 4.2 Méodo Pégaso para obenção de raízes Os limies do ICM são calculados com o algorimo Pégaso (Dowell & Jarra, 1972) para enconrar raízes de uma função qualquer. Ese algorimo é uma melhora ao méodo de aproximação linear da Falsa Posição (Campos, 2007). São consideradas raízes para D(ψ k ) = χ 2 ρ(1) valores de ψ k perencenes ao inervalo [χ 2 ρ(1) τ; χ 2 ρ(1) + τ], onde k = 1, 2,..., p e ρ é o nível de confiança do inervalo. O erro que olera-se comeer em relação à verdadeira raiz é represenado por τ. 17

27 Algorimo 1 Algorimo para consrução da diagonal principal da mariz de informação de Fisher Enrada: y, ψ, δ i, z, T, R Com o Filro de Kalman obém-se F, K, a, P, υ Para i de 1 a p Some a ψ i uma quanidade δ i (F (i), K (i) Tome υ ψ i, a (i), P (i), υ (i) como a aproximação υ(i) ) é o resulado do Filro de Kalman com o novo valor de ψ υ δ i F δ i Tome F ψ i como a aproximação F (i) Modifique a enrada ii da mariz de informação de Fisher para 1 2 [ ( r F 1 F F 1 F )] ψ i ψ i Fim para Reorna: Mariz de informação de Fisher [ + E T υ ψ i F 1 υ ] ψ i Figura 4.1: Exemplo de consrução do ICS para o parâmero σ 2 η. Ese algorimo é baseado em aproximações lineares da função de ineresse, obendo uma sequência de valores que convergem para a verdadeira raiz, isolada em um inervalo conhecido [a, b]. Esa sequência é obida pela fórmula: x j+1 = x j f(x j ) f(x j ) f(x j 1 ) (x j x j 1 ) onde x 0 = a, x 1 = b, j = 0, 1, 2,... e f(x) uma função genérica. Para garanir o isolameno da raiz é necessário que f(x j 1 )f(x j ) 0. Caso o valor de f(x j+1 ) enha mesmo sinal que o valor de f(x), i.e: f(x j+1 )f(x) 0, para eviar problemas de reenção de pono, e consequene não convergência, o valor de f(x j 1 ) é muliplicado por 18

28 Algorimo 2 Algorimo Pégaso enrada: f, a, b, τ, MaxIer Tome F a como f(a) Tome F b como f(b) Tome x como b Tome F x como f(b) Inicialize o número de ierações Ier em 0 Enquano flag = 0 X recebe F x /(F b F a ) (b a) x recebe x + X F x recebe f(x) Se ( X τ) e ( F x τ) ou Ier MaxIer flag recebe 1 Fim se Se F x F b 0 a recebe b F a recebe F b Senão F a recebe F a F b /(F b + F x ) Fim se b recebe x F b recebe F x Ier Ier + 1 Fim Enquano Reorne: x, F x, Ier f(x j )/(f(x j )f(x j+1 )), ornando possível raçar a aproximação linear por um pono não perencene à curva de f(x). Esa aualização ambém acaba por agilizar o méodo (ver Figura 4.1). A Figura 4.1 mosra quaro ierações do algorimo: no primeiro passo, em-se o inervalo em que a raíz esá isolada [x 0, x 1 ], raça-se a aproximação linear da função e enconra-se x 2. A seguir aualizam-se os exremos do inervalo, que passa a ser [x 2, x 1 ], raça-se a aproximação linear e enconra-se x 3. Como f(x 3 ) e f(x 2 ) êm o mesmo sinal, aualiza-se o valor de f(x 1 ) da maneira descria acima, gerando um pono fora do gráfico da função. O valor x 4 é enconrado uilizando ese pono. A imagem final une os passos aneriores em um único gráfico. O Algorimo 2 mosra como programar ese méodo. O méodo Pégaso em uma implemenação fácil e, por ser uma aproximação linear, não necessia de cálculo de derivadas, como o méodo de Newon ou ouros méodos que uilizam 19

29 angene. Além disso é um méodo robuso e compeiivo quando comparado com méodos mais sofisicados (Campos, 2007). Conudo, algorimos para enconrar raizes necessiam de um inervalo onde a raiz esá isolada e que a função assuma sinais conrários nos exremos dese inervalo. Uma maneira de enconrar mais de uma raiz, e isolá-las, dado um inervalo maior, é paricionar ese em inervalos menores e execuar o Pégaso em cada um deles. Esa meodologia é uilizada na função uniroo.all do pacoe roosolve do R (Soeaer, 2009). 4.3 Busca Binária Para o ICS o algorimo Pégaso não apresenou bons resulados, principalmene devido à naureza assinóica da função Signed Roo Deviance Profile z, que pode apresenar grandes variações pero de 0. Conudo, para o cálculo dese inervalo, basa aferir quais valores de ψ i saisfazem à Equação (3), com i = 1, 2,..., p. A parir de um inervalo (0; b] onde acredia-se esar o parâmero, faz-se uma discreização em N ponos e uiliza-se uma busca para enconrar os exremos aproximados do inervalo. Ou seja, valores de ψ i que sejam os mais próximos a z (ψ i ) = z 0 e z (ψ i ) = z 0. Noe que a escolha de N influencia no erro comeido ao escolher os exremos do inervalo. Por exemplo, se b = 3 e N = 600, o erro máximo, em ψ seria de b/n = 0, 005. Uma maneira de enconrar eses exremos do IC seria buscar de forma crescene e linear ao longo da discreização feia. Conudo, como a função z é crescene, pode-se uilizar um procedimeno de busca binária (Cormen e al., 1990), que consise em percorrer a discreização de ponos procurando recursivamene na meade do espaço que conem o valor desejado. Discreizado o inervalo, a busca por um valor z começa pelo pono médio m = b/2 e segue para o subinervalo apropriado: (0; m) se z (m) z ou (m; b] se z (m) z, aualiza-se o pono médio e os valores exremos do inervalo de busca e prosegue-se de maneira recursiva a busca. A busca é finalizada quando o valor procurado esá enre z (m 1 ) e N z (m + 1 ) N e reorna o índice M {m 1 ; m; m+; 1 } de imagem mais próxima a z. O Algorimo 3 N N implemena esa busca. Esa abordagem reduz muio o empo compuacional, se comparado com a busca linear. Enquano o empo da busca linear cresce linearmene com o valor de N escolhido, o empo da busca binária cresce em função do log 2 (N). 20

30 Algorimo 3 Busca Binária Enrada: f, b, z, N m recebe 0 M recebe N Enquano M > m i recebe o menor ineiro mais próximo de M+m 2 j recebe (i 1) b/n F recebe f(j) Se f(j 1 N ) < z < f(j + 1 N ) M recebe m Senão Se F < z m recebe i + 1 Senão M recebe i 1 Fim Se/Senão Fim Se/Senão Fim enquano Reorna: x {j 1 ; j; j + 1 } de imagem mais próxima a z N N 21

31 Capíulo 5 Esudo Mone Carlo Esudos Mone Carlo (MC) foram feios para comparar os inervalos de confiança descrios nas Seções 2 e 3: Assinóico (ICA), Boosrap (ICB), Marginal (ICM), Deviance (ICD) e Signed Roo Deviance Profile (ICS). Em um primeiro esudo, os erros das observações seguem uma disribuição gaussiana ou Normal. Em seguida, é feio um esudo considerando os erros com uma disribuição não-gaussiana para as observações, visando verificar a robusez dos inervalos para ese caso. A coberura nominal foi fixada em 95% e os inervalos são comparados quano à axa de coberura e ampliude. As simulações feias avaliam os IC para o Modelo de Nível Local (MNL), Modelo de Tendência Local (MTL) e Modelo Esruural Básico (MEB), com sazonalidade s = 12. Um esudo preliminar, com 200 simulações Mone Carlo, foi realizado com a inenção de verificar a coberura dos IC descrios para amosras grandes. Para isso foram uilizadas séries de amanho n = As ouras simulações para amanhos de amosra menores: 60, 200 e 500, foram realizadas considerando 1000 replicações Mone Carlo. É apresenada ambém uma abela de comparação de empo compuacional enre os méodos a fim de melhor classificá-los. A verossimilhança é maximizada com o algorimo quasi-newon BFGS (Shanno,1970). Ese faz um máximo de 50 ierações para achar o valor de máximo. Para faciliar a reprodução e verificação dos resulados são expliciadas as consanes uilizadas nos méodos compuacionais. O pacoe SsfPack (Koopman e al., 1999) do sofware Ox (Doornik, 2006) coném algorimos para o cálculo do Filro de Kalman e da função de verossimilhança, sendo o uilizado na implemenação. Para gerar os dados é considerado um burn-in igual a 100 de forma a eviar influência de valores iniciais. O número de ierações boosrap é B = 500, ese valor é baseado em esudos apresenados em Franco & Sanos (2010). O valor de δ i para o méodo numérico de cálculo da mariz de informação de Fisher é fixado em 0, 0001, ambém segundo esudos em Franco e al.(2008). Valores menores não influenciam muio na ampliude dos inervalos e valores 22

32 maiores aumenam a mesma. O inervalo [0, ; 5] é uilizado para consruir os ICD e ese é paricionado em P = 200 subinervalos menores de mesmo amanho. São consideradas raízes para D(ψ) = χ 2 0,05(1) valores de função perencenes ao inervalo [χ 2 0,05(1) 0, 0001; χ 2 0,05(1) + 0, 0001], iso é, omando τ = 0, O algorimo do méodo Pégaso para enconrar raízes faz um máximo de 50 ierações em cada subinervalo. Para o ICS o inervalo [0, ; 3] é discreizado em N = 600 ponos. A escolha de N influencia no erro comeido ao escolher os exremos do inervalo, nese caso de 0, 005. Os exremos deses inervalos iniciais podem ser escolhidos considerando uma esimaiva de ψ, seja por EMV ou boosrap. Visando mensurar a eficiência compuacional dos méodos foi calculado o empo uilizando a função oday() do Ox. As simulações foram feias em um Inel Core 2Quad com 4GB de memória ram em ambiene Windows 7 Pro. 5.1 Resulados para os erros com disribuição gaussiana A Tabela 5.1 apresena as coberuras médias de cada méodo para amosras de amanho grande (n = 1000) para o Modelo de Nível Local (MNL), Modelo de Tendência Local (MTL) e Modelo Esruural Básico (MEB), considerando 200 repeições MC. Tabela 5.1: Coberuras dos inervalos proposos para uma amosra de amanho n = M odelo ψ ICA ICB ICM ICD ICS MNL ση 2 = 0, 5 93,0 93,5 85,5 92,0 93,5 σɛ 2 = 1 95,0 95,0 85,5 91,5 96,0 MTL ση 2 = 0, 5 96,0 95,0 87,5 95,5 96,5 σξ 2 = 0, 1 94,5 94,0 87,5 91,5 95,0 σɛ 2 = 1 91,0 93,5 87, ,5 MEB ση 2 = 0, 5 95,0 95,0 85,0 92,0 97,0 σξ 2 = 0, 1 96,0 94,0 85,0 92,0 93,5 σω 2 = 0, 03 93,0 91,5 85, ,0 σɛ 2 = 1 96,0 94,0 85, ,0 Obs.: Em negrio: coberuras a uma disância de 2 ponos percenuais do nível nominal Com os dados da Tabela 5.1 fica evidene a pouca efeividade do ICM e do ICD. No ICD é feia uma aproximação que fixa os parâmeros de ruído em seus EMV irresrios. Esa mesma abordagem é uilizada na consrução do ICM, conudo ese processo não considera a aleaoriedade deses parâmeros de ruído, de al forma que as coberuras deses IC ficam disanes do nível fixado de 95%. Noa-se ambém a subesimação da RC feia pelo ICM, como comenado na Figura

33 Desa forma, serão excluidos eses méodos para as comparações a seguir. méodos iveram suas coberuras bem próximas do nível fixado de 95%. Os ouros A Tabela 5.2 mosra os resulados para o MNL, a Tabela 5.3 para o MTL e a 5.4 para o MEB, para amosras de amanho 60, 200 e 500, considerando 1000 repeições MC. Tabela 5.2: Resulados da simulação MC para o MNL com erros Normais para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 σ 2 η = 0, 5 87,1 0,94 90,0 1,05 94,9 1,05 σ 2 ɛ = 1 91,1 1,12 89,6 1,07 92,7 1, σ 2 η = 0, 5 92,6 0,51 93,4 0,53 95,2 0,57 σ 2 ɛ = 1 94,2 0,61 93,3 0,62 95,6 0, σ 2 η = 0, 5 92,7 0,33 92,3 0,33 92,2 0,33 σ 2 ɛ = 1 93,7 0,40 93,0 0,40 94,5 0,40 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal Tabela 5.3: Resulados da simulação MC para o MTL com erros Normais para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 ση 2 = 0, 5 98,1 2,40 99,7 1,99 94,7 1,64 σξ 2 = 0, 1 80,3 0,27 88,6 0,25 95,2 0,34 σɛ 2 = 1 93,5 1,48 96,6 1,45 95,6 1, ση 2 = 0, 5 96,1 1,35 96,6 1,24 94,2 1,24 σξ 2 = 0, 1 93,8 0,15 92,4 0,15 88,1 0,16 σɛ 2 = 1 94,9 0,83 96,1 0,84 95,5 0, ση 2 = 0, 5 93,7 0,86 94,0 0,84 94,5 0,84 σξ 2 = 0, 1 92,1 0,09 93,6 0,11 94,8 0,10 σɛ 2 = 1 94,8 0,53 94,8 0,54 95,0 0,54 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal Noa-se nas Tabelas 5.2 a 5.4 que o ICS é, na maioria das vezes, o inervalo com coberura mais próxima do nível fixado de 95%. Em geral, as coberuras ficam mais próximas do nível de 95% e as ampliudes diminuem com o crescimeno do amanho amosral. Ese fao é esperado, uma vez que os EMV dos parâmeros ficam com uma variânca menor com o aumeno do amanho amosral. Um esudo de empo de simulação (em minuos) para os méodos ICA, ICB e ICS aplicados para o MNL, MTL e MEB, é apresenado na Tabela 5.5. O méodo mais rápido, como esperado, foi o ICA. Apesar das desvanagens ciadas no Capíulo 2, ese méodo pode ser uilizado para aplicações que necessiam de um empo compuacional mínimo, se o amanho da amosra for grande. Para amosras de amanho 24

34 Tabela 5.4: Resulados da simulação MC para o MEB com erros Normais para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 ση 2 = 0, 5 88,0 2,35 94,0 2,06 92,1 1,57 σξ 2 = 0, 1 78,5 0,26 90,0 0,37 92,2 0,33 σω 2 = 0, 03 99,7 0,50 99,2 0,19 97,5 0,50 σɛ 2 = 1 91,5 1,82 94,5 2,26 95,6 1, ση 2 = 0, 5 91,7 1,36 93,7 1,57 95,2 1,28 σξ 2 = 0, 1 88,7 0,15 93,5 0,15 94,9 0,16 σω 2 = 0, 03 86,1 0,08 88,1 0,07 94,1 0,09 σɛ 2 = 1 93,1 0,91 93,9 1,26 95,5 0, ση 2 = 0, 5 92,2 0,88 93,0 1,03 95,6 0,88 σξ 2 = 0, 1 92,8 0,10 94,2 0,10 94,4 0,10 σω 2 = 0, 03 91,5 0,04 87,8 0,04 94,0 0,04 σɛ 2 = 1 93,8 0,59 91,8 0,74 95,0 0,81 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal Tabela 5.5: Tempo, em minuos, necessário para 1000 simulações dos IC nos modelos MNL, MTL e MEB. MNL MTL MEB n ICA ICB ICS ICA ICB ICS ICA ICB ICS 60 0,03 27,25 2,33 0,18 178,55 27,50 5, , , ,10 64,95 4,45 0,42 379,75 43,25 19, , , ,22 150,38 10,88 0,98 887,78 96,96 17, , ,26 pequeno, as simulações mosram que ese é o méodo com o pior desempenho quano à coberura dos inervalos. Já o ICB, apesar de ser um méodo sem as desvanagens do ICA e com coberuras próximas das dese méodo, apresena um empo compuacional elevado quando comparado com o ICS, cerca de 10 vezes mais leno, além de apresenar coberuras um pouco mais disanes do nível fixado. O ICS, que foi o méodo com coberuras mais próximas do nível fixado de 95%, apresena um empo compuacional mais eficiene que o do ICB, méodo alernaivo ao ICA disponível na lieraura. 5.2 Resulados para erros com disribuição não-gaussiana Um grande araivo ano do ICB quano do ICS é a possibilidade de consruir os IC para os hiperparâmeros do modelo sem as limiações do ICA. Nese conexo, a qualidade desses IC é averiguada para dados não-gaussianos. Para ano, serão gerados dados com disribuição Gama na equação das observações da FEE. O ajuse, conudo é feio com o FK Gaussiano, apresenado no Capíulo 2. 25

35 Os parâmeros de forma a e escala b, são escolhidos de maneira que a variância desa disribuição Gama seja igual a 1. A disribuição é cenrada em 0 via subração da média eórica da mesma, a. Desa maneira, em-se os erros das observações com média 0 e variância h b, seguindo a FEE em (1). Assim, o parâmero de forma foi escolhido como a = 16 e parâmero 9 de escala b = 4 de forma que h 3 = σɛ 2 = a = 1, como no caso das simulações aneriores. O b 2 veor de esados coninua endo disribuição normal. O desenho do esudo MC é o mesmo da seção anerior. A Tabela 5.6 mosra os resulados para o MNL, a Tabela 5.7 para o MTL e a 5.8 para o MEB com dados gerados da maneira descria acima. Tabela 5.6: Resulados da simulação MC para o MNL com erros Gama para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 σ 2 η = 0, 5 85,7 0,94 90,2 1,07 94,1 1,07 σ 2 ɛ = 1 85,0 1,13 87,2 1,24 87,0 1, σ 2 η = 0, 5 90,5 0,51 93,1 0,53 93,2 0,53 σ 2 ɛ = 1 85,9 0,62 87,6 0,67 86,9 0, σ 2 η = 0, 5 94,0 0,33 94,6 0,34 94,4 0,34 σ 2 ɛ = 1 87,3 0,40 89,8 0,43 88,6 0,40 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal Tabela 5.7: Resulados da simulação MC para o MTL com erros Gama para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 ση 2 = 0, 5 96,8 2,46 99,7 2,03 92,6 1,07 σξ 2 = 0, 1 78,7 0,27 88,6 0,25 94,2 0,33 σɛ 2 = 1 89,3 1,51 89,9 1,52 90,4 1, ση 2 = 0, 5 97,1 1,35 97,1 1,24 95,0 0,85 σξ 2 = 0, 1 89,3 0,15 93,2 0,87 94,1 0,16 σɛ 2 = 1 89,9 0,84 92,1 0,87 91,2 0, ση 2 = 0, 5 94,1 0,86 93,6 0,85 94,6 0,84 σξ 2 = 0, 1 93,3 0,09 94,1 0,09 95,3 0,10 σɛ 2 = 1 90,9 0,52 92,4 0,55 91,6 0,54 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal Em geral, o ICS em a coberura mais próxima do nível fixado de 95%. Os méodos apresenados nas abelas diminuem as ampliudes com o crescimeno do amanho amosral, além de ficarem com coberuras mais próximas do nível de 95%. Como esperado, o ICA em coberuras muio disanes do nível de 95% principalmene para as amosras de amanho 60 e 200, já que ese méodo é consruído baseado na suposição de normalidade dos dados. É ambém ineressane noar que o ICB não apresena um bom desempenho, apesar de não 26

36 Tabela 5.8: Resulados da simulação MC para o MEB com erros Gama para as observações. ICA ICB ICS n ψ Coberura Ampliude Coberura Ampliude Coberura Ampliude 60 ση 2 = 0, 5 88,4 2,34 94,9 2,06 93,7 1,61 σξ 2 = 0, 1 77,9 0,27 91,2 0,37 93,2 0,35 σω 2 = 0, ,49 99,8 0,19 98,2 0,48 σɛ 2 = 1 89,0 1,80 91,7 2,23 93,0 1, ση 2 = 0, 5 92,4 1,30 92,6 1,53 97,6 1,27 σξ 2 = 0, 1 89,8 0,15 93,8 0,16 95,4 0,17 σω 2 = 0, 03 86,8 0,08 87,8 0,07 94,8 0,09 σɛ 2 = 1 92,6 0,92 91,8 1,27 93,4 1, ση 2 = 0, 5 94,0 0,89 92,4 1,04 94,6 0,89 σξ 2 = 0, 1 91,6 0,10 93,8 0,10 94,6 0,10 σω 2 = 0, 03 86,4 0,04 87,6 0,04 92,0 0,05 σɛ 2 = 1 92,0 0,59 91,2 0,75 93,0 0,62 Obs.: Em negrio esão as coberuras que esão a uma disância de 2 ponos percenuais do nível nominal fazer nenhuma suposição sobre a disribuição dos dados. Um esudo de empo de simulação (em minuos) para os méodos ICA, ICB e ICS aplicados para o MNL, MTL e MEB, é apresenado na Tabela 5.9, uilizando 1000 simulações Mone Carlo. Tabela 5.9: Tempo, em minuos, necessário para 1000 simulações dos IC nos modelos MNL, MTL e MEB com erro Gama nas observações. MNL MTL MEB n ICA ICB ICS ICA ICB ICS ICA ICB ICS 60 0,03 32,70 3,33 0,18 182,46 40,02 3, , , ,10 74,58 5,26 0,43 388,40 67,20 7, , , ,33 165,98 11,95 1,05 911,70 130,50 17, , ,85 As abelas de empo seguem o mesmo padrão das simulações com dados gaussianos. Ainda que, em alguns poucos casos, o ICB enha ido melhores coberuras, o empo compuacional do ICS aliado ao seu melhor desempenho quano à axa de coberura são as grandes vanagens dese méodo. 27

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE MESTRADO EM ESTATÍSTICA THAIZE VIEIRA MARTINS

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE MESTRADO EM ESTATÍSTICA THAIZE VIEIRA MARTINS UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE MESTRADO EM ESTATÍSTICA THAIZE VIEIRA MARTINS INTERVALOS DE PREVISÃO BOOTSTRAP PARA MODELOS ESTRUTURAIS Belo Horizone Maio

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

DISSERTAÇÃO DE MESTRADO

DISSERTAÇÃO DE MESTRADO DISSERTAÇÃO DE MESTRADO INFERÊNCIA SOBRE OS HIPERPARÂMETROS DOS MODELOS ESTRUTURAIS USANDO BOOTSTRAP POR: JULIANA APARECIDA RIBEIRO ORIENTADORA: GLAURA DA CONCEIÇÃO FRANCO CO-ORIENTADOR: FREDERICO R. B.

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

4 Filtro de Kalman. 4.1 Introdução

4 Filtro de Kalman. 4.1 Introdução 4 Filro de Kalman Ese capíulo raa da apresenação resumida do filro de Kalman. O filro de Kalman em sua origem na década de sessena, denro da área da engenharia elérica relacionado à eoria do conrole de

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade

3 Uma metodologia para validação estatística da análise técnica: a busca pela homogeneidade 3 Uma meodologia para validação esaísica da análise écnica: a busca pela homogeneidade Ese capíulo em como objeivo apresenar uma solução para as falhas observadas na meodologia uilizada por Lo e al. (2000)

Leia mais

5 Aplicação da Modelagem Estrutural ao problema de previsão de Preço Spot de Energia Elétrica.

5 Aplicação da Modelagem Estrutural ao problema de previsão de Preço Spot de Energia Elétrica. Aplicação da Modelagem Esruural ao problema de previsão de Preço Spo de Energia Elérica. 41 5 Aplicação da Modelagem Esruural ao problema de previsão de Preço Spo de Energia Elérica. 5.1. Inrodução Nesa

Leia mais

4 Método de geração de cenários em árvore

4 Método de geração de cenários em árvore Méodo de geração de cenários em árvore 4 4 Méodo de geração de cenários em árvore 4.. Conceios básicos Uma das aividades mais comuns no mercado financeiro é considerar os possíveis esados fuuros da economia.

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Rodolfo Santos Nunes Rodrigues

Rodolfo Santos Nunes Rodrigues Universidade Federal de Minas Gerais - UFMG Insiuo de Ciências Exaas - ICEx Programa de Pós-Graduação em Esaísica - PPGEST Rodolfo Sanos Nunes Rodrigues Influência do número de parículas na esimação de

Leia mais

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo

Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo Aplicação Uma famosa consuloria foi conraada por uma empresa que, enre ouras coisas, gosaria de enender o processo gerador relacionado às vendas de deerminado produo, Ainda, o conraane gosaria que a empresa

Leia mais

ANÁLISE DE SÉRIES TEMPORAIS NA PREVISÃO DA RECEITA DE UMA MERCEARIA LOCALIZADA EM BELÉM-PA USANDO O MODELO HOLT- WINTERS PADRÃO

ANÁLISE DE SÉRIES TEMPORAIS NA PREVISÃO DA RECEITA DE UMA MERCEARIA LOCALIZADA EM BELÉM-PA USANDO O MODELO HOLT- WINTERS PADRÃO XXIX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO. ANÁLISE DE SÉRIES TEMPORAIS NA PREVISÃO DA RECEITA DE UMA MERCEARIA LOCALIZADA EM BELÉM-PA USANDO O MODELO HOLT- WINTERS PADRÃO Breno Richard Brasil Sanos

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Universidade Federal de Minas Gerais Insiuo de Ciências Exaas Deparameno de Esaísica Modelo Exponencial por Pares via Modelo Parição Produo Aluno: Fábio Nogueira Demarqui Orienadora: Profa. Rosângela Helena

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman

IV. METODOLOGIA ECONOMÉTRICA PROPOSTA PARA O CAPM CONDICIONAL A Função Máxima Verosimilhança e o Algoritmo de Berndt, Hall, Hall e Hausman IV. MEODOLOGIA ECONOMÉRICA PROPOSA PARA O CAPM CONDICIONAL 4.1. A Função Máxima Verosimilhança e o Algorimo de Bernd, Hall, Hall e Hausman A esimação simulânea do CAPM Condicional com os segundos momenos

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

3 Metodologia do Estudo 3.1. Tipo de Pesquisa

3 Metodologia do Estudo 3.1. Tipo de Pesquisa 42 3 Meodologia do Esudo 3.1. Tipo de Pesquisa A pesquisa nese rabalho pode ser classificada de acordo com 3 visões diferenes. Sob o pono de visa de seus objeivos, sob o pono de visa de abordagem do problema

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

João Vitor Dias Monteiro, Rosângela H. Loschi, Enrico A. Colosimo e Fábio N. Demarqui

João Vitor Dias Monteiro, Rosângela H. Loschi, Enrico A. Colosimo e Fábio N. Demarqui Comparando as esimaivas produo e de Kim-Proschan: uma avaliação do efeio de diferenes modelos e proporções de censura nas esimaivas da função axa de falha João Vior Dias Moneiro, Rosângela H. Loschi, Enrico

Leia mais

5 Solução por Regressão Simbólica 5.1. Introdução

5 Solução por Regressão Simbólica 5.1. Introdução 5 Solução por Regressão Simbólica 5.. Inrodução ese capíulo é descrio um esudo de caso uilizando-se o modelo proposo no capíulo 4. reende-se com esse esudo de caso, mosrar a viabilidade do modelo, suas

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores)

Grupo I (Cotação: 0 a 3.6 valores: uma resposta certa vale 1.2 valores e uma errada valores) INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Esaísica II - Licenciaura em Gesão Época de Recurso 6//9 Pare práica (quesões resposa múlipla) (7.6 valores) Nome: Nº Espaço reservado para a classificação (não

Leia mais

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995 1 III Congresso da Sociedade Poruguesa de Esaísica Guimarães, 26 a 28 Junho 1995 Políicas Ópimas e Quase-Ópimas de Inspecção de um Sisema Sujeio a Falhas Cláudia Nunes, João Amaral Deparameno de Maemáica,

Leia mais

6 Processos Estocásticos

6 Processos Estocásticos 6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

6 Análise do processo de filtragem

6 Análise do processo de filtragem 6 Análise do processo de filragem Ese capíulo analisa o processo de filragem para os filros de Kalman e de parículas. Esa análise envolve ão somene o processo de filragem, não levando em consideração o

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

3 Metodologia. 3.1 Modelos em Espaço de Estado Lineares Gaussianos

3 Metodologia. 3.1 Modelos em Espaço de Estado Lineares Gaussianos 3 Meodologia 3.1 Modelos em Espaço de Esado Lineares Gaussianos 3.1.1 Esruura Básica A forma em Espaço de Esado Linear Gaussiana (forma em EE daqui por diane) consise em duas equações. A primeira delas

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

I INVESTIGAÇÃO DE MÉTODOS DE SELEÇÃO AUTOMÁTICA DE CIRCUITOS USANDO A TEORIA DOS GRAFOS PARA A ANÁLISE DE REDES HIDRÁULICAS

I INVESTIGAÇÃO DE MÉTODOS DE SELEÇÃO AUTOMÁTICA DE CIRCUITOS USANDO A TEORIA DOS GRAFOS PARA A ANÁLISE DE REDES HIDRÁULICAS º Congresso Brasileiro de Engenharia Saniária e Ambienal I- - INVESTIGAÇÃO DE MÉTODOS DE SELEÇÃO AUTOMÁTICA DE CIRCUITOS USANDO A TEORIA DOS GRAFOS PARA A ANÁLISE DE REDES HIDRÁULICAS Rober Schiaveo de

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1)

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (V) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Esaísica Prof. Daniel Furado Ferreira 11 a Teoria da Decisão Esaísica 1) Quais são os erros envolvidos nos eses de hipóeses? Explique. 2) Se ao realizar um

Leia mais

4 Modelo de fatores para classes de ativos

4 Modelo de fatores para classes de ativos 4 Modelo de aores para classes de aivos 4.. Análise de esilo baseado no reorno: versão original (esáica A análise de esilo baseada no reorno é um procedimeno esaísico que visa a ideniicar as ones de riscos

Leia mais

Considere uma economia habitada por um agente representativo que busca maximizar:

Considere uma economia habitada por um agente representativo que busca maximizar: 2 Modelo da economia Uilizaram-se como base os modelos de Campos e Nakane 23 e Galí e Monacelli 22 que esendem o modelo dinâmico de equilíbrio geral de Woodford 21 para uma economia abera Exisem dois países:

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG. BOOTSTRAP ESTACIONARIO EM MODELOS ARFIMA (p,d,q)

UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG. BOOTSTRAP ESTACIONARIO EM MODELOS ARFIMA (p,d,q) UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG BOOTSTRAP ESTACIONARIO EM MODELOS ARFIMA (p,d,q) Silma de Souza Evangelisa Belo Horizone Junho 013 Silma de Souza Evangelisa BOOTSTRAP ESTACIONARIO EM MODELOS

Leia mais

Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC

Prof. Carlos H. C. Ribeiro  ramal 5895 sala 106 IEC MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro carlos@comp.ia.br www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade

Leia mais

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil

Utilização de modelos de holt-winters para a previsão de séries temporais de consumo de refrigerantes no Brasil XXVI ENEGEP - Foraleza, CE, Brasil, 9 a 11 de Ouubro de 2006 Uilização de modelos de hol-winers para a previsão de séries emporais de consumo de refrigeranes no Brasil Jean Carlos da ilva Albuquerque (UEPA)

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL Ano lectivo 2015/16-1ª Época (V1) 18 de Janeiro de 2016

EXAME DE ESTATÍSTICA AMBIENTAL Ano lectivo 2015/16-1ª Época (V1) 18 de Janeiro de 2016 Nome: Aluno nº: Duração: h:30 m MESTRADO INTEGRADO EM ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL Ano lecivo 05/6 - ª Época (V) 8 de Janeiro de 06 I (7 valores) No quadro de dados seguine (Tabela

Leia mais

Estimação em Processos ARMA com Adição de Termos de Perturbação

Estimação em Processos ARMA com Adição de Termos de Perturbação UNIVER ERSIDADE DE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEP EPARTAMENTO DE ESTATÍSTICA Esimação em Processos ARMA com Adição de Termos de Perurbação Auor: Paricia Vieira de Llano Orienador:

Leia mais

2 Os métodos da família X Introdução

2 Os métodos da família X Introdução 2 Os méodos da família X 2. Inrodução O méodo X (Dagum, 980) emprega médias móveis (MM) para esimar as principais componenes de uma série (Sysem of Naional Accouns, 2003): a endência e a sazonalidade.

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

4 Metodologia e resultados preliminares para análise de velocidade utilizando o gradiente descendente

4 Metodologia e resultados preliminares para análise de velocidade utilizando o gradiente descendente 4 Meodologia e resulados preliminares para análise de velocidade uilizando o gradiene descendene O processameno uilizando diferenes equações de sobreempo normal para a obenção de análise de velocidade

Leia mais

REDUÇÃO DE DIMENSIONALIDADE

REDUÇÃO DE DIMENSIONALIDADE Análise de componenes e discriminanes REDUÇÃO DE DIMENSIONALIDADE Uma esraégia para abordar o problema da praga da dimensionalidade é realizar uma redução da dimensionalidade por meio de uma ransformação

Leia mais

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço

5 Metodologia Probabilística de Estimativa de Reservas Considerando o Efeito-Preço 5 Meodologia Probabilísica de Esimaiva de Reservas Considerando o Efeio-Preço O principal objeivo desa pesquisa é propor uma meodologia de esimaiva de reservas que siga uma abordagem probabilísica e que

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

Comportamento Assimptótico dos Mínimos Quadrados Questão: Será que a estimativa de mínimos quadrados converge para o valor verdadeiro dos parâmetros?

Comportamento Assimptótico dos Mínimos Quadrados Questão: Será que a estimativa de mínimos quadrados converge para o valor verdadeiro dos parâmetros? Conrolo por Compuador 3-Idenificação J. Miranda Lemos IST-DEEC Área Cienífica de Sisemas, Decisão e Conrolo 05 Comporameno Assimpóico dos Mínimos Quadrados Quesão: Será que a esimaiva de mínimos quadrados

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Estimação em Modelos de Volatilidade Estocástica com Memória Longa

Estimação em Modelos de Volatilidade Estocástica com Memória Longa UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA Esimação em Modelos de Volailidade Esocásica com Memória Longa Auor: Gusavo Correa Leie Orienador: Professor

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Estimação de Hiperparâmetros para um Modelo de Previsão Holt-Winters com Múltiplos Ciclos por Algoritmos Genéticos

Estimação de Hiperparâmetros para um Modelo de Previsão Holt-Winters com Múltiplos Ciclos por Algoritmos Genéticos Deparameno de Engenaria Elérica Esimação de Hiperparâmeros para um Modelo de Hol-Winers com Múliplos iclos por Algorimos Genéicos Mario esar da Fonseca orrêa Orienadores: Marco Aurélio. Paceco e Reinaldo

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

5 Método dos Mínimos Quadrados de Monte Carlo (LSM)

5 Método dos Mínimos Quadrados de Monte Carlo (LSM) Méodo dos Mínimos Quadrados de Mone Carlo (LSM) 57 5 Méodo dos Mínimos Quadrados de Mone Carlo (LSM) O méodo LSM revela-se uma alernaiva promissora frene às radicionais écnicas de diferenças finias e árvores

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

4 Análise dos tributos das concessionárias selecionadas

4 Análise dos tributos das concessionárias selecionadas 4 Análise dos ribuos das concessionárias selecionadas Nese capíulo serão abordados os subsídios eóricos dos modelos esaísicos aravés da análise das séries emporais correspondenes aos ribuos e encargos

Leia mais

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS

APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSIUO DE CIÊNCIAS EXAAS ICEx DEPARAMENO DE ESAÍSICA ES APOSILA DE MODELOS LINEARES EM SÉRIES EMPORAIS Glaura da Conceição Franco (ES/UFMG) Belo Horizone, agoso

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Motivação. Prof. Lorí Viali, Dr.

Motivação. Prof. Lorí Viali, Dr. Moivação rof. Lorí Viali, Dr. vialli@ma.ufrgs.br hp://www.ma.ufrgs.br/~vialli/ Na práica, não exise muio ineresse na comparação de preços e quanidades de um único arigo, como é o caso dos relaivos, mas

Leia mais

Módulo de Regressão e Séries S Temporais

Módulo de Regressão e Séries S Temporais Quem sou eu? Módulo de Regressão e Séries S Temporais Pare 4 Mônica Barros, D.Sc. Julho de 007 Mônica Barros Douora em Séries Temporais PUC-Rio Mesre em Esaísica Universiy of Texas a Ausin, EUA Bacharel

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

APLICAÇÃO DA ANÁLISE DE COMPONENTES PRINCIPAIS NO CONTROLE DA POLUIÇÃO PROVOCADA PELO TRÁFEGO DE VEÍCULOS MOTORIZADOS

APLICAÇÃO DA ANÁLISE DE COMPONENTES PRINCIPAIS NO CONTROLE DA POLUIÇÃO PROVOCADA PELO TRÁFEGO DE VEÍCULOS MOTORIZADOS ! "#$ " %'&)(*&)+,- /2*&4365879&4/:+58;2*=?5@A2*3B;- C)D 5,5FE)5G+ &4- (IHJ&?,+ /?=)5KA:+5MLN&OHJ5F&4E)2*EOHJ&)(IHJ/)G- D - ;/);& Foz do Iguaçu, PR, Brasil, 9 a de ouubro de 27 APLICAÇÃO DA ANÁLISE

Leia mais

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY DINÂMICA OULACIONAL COM CONDIÇÃO INICIAL FUZZY Débora Vailai (ICV-UNICENTRO), Maria José de aula Casanho (Orienadora), e-mail: zeza@unicenro.br. Universidade Esadual do Cenro-Oese, Seor de Ciências Exaas

Leia mais

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES Rober Wayne Samohyl Professor do Programa de Pós-Graduação em Engenharia de Produção e Sisemas UFSC. Florianópolis-SC.

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

4 Modelos em Espaço de Estado e Filtro de Kalman

4 Modelos em Espaço de Estado e Filtro de Kalman 4 Modelos em Espaço de Esado e Filro de Kalman A modelagem em espaço de esado fornece uma meodologia padrão para raar uma ampla variedade de problemas em séries emporais Nesa abordagem é, em geral, assumido

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

3 Avaliação de Opções Americanas

3 Avaliação de Opções Americanas Avaliação de Opções Americanas 26 3 Avaliação de Opções Americanas Derivaivos com caracerísicas de exercício americano, em especial opções, são enconrados na maioria dos mercados financeiros. A avaliação

Leia mais

MÉTODOS NUMÉRICOS EM PROGRAMAÇÃO NÃO-LINEAR SEM RESTRIÇÃO PARA MINIMIZAÇÃO DA ENERGIA POTENCIAL DE UMA TRELIÇA ESTRUTURAL

MÉTODOS NUMÉRICOS EM PROGRAMAÇÃO NÃO-LINEAR SEM RESTRIÇÃO PARA MINIMIZAÇÃO DA ENERGIA POTENCIAL DE UMA TRELIÇA ESTRUTURAL MÉTODOS NUMÉRICOS EM PROGRAMAÇÃO NÃO-LINEAR SEM RESTRIÇÃO PARA MINIMIZAÇÃO DA ENERGIA POTENCIAL DE UMA TRELIÇA ESTRUTURAL Aline Michelly Silva Moreira aline_michelly@vm.uff.br Milena de Andrade Sacrameno

Leia mais

Modelos BioMatemáticos

Modelos BioMatemáticos Modelos BioMaemáicos hp://correio.fc.ul.p/~mcg/aulas/biopop/ edro J.N. Silva Sala 4..6 Deparameno de Biologia Vegeal Faculdade de Ciências da Universidade de Lisboa edro.silva@fc.ul.p Genéica opulacional

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lista de exercício de Teoria de Matrizes 28/06/2017

DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lista de exercício de Teoria de Matrizes 28/06/2017 DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lisa de exercício de Teoria de Marizes 8/06/017 1 Uma pesquisa foi realizada para se avaliar os preços dos imóveis na cidade de Milwaukee, Wisconsin 0 imóveis foram

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

1 Pesquisador - Embrapa Semiárido. 2 Analista Embrapa Semiárido.

1 Pesquisador - Embrapa Semiárido.   2 Analista Embrapa Semiárido. XII Escola de Modelos de Regressão, Foraleza-CE, 13-16 Março 2011 Análise de modelos de previsão de preços de Uva Iália: uma aplicação do modelo SARIMA João Ricardo F. de Lima 1, Luciano Alves de Jesus

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT

APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT APLICAÇÃO DO MÉTODO DE HOLT NA PREVISÃO DE DADOS DE ÁGUA DA CIDADE DE RONDONÓPOLIS-MT Alerêdo Oliveira Curim 1 & Aldo da Cunha Rebouças Resumo - O conhecimeno prévio dos volumes de água de qualquer sisema

Leia mais