Reference Dependent Preferences in a Dynamic Environment

Tamanho: px
Começar a partir da página:

Download "Reference Dependent Preferences in a Dynamic Environment"

Transcrição

1 Reference Dependent Preferences in a Dynamic Environment Gil Riella Apresentador: Programa de Educação Tutorial Departamento de Economia Universidade de Brasília 05 de novembro de 2012

2 1 Formalização 2 3

3 Formalização Modelo de dois períodos. Escolha do 1 período age como referência no 2 (Status Quo). Adiciona risco à modelagem de Kreps (1979). Faz sentido analisar Status Quo de forma dinâmica.

4 Job Search Formalização Microfundamentação para modelos Macroeconômicos. Descreve um indivíduo que deve escolher entre ofertas de emprego. Interessante forma de descrever o mercado de trabalho.

5 Job Search Formalização Salário e horas vagas são os critérios de decisão. 1 período agente recebe ofertas de emprego. Cada oferta está associada a um menu de alternativas para o 2 período. Tem de escolher um emprego hoje, mas também está preocupado com as ofertas que irá receber amanhã.

6 Modelo Riella 2006 Formalização Cada oferta está associada a uma distr. de prob. no espaço de possíveis menus para amanhã. Não é mais como se o agente tivesse que escolher entre menus ponderando a escolha no primeiro período.

7 Formalização Formalização Seja X um conjunto finito não vazio de alternativas.

8 Formalização Formalização Seja X um conjunto finito não vazio de alternativas. Deixe A ser o conjunto de todos subconjuntos não vazios de X.

9 Formalização Formalização Seja X um conjunto finito não vazio de alternativas. Deixe A ser o conjunto de todos subconjuntos não vazios de X. Deixe (A) denotar o espaço de todas as medidas de probabilidade sobre A.

10 Formalização Formalização Seja X um conjunto finito não vazio de alternativas. Deixe A ser o conjunto de todos subconjuntos não vazios de X. Deixe (A) denotar o espaço de todas as medidas de probabilidade sobre A. Os elementos genericos de X são denotados por x, y, z,etc.

11 Formalização Formalização Seja X um conjunto finito não vazio de alternativas. Deixe A ser o conjunto de todos subconjuntos não vazios de X. Deixe (A) denotar o espaço de todas as medidas de probabilidade sobre A. Os elementos genericos de X são denotados por x, y, z,etc. Os de A são denotados por A, B, C,etc.

12 Formalização Formalização Seja X um conjunto finito não vazio de alternativas. Deixe A ser o conjunto de todos subconjuntos não vazios de X. Deixe (A) denotar o espaço de todas as medidas de probabilidade sobre A. Os elementos genericos de X são denotados por x, y, z,etc. Os de A são denotados por A, B, C,etc. Aqueles de (A) são denotados por p, q, r,etc.

13 Escolha com referência Teorema 3 Seja uma relação de preferências completa em X (A). Se satisfaz Racionalidade Limitada e Dominância Referencial se e somente se existem funções v : X R, u : X R, W : v(x) [min u (X), max u (X)] R, com W continuo e crescente, e uma correspondência Q : X X tal que para cada (x, p), (y, q) X (A),

14 Escolha com referência Teorema 3 Seja uma relação de preferências completa em X (A). Se satisfaz Racionalidade Limitada e Dominância Referencial se e somente se existem funções v : X R, u : X R, W : v(x) [min u (X), max u (X)] R, com W continuo e crescente, e uma correspondência Q : X X tal que para cada (x, p), (y, q) X (A), (x, p) (y, q) W (v(x), U(x, p)) W (v(y), U(y, q))

15 Escolha com referência Teorema 3 Seja uma relação de preferências completa em X (A). Se satisfaz Racionalidade Limitada e Dominância Referencial se e somente se existem funções v : X R, u : X R, W : v(x) [min u (X), max u (X)] R, com W continuo e crescente, e uma correspondência Q : X X tal que para cada (x, p), (y, q) X (A), (x, p) (y, q) W (v(x), U(x, p)) W (v(y), U(y, q)) onde para qualquer (x, p) X (A),

16 Escolha com referência Teorema 3 Seja uma relação de preferências completa em X (A). Se satisfaz Racionalidade Limitada e Dominância Referencial se e somente se existem funções v : X R, u : X R, W : v(x) [min u (X), max u (X)] R, com W continuo e crescente, e uma correspondência Q : X X tal que para cada (x, p), (y, q) X (A), (x, p) (y, q) W (v(x), U(x, p)) W (v(y), U(y, q)) onde para qualquer (x, p) X (A), U(x, p) := max y A Q(x) u (y) se A Q(x) p(a) max A A y A u (y) caso contrário

17 Região de atração Q(x) = U u (x) {x}

18 Região de atração Q(x) = U u (x) {x} sendo U u (x) := {y X : u(y) > u(x)}

19 Tecnologia de comprometimento Vamos trabalhar com um caso de referência de um agente que tem preferências c dado por: (x, p) c (y, q) ( ) ( ) W v(x), A A p(a)max y A u (y) W v(y), A A q(a)max y A u (y)

20 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X

21 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X é a opção desemprego.

22 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X é a opção desemprego. Assumimos que qualquer emprego é melhor que ficar desempregado.

23 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X é a opção desemprego. Assumimos que qualquer emprego é melhor que ficar desempregado. Para cada emprego x X, p x é a distribuição de probabilidade.

24 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X é a opção desemprego. Assumimos que qualquer emprego é melhor que ficar desempregado. Para cada emprego x X, p x é a distribuição de probabilidade. Hipótese 2 Para cada x X, p x (A) = 0 se x / A

25 Hipótese 1 Existe uma alternativa X tal que v( ) < v(x) x X e Q( ) = X é a opção desemprego. Assumimos que qualquer emprego é melhor que ficar desempregado. Para cada emprego x X, p x é a distribuição de probabilidade. Hipótese 2 Para cada x X, p x (A) = 0 se x / A O agente nunca é demitido do período 1 para o 2.

26 Escolha entre oferta e desemprego Agente com preferências comprometidas:

27 Escolha entre oferta e desemprego Agente com preferências comprometidas: ( ) ( W v(x), A A p x (A)max y A f(u(y)) > W v( ), A A p (A)max y A f(u(y)) )

28 Escolha entre oferta e desemprego Agente com preferências comprometidas: ( ) ( W v(x), A A p x (A)max y A f(u(y)) > W Agente com preferências como no teorema 3: v( ), A A p (A)max y A f(u(y)) )

29 Escolha entre oferta e desemprego Agente com preferências comprometidas: ( ) ( W v(x), A A p x (A)max y A f(u(y)) > W Agente com preferências como no teorema 3: W ( v(x), A A p x (A) max y A Q(x) f(u(y)) > W ( ) v( ), A A p (A)max y A f(u(y)) v( ), A A p (A)max y A f(u(y)) ) )

30 Assumimos que f é uma Cobb-Douglas.

31 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1)

32 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1) v(x) = f (u(x))

33 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1) v(x) = f (u(x)) W (v, u) = v + βu para algum β (0, 1)

34 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1) v(x) = f (u(x)) W (v, u) = v + βu para algum β (0, 1) Podemos identificar cada emprego em X como um par (u 1, u 2 ) [0, 1] 2

35 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1) v(x) = f (u(x)) W (v, u) = v + βu para algum β (0, 1) Podemos identificar cada emprego em X como um par (u 1, u 2 ) [0, 1] 2 No segundo período só se recebe uma oferta de emprego.

36 Assumimos que f é uma Cobb-Douglas. f(u(x)) = u 1 (x) α u 2 (x) 1 α para algum α (0, 1) v(x) = f (u(x)) W (v, u) = v + βu para algum β (0, 1) Podemos identificar cada emprego em X como um par (u 1, u 2 ) [0, 1] 2 No segundo período só se recebe uma oferta de emprego. A probabilidade que um agente vai receber uma oferta de emprego é uma distribuição uniforme em [0, 1] 2

37 A relação de preferência do agente comprometido pode ser representado simplesmente pela função v. A preferência não comprometido pode ser repsentada por uma função G : [0, 1] 2 R dada por:

38 A relação de preferência do agente comprometido pode ser representado simplesmente pela função v. A preferência não comprometido pode ser repsentada por uma função G : [0, 1] 2 R dada por: G(u 1, u 2 )

39 A relação de preferência do agente comprometido pode ser representado simplesmente pela função v. A preferência não comprometido pode ser repsentada por uma função G : [0, 1] 2 R dada por: G(u 1, u 2 ) = u α 1 u 1 α 2 ut. derivada no primeiro período

40 A relação de preferência do agente comprometido pode ser representado simplesmente pela função v. A preferência não comprometido pode ser repsentada por uma função G : [0, 1] 2 R dada por: G(u 1, u 2 ) = u α 1 u 1 α 2 ( + βu1 α u2 1 α ut. derivada no primeiro período ) dx 1 dx 2 u 2 u 1 ut. descontada do seg. per. caso recuse o emprego vezes a prob.

41 A relação de preferência do agente comprometido pode ser representado simplesmente pela função v. A preferência não comprometido pode ser repsentada por uma função G : [0, 1] 2 R dada por: G(u 1, u 2 ) = u α 1 u 1 α 2 ( + βu1 α u2 1 α ut. derivada no primeiro período ) dx 1 dx 2 u 2 u 1 ut. descontada do seg. per. caso recuse o emprego vezes a prob β x1 α x2 1 α dx 1 dx 2 u 2 u 1 ut. esperada descontada do emprego que seria aceito no seg. período

42 Curvas de indiferença Curvas de indiferença da função G quando α = 0, 5 e β = 0, 95

43 Curvas de indiferença Curvas de indiferença das preferências comprometidas e não comprometidas. Linha pontilhada é comprometida e linha cheia é não comprometida.

44 Axioma 4 Racionalidade de segundo período Para qualquer A, B A e x X, se existe um conjunto C A { } tal que (x, A C) (x, A B C), então (x, B D) (x, A B D) para todo D A { }.

45 Definição 2 Definição 2 Para x, y, z X dizemos que y é x-favorecida a z, escrito como y x z, se (x, {z}) (x, {y, z})

46 Definição 3 Definição 3 Para x, y X, dizemos que y é x-favorecida se

47 Definição 3 Definição 3 Para x, y X, dizemos que y é x-favorecida se 1 Existe z tal que y x z,

48 Definição 3 Definição 3 Para x, y X, dizemos que y é x-favorecida se 1 Existe z tal que y x z, 2 ou y x z para todo z X, mas existe z, w X tal que(x, {y}) (x, {z}), z x y e z x w

49 Definição 3 Definição 3 Para x, y X, dizemos que y é x-favorecida se 1 Existe z tal que y x z, 2 ou y x z para todo z X, mas existe z, w X tal que(x, {y}) (x, {z}), z x y e z x w Para cada x X definimos o conjunto R(x) por: R(x) := {y X y é x-favorecida}

50 Axioma 5 Racionalidade Limitada Para A, B A e x X, se A B R(x) ou A B X\R(x), então (x, A) (x, B) implica (x, A) (x, A B).

51 Axioma 6 Dominância Referencial Para A A e x X, se y A, y / R(x) e existe z A tal que z R(x), então (x, A) (x, A\{y}).

52 Lema 1 Lema 1 Seja uma relação de preferências completa em X (A). Se satisfaz Racionalidade Limitada e Dominância Referencial, então satisfaz Racionalidade de segundo período.

Rational choice with status quo bias

Rational choice with status quo bias Yusufcan Masatlioglu Efe A. Ok Apresentador: PET-Economia Univerisidade de Braslia 24 de Outubro de 2011 1 Sumário 2 3 4 5 6 7 8 9 Teoria da Decisão Decision theory is an interdisciplinary domain of research.

Leia mais

ECO Teoria Microeconômica I N. Professor Juliano Assunção. Utilidade

ECO Teoria Microeconômica I N. Professor Juliano Assunção. Utilidade ECO1113 - Teoria Microeconômica I N Professor Juliano Assunção Utilidade Teoria do Consumidor Decisões Modelo Objetivo métrica comportamento preferências / utilidade racionalidade Escolhas factíveis cestas

Leia mais

Theory of Product Differentiation in the Presence of the Attraction Effect

Theory of Product Differentiation in the Presence of the Attraction Effect Theory of Product Differentiation in the Presence of the Attraction Effect Efe A. Ok Pietro Ortoleva Gil Riella Apresentador: Programa de Educação Tutorial Departamento de Economia Universidade de Brasília

Leia mais

Utilidade. Universidade Federal de Santa Catarina. From the SelectedWorks of Sergio Da Silva. Sergio Da Silva, Federal University of Santa Catarina

Utilidade. Universidade Federal de Santa Catarina. From the SelectedWorks of Sergio Da Silva. Sergio Da Silva, Federal University of Santa Catarina Universidade Federal de Santa Catarina From the SelectedWorks of Sergio Da Silva 00 Utilidade Sergio Da Silva, Federal University of Santa Catarina Available at: https://worksbepresscom/sergiodasilva/33/

Leia mais

Escolha sob Incerteza VNM. Aula 03. Bibliograa: MWG, cap. 06. Cláudio R. Lucinda FEA-RP/USP. Cláudio R. Lucinda Aula 03

Escolha sob Incerteza VNM. Aula 03. Bibliograa: MWG, cap. 06. Cláudio R. Lucinda FEA-RP/USP. Cláudio R. Lucinda Aula 03 Aula 03 Bibliograa: MWG, cap. 06 Cláudio R. Lucinda FEA-RP/USP Objetivos da Aula Escolha sob Incerteza 1 Escolha sob Incerteza Preferências sobre Objetivos da Aula Escolha sob Incerteza 1 Escolha sob Incerteza

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Espaços Vetoriais. () Espaços Vetoriais 1 / 17

Espaços Vetoriais. () Espaços Vetoriais 1 / 17 Espaços Vetoriais () Espaços Vetoriais 1 / 17 Espaços Vetoriais Definição Seja um conjunto V, não vazio. i. Uma adição em V é uma operação que a cada par de elementos (u, v) V V associa um elemento u +

Leia mais

Teoria do Consumidor: Preferências e Utilidade

Teoria do Consumidor: Preferências e Utilidade Teoria do Consumidor: Preferências e Utilidade Roberto Guena de Oliveira 13 de março de 2011 Roberto Guena de Oliveira ( ) Preferências 13 de março de 2011 1 / 23 Sumário 1 Função de utilidade 2 Hipóteses

Leia mais

Teoria do Consumidor: Preferências e Utilidade

Teoria do Consumidor: Preferências e Utilidade Teoria do Consumidor: Preferências e Utilidade Roberto Guena de Oliveira 13 de março de 2011 Roberto Guena de Oliveira ( ) Preferências 13 de março de 2011 1 / 24 Sumário 1 Função de utilidade 2 Hipóteses

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 2012/02 1 Variáveis Aleatórias Contínuas 2 Distribuições de Probabilidade e Funções Densidades de Probabil 3 4 Objetivos Ao final

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Teoria de Conjuntos Do vazio ao Axioma da Escolha

Teoria de Conjuntos Do vazio ao Axioma da Escolha Teoria de Conjuntos Do vazio ao Axioma da Escolha Tiago Macedo I Workshop de Álgebra - UFG - CAC http://ssa_mat.catalao.ufg.br Teoria ingênua de conjuntos Teoria ingênua de conjuntos Um conjunto é uma

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 29 de Abril de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Determinar probabilidades a partir de funções densidades

Leia mais

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos

Semana 2. Primitivas. Conjunto das partes. Produto cartesiano. 1 Teoria ingênua dos conjuntos. 2 Axiomática ZFC de conjuntos. 4 Conjuntos numéricos Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 Semana 2 1 Teoria ingênua dos conjuntos 2 Axiomática ZFC de conjuntos 3 4 e pertinência Conjunto é entendido como uma coleção de

Leia mais

Teoria do Consumidor: Preferências e Utilidade. Roberto Guena de Oliveira 7 de Março de 2017

Teoria do Consumidor: Preferências e Utilidade. Roberto Guena de Oliveira 7 de Março de 2017 Teoria do Consumidor: Preferências e Utilidade Roberto Guena de Oliveira 7 de Março de 2017 1 Partes Preferências racionais Representação das preferências: curvas de indiferença e função de utilidade Convexidade

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/31 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

13 de novembro de 2007

13 de novembro de 2007 13 de novembro de 2007 Objetivos - Definição Subgrupos Axiomas de Separação Bases e Sistema fundamental de vizinhanças para a identidade Euclidianos e o Quinto Problema de Hilbert Objetivos - Medida de

Leia mais

ESCOLHA SOB INCERTEZA

ESCOLHA SOB INCERTEZA MICROECONOMIA I ESCOLHA SOB INCERTEZA Rafael V. X. Ferreira rafaelferreira@usp.br Março e Abril de 2017 Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

Micro I: Aula 04. Preferências Reveladas. February 2, 2011

Micro I: Aula 04. Preferências Reveladas. February 2, 2011 Micro I: Aula 04 Preferências Reveladas February 2, 2011 Seja B o conjunto de conjuntos de escolha do agente. Considere uma regra de escolha definida em B como sendo uma regra que associaa a cada conjunto

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Cap. 2. Jogos Estáticos com Informação Completa

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Cap. 2. Jogos Estáticos com Informação Completa Teoria dos Jogos Prof Maurício Bugarin ECO/UnB 013-I Cap Jogos Estáticos com Informação Completa Roteiro Capítulo Jogos Estáticos com Informação Completa (Cap 1 do livro-texto) 1 A Forma Normal e o Conceito

Leia mais

Instituto Nacional de Matemática Pura e Aplicada Curso: Introdução à Economia Matemática

Instituto Nacional de Matemática Pura e Aplicada Curso: Introdução à Economia Matemática Instituto Nacional de Matemática Pura e Aplicada Curso: Introdução à Economia Matemática Prof. Rodrigo Novinski 8 de Fevereiro de 2010 Escolha sob Risco: Atitudes frente ao Risco (Castro e Faro, capítulo

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

Escolhas com pontos de referência

Escolhas com pontos de referência Gustavo Coelho Programa de Educação Tutorial Departamento de Economia Universidade de Brasília 11 de abril de 2011 1 Introdução 2 Simom-Bewley Efeito dotação 3 Masatioglu e Ok (2010) Ortoleva(2010) Riella

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

Teoria do Consumidor Efeitos Renda e Substituição Caso especial (efeito do preço do bem sobre a sua demanda): x i p

Teoria do Consumidor Efeitos Renda e Substituição Caso especial (efeito do preço do bem sobre a sua demanda): x i p Efeitos Renda e Substituição Caso especial (efeito do preço do bem sobre a sua demanda): x i (p, y) = xh i (p, u ) x i (p, y) x i (p, y) p } i p {{}} i {{}}{{} ET ES ER Oquesabemossobreestestermos?, i

Leia mais

Teoria Microeconômica I. Prof. Marcelo Matos. Aula de revisão Primeira parte

Teoria Microeconômica I. Prof. Marcelo Matos. Aula de revisão Primeira parte Teoria Microeconômica I Prof. Marcelo Matos Aula de revisão Primeira parte Preferências, utilidade e escolha Preferências completas - quaisquer duas cestas podem ser comparadas reflexivas - qualquer cesta

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

Esp. Vet. I. Espaços Vetoriais. Espaço Vetorial. Combinações Lineares. Espaços Vetoriais. Espaço Vetorial Combinações Lineares. Esp. Vet.

Esp. Vet. I. Espaços Vetoriais. Espaço Vetorial. Combinações Lineares. Espaços Vetoriais. Espaço Vetorial Combinações Lineares. Esp. Vet. Definição (R n 1 a Parte R n é o conjunto das n-uplas ordenadas de números reais. (1,, R Paulo Goldfeld Marco Cabral (1, (, 1 R Departamento de Matemática Aplicada Universidade Federal do Rio de Janeiro

Leia mais

Teoria do consumidor. Propriedades do Conjunto Consumo,

Teoria do consumidor. Propriedades do Conjunto Consumo, Teoria do consumidor 1 Pedro Rafael Lopes Fernandes Qualquer modelo que vise explicar a escolha do consumidor é sustentado por quatro pilares. Estes são o conjunto consumo, o conjunto factível, a relação

Leia mais

dosteoremasdepascaledepappus

dosteoremasdepascaledepappus Uma demonstração algébrica dosteoremasdepascaledepappus Um dos teoremas mais bonitos da Matemática é o teorema de Pascal: Teorema de Pascal Dados seis pontos A, B, C, D, E e F sobre uma circunferência,

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Roberto Imbuzeiro Oliveira 9 de Março de 2009 Resumo Esta lista cobre o básico do básico sobre espaços e distribuições de probabilidade. Pouco

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 19 de março de 2013 1 Aplicações de Integrais 2 subject Aplicações de

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

SCC Capítulo 3 Prova Automática de Teoremas

SCC Capítulo 3 Prova Automática de Teoremas SCC-630 - Capítulo 3 Prova Automática de Teoremas João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos

Leia mais

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos

2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos 2 Espaços Vetoriais 2.1 Espaços Vetoriais Euclidianos Definição: Dado n N, considere-se o conjunto de todos os n-uplos ordenados de elementos reais, isto é o conjunto de elementos da forma x = (x 1,, x

Leia mais

Álgebra Linear Contra-Ataca

Álgebra Linear Contra-Ataca Contra-Ataca Prof Afonso Paiva Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP São Carlos Cálculo Numérico SME0104 Operações elementares Operações

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

T e o r e m a d e N a s h

T e o r e m a d e N a s h T e o r e m a d e N a s h Primeiro Seminário de Teoria dos Jogos Maio de 2007 Fabrício Murai S u m á r i o Objetivos Notação e definições Enunciado do Teorema Teoremas do Ponto Fixo Demostração do Teorema

Leia mais

Modelagem em Sistemas Complexos

Modelagem em Sistemas Complexos Modelagem em Sistemas Complexos Bifurcação local de campos vetoriais Marcone C. Pereira Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo - Brasil Abril de 2012 Nesta aula discutiremos

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional

01/09/2014. Capítulo 3. Propriedades semânticas da Lógica Proposicional Capítulo 3 Propriedades semânticas da Lógica Proposicional 1 Introdução Propriedades Definição 3.1 (propriedades semânticas básicas da Lógica Proposicional) Sejam H, G, H 1, H 2,...,H n, fórmulas da Lógica

Leia mais

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções.

14 AULA. Funções LIVRO. META: Apresentar o conceitos de funções. 2 LIVRO Funções META: Apresentar o conceitos de funções. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relção é uma função. Determinar a imagem direta e a imagem inversa

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 Assunto:Equações da reta no R 2 e no R 3, equações do plano, funções de uma variável real a valores em R n Palavras-chaves: Equação da reta,

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Convergência em espaços normados

Convergência em espaços normados Chapter 1 Convergência em espaços normados Neste capítulo vamos abordar diferentes tipos de convergência em espaços normados. Já sabemos da análise matemática e não só, de diferentes tipos de convergência

Leia mais

3 Espaços com Produto Interno

3 Espaços com Produto Interno 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v +

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

1 Noções preliminares

1 Noções preliminares Álgebras, subálgebras e endomorfirsmos Ana Cristina - MAT/UFMG Durante este texto, vamos considerar F um corpo de característica zero. Iniciaremos com algumas definições da teoria de anéis que serão importantes

Leia mais

Cap. 5 Estabilidade de Lyapunov

Cap. 5 Estabilidade de Lyapunov Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x

Leia mais

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A I- CONCEITOS INICIAIS. 1.1- INTRODUÇÃO. PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA 1.2- CONJUNTOS. 1.2.1- DEFINIÇÃO. Conjunto é uma coleção de objetos chamados de elementos do conjunto. Em geral denota-se

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Métodos de Pesquisa Operacional

Métodos de Pesquisa Operacional Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução

Leia mais

Instituto de Matemática e Estatística, UFF Abril de 2013

Instituto de Matemática e Estatística, UFF Abril de 2013 Instituto de Matemática e Estatística, UFF Abril de 2013 Sumário.... Hermann Grassmann Famoso em sua época como linguista, somente hoje é valorizado como matemático. Foi o primeiro a usar o método de prova

Leia mais

Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso)

Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso) Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso) Leonardo A. B. Torres PPGEE/UFMG October 2, 2018 Leonardo A. B. Torres (PPGEE/UFMG) FCNL: Conceitos Matemáticos October

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019

Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019 Álgebra Linear ECT2202 Prof. Ronaldo Carlotto Batista 20 de março de 2019 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser entendidos como referência

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática. Liana Garcia Ribeiro

Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática. Liana Garcia Ribeiro Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática Liana Garcia Ribeiro Introdução aos Números Algébricos Florianópolis 2018 2 Introdução Para fazer

Leia mais

GABRIEL BUJOKAS

GABRIEL BUJOKAS APLICAÇÕES DE ÁLGEBRA LINEAR À COMBINATÓRIA GABRIEL BUJOKAS (GBUJOKAS@MIT.EDU) A gente vai discutir algumas das aplicações clássicas de álgebra linear à combinatória. Vamos começar relembrando alguns conceitos

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

Probabilidade de Ruína e Processos de Lévy α-estáveis

Probabilidade de Ruína e Processos de Lévy α-estáveis Apresentação Probabilidade de Ruína e Processos de Lévy α-estáveis Universidade de São Paulo IME - USP 08 de abril, 2010 Apresentação Distribuições Estáveis e Processos de Lévy α-estáveis Convergência

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

Preferência Revelada

Preferência Revelada Preferência Revelada Roberto Guena de Oliveira USP 26 de abril de 2014 Roberto Guena de Oliveira (USP) Consumidor 26 de abril de 2014 1 / 20 Sumário 1 Motivação 2 O axioma fraco da preferência revelada

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes

DAMCZB014-17SA Introdução à análise funcional Claudia Correa. Conjuntos quocientes e espaços vetoriais quocientes DAMCZB014-17SA Introdução à análise funcional Claudia Correa Conjuntos quocientes e espaços vetoriais quocientes O objetivo do presente texto é recordar as noções relacionadas a conjuntos quocientes e

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.3 Derivadas Parciais Nesta seção, nós aprenderemos sobre: Os vários aspectos de derivadas parciais. INTRODUÇÃO Em um dia quente, a umidade muito alta

Leia mais

Prova Extramuro BOA PROVA! Respostas da Parte II

Prova Extramuro BOA PROVA! Respostas da Parte II Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!

Leia mais

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2.

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2. UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA Quinta lista de Exercícios - Análise Funcional, período 2009.2. Professor:

Leia mais

3 O Teorema de Ramsey

3 O Teorema de Ramsey 3 O Teorema de Ramsey Nesse capítulo enunciamos versões finitas e a versão infinita do Teorema de Ramsey, além das versões propostas por Paris, Harrington e Bovykin, que serão tratadas no capítulos subseqüentes.

Leia mais

(Aula 13) Ruy J. G. B. de Queiroz Centro de Informática, UFPE. Teoria dos Conjuntos. (Aula 13) Ruy de Queiroz. Conjuntos.

(Aula 13) Ruy J. G. B. de Queiroz Centro de Informática, UFPE. Teoria dos Conjuntos. (Aula 13) Ruy de Queiroz. Conjuntos. Ruy J. G. B. de Centro de Informática, UFPE 2009.1 Conteúdo 1 2 Observação (Ponto de Partida) (1) A operação de sucessor de um conjunto x: S(x) = x {x}. (2) n = {m N m < n}. (3) N: o menor conjunto contendo

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo estudo

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

CURVAS REGULARES E EQUAÇÕES DE FRENET. Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ²

CURVAS REGULARES E EQUAÇÕES DE FRENET. Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ² 1 CURVAS REGULARES E EQUAÇÕES DE FRENET Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ² ¹ Aluno do curso de Matemática CPTL/UFMS, bolsista do grupo PET Matemática CPTL/UFMS; ² Professor do curso de

Leia mais

Sistema dedutivo. Sistema dedutivo

Sistema dedutivo. Sistema dedutivo Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica

Leia mais