Teoria do consumidor. Propriedades do Conjunto Consumo,

Tamanho: px
Começar a partir da página:

Download "Teoria do consumidor. Propriedades do Conjunto Consumo,"

Transcrição

1 Teoria do consumidor 1 Pedro Rafael Lopes Fernandes Qualquer modelo que vise explicar a escolha do consumidor é sustentado por quatro pilares. Estes são o conjunto consumo, o conjunto factível, a relação de preferências, e a hipótese comportamental. A noção de conjunto consumo é muito simples. Este conjunto é composto de todas as alternativas (planos) de consumo que o individuo pode conceber, independente do fato que eles estejam ou não dentro das possibilidades deste agente. O que queremos capturar com este conceito é o universo de escolhas alternativas que o consumidor pode imaginar sem considerar qualquer restrição de sua presente situação. O conjunto consumo é algumas vezes também denominado de conjunto escolha. Suponha que cada bem possa ser medido em unidades infinitamente diviseis. Deixe representar o número de unidades do bem. Assumimos que somente unidades não negativas de cada bem serão consideradas e que é sempre possível conceber que não há unidades disponíveis de algum bem. Além disso, assumimos que há um número finito, fixo, mas arbitrário de diferentes bens. Deixe ser um vetor que contém diferentes quantidades de cada um dos bens e chamaremos de cesta de consumo ou de um plano de consumo. Uma cesta de consumo é assim representada por um ponto. Usualmente simplificamos as coisas e apenas pensamos no conjunto consumo como todo o ortante não negativo,. Neste caso é fácil ver que cada um dos seguintes requerimentos é satisfeito. Propriedades do Conjunto Consumo, é fechado. 3. é convexo. 4.. A noção de conjunto factível é também muito simples. Deixe representar todos aqueles planos de consumo alternativos que são concebíveis e mais importante que são obtiveis dentro das atuais circunstâncias do consumidor. Intencionamos aqui capturar precisamente aquelas alternativas que são atingíveis, dada a realidade econômica que o consumidor enfrenta. O conjunto factível é então um subconjunto do conjunto consumo ( ) que permanece depois de termos adicionados todas as restrições sobre o acesso do consumidor aos bens. Uma relação de preferência especifica os limites, se houver, sobre a habilidade do consumidor observar em situações envolvendo escolhas uma forma de consistência ou inconsistência sobre suas escolhas. Finalmente o modelo é fechado pela especificação de alguma hipótese comportamental. Esta expressa um principio guia que o consumidor usa para fazer suas escolhas e então identificar 1 Professor Mestre no Departamento de Economia da UERN.

2 seus objetivos principais. Supomos que o consumidor procura identificar e selecionar uma alternativa disponível que é mais preferida à luz de seus gostos pessoais. Preferências As preferências do consumidor são caracterizadas axiomaticamente. Neste método de modelagem, poucas e significantes hipóteses são assumidas de modo a caracterizar a estrutura e propriedades das preferências. O resto da teoria é então construída logicamente a partir desses axiomas, e as predições de comportamento são desenvolvidas através do processo de dedução. Os axiomas da escolha do consumidor tem a intenção de dar uma expressão matemática formal à aspectos fundamentais do comportamento do consumidor e atitudes com respeito aos objetos de escolha. Juntos, eles formalizam a visão que o consumidor pode escolher e que suas escolhas são consistentes de uma forma particular. Formalmente, apresentamos as preferências do consumidor por uma relação binária,, definida sobre o conjunto consumo,. Se, dizemos que, para este consumidor. AXIOMA 1 : Completeza Para todo, ou. O axioma 1 formaliza a noção que o consumidor pode fazer comparações, isto é, que ele tem a capacidade de discriminar e o necessário conhecimento para avaliar alternativas. Ele diz que o consumidor pode examinar qualquer dois planos de consumo distintos e decidir se é ao menos tão bom quanto ou que é ao menos tão bom quanto. AXIOMA 2 : Transitividade. Para qualquer três elementos O axioma 2 dá uma particular forma de consistência as escolhas do consumidor. Embora ele exija que o consumidor seja capaz apenas de comparar duas alternativas de cada vez, a hipótese de transitividade requer que as comparações aos pares sejam conectadas de uma forma consistente. Estes dois axiomas juntos implicam que o consumidor pode classificar completamente qualquer número finito de elementos no conjunto consumo, possivelmente com alguns vínculos. Relação de Preferência, do melhor ao pior, A relação binária sobre o conjunto consumo é chamada uma relação de preferência se ela satisfaz os axiomas 1 e 2. Existem ainda duas relações adicionais que vamos usar na nossa discussão sobre as preferências do consumidor. Cada uma dessas é determinada pela relação de preferência,, e elas formalizam as noções de preferência estrita e indiferença.

3 Relação de preferência estrita A relação binária sobre o conjunto consumo é definida como a seguir: A relação é chamada de relação de preferência estrita induzida por. Relação de Indiferença A relação binária sobre o conjunto consumo é definida como se segue: A relação é chamada relação de indiferença induzida por. Como cada uma dessas relações é derivada da relação de preferência,, podemos esperar que compartilhem algumas de suas propriedades, mas não todas. Em geral ambas são transitivas e nenhuma é completa. Usando essas duas relações de preferências suplementares, podemos estabelecer algo forte sobre a classificação do consumidor de qualquer duas alternativas. Para qualquer par, exatamente uma das três possibilidades mutuamente exclusivas é mantida:. Conjuntos em derivados da Relação de Preferência Deixe ser qualquer ponto no conjunto consumo,. Relativa à qualquer ponto, podemos definir os seguintes subconjuntos de : 1., chamado de conjunto pelo menos tão bom. 2., chamado de conjunto não melhor que. 3. chamado de conjunto pior que. 4., chamado de conjunto preferido à. 5., chamado de conjunto indiferente. Os axiomas de completeza e transitividade são suficientes para compor a hipótese de racionalidade da relação de preferência,. Isto é, uma relação de preferência é racional quando ela é completa e transitiva. No entanto, a fim de simplificar a análise da escolha do consumidor podemos ainda supor a validade de dois axiomas adicionais, são elas a de monotonicidade estrita e convexidade estrita. AXIOMA 3 Monotonicidade estrita Para todo, enquanto se. O axioma 3 diz que se uma cesta contém ao menos a mesma quantidade de cada bem quanto outra, então ela é pelo menos tão boa quanto outra. Além disso, diz que ela é estritamente melhor se contém uma maior quantidade de todos os bens. Em termos simples, o axioma 3 nos diz que mais é melhor do que menos. AXIOMA 4 Convexidade estrita - Se. Na prática, o axioma 4 nos diz que o consumidor prefere cestas ou planos de consumo mais equilibrados. Isto é, convexidade estrita implica que o consumidor preferirá um certo

4 equilíbrio entre as quantidades dos bens do que um plano de consumo especializado num determinado bem. AXIOMA 5 Continuidade Para todo, o conjunto pelo menos tão bom,, e o conjunto não melhor que,, são fechados em. Lembre que se um conjunto é fechado num domínio particular então seu complemento é aberto naquele domínio. Assim, dizer que é fechado em é dizer que seu complemento, é aberto em. O axioma da continuidade garante que mudanças súbitas de preferência não ocorram. De fato, o axioma o axioma da continuidade pode ser expressado dizendo que se cada elemento de uma sequência de cestas é pelo menos tão boa quanto, e converge para então é pelo menos tão bom quanto. A função Utilidade Na moderna teoria do consumidor, a função de utilidade é um simples e conveniente dispositivo usado para sumarizar a informação contida na relação de preferência do consumidor não mais e nem menos. A função utilidade é definida formalmente a seguir: Uma função avaliada nos reais é denominada uma função de utilidade que representa a relação de preferência se para todo. Em linhas práticas, a função utilidade representa uma relação de preferência do consumidor se atribui números mais altos às cestas mais preferidas. Propriedades da Função Utilidade Deixe ser representado por. Então: é estritamente crescente se e somente se é estritamente monótona. é quase côncava se e somente se é convexa. é estritamente quase côncava se e somente se é estritamente convexa. Supomos ainda que a função utilidade é diferenciavel sempre que for necessário. Supondo que a função de utilidade é passível de derivação podemos apresentar agora mais dois conceitos cruciais no entendimento do problema do consumidor: Utilidade Marginal - Seja uma função de utilidade. Então: denota a utilidade marginal (adicional) que o consumo de uma unidade a mais de gera no individuo. O mesmo vale para o bem 2,. Assim: denota a utilidade marginal do bem 2. Na função de utilidade descrita acima, estamos supondo que a escolha do consumidor está entre os bens 1 e 2. Assim uma pergunta interessante a se fazer é quanto do bem 2 o consumidor está disposto a trocar por bem 1, de modo que permaneça no mesmo nível de utilidade? para responder a esta questão necessitamos do conceito de taxa marginal de substituição (tms). Do ponto de vista geométrico a tms nada mais é do que a inclinação das curvas de indiferença que nada mais são do que a descrição geométrica de níveis de utilidade que um consumidor pode atingir.

5 Dada as hipóteses e axiomas das preferências, esses níveis de utilidade serão representados por curvas que não se interceptam, que são estritamente convexas em relação à origem e que denotaram níveis de utilidades maiores com curvas mais ao nordeste como pode ser visto na figura abaixo. Curvas de indiferença mais altas indicam maiores níveis de satisfação. Figura 1: Curvas de Indiferença A taxa marginal de substituição pode ser encontrada através do emprego do seguinte raciocíni :. Isto é a taxa marginal de substituição é a taxa de troca entre dois bens que mantém o nível de utilidade constante. Continuando o raciocínio podemos obter a tms:. Ou seja, a taxa marginal de substituição é dada pela razão da utilidade marginal do bem 1 pela utilidade marginal do bem 2. Note que no caso onde as preferências são convexas, a tms diminui (em valor absoluto) à medida que aumentamos a quantidade consumida de. Assim as curvas de indiferença mostram uma taxa marginal de substituição decrescente. Isto significa que a taxa a qual a pessoa deseja trocar por diminui a medida que aumentamos a quantidade de. Em linhas práticas e tms decrescente nos diz que quanto mais temos de um bem, mais propensos estaremos em abrir mão de um pouco dele em troca de outro bem.

ESCOLHA INDIVIDUAL. Rafael V. X. Ferreira Março de 2017

ESCOLHA INDIVIDUAL. Rafael V. X. Ferreira Março de 2017 MICROECONOMIA I ESCOLHA INDIVIDUAL Rafael V. X. Ferreira rafaelferreira@usp.br Março de 2017 Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento de Economia

Leia mais

Teoria do Consumidor. Temos quatro elementos importantes em qualquer modelo de escolha do consumidor:

Teoria do Consumidor. Temos quatro elementos importantes em qualquer modelo de escolha do consumidor: Temos quatro elementos importantes em qualquer modelo de escolha do consumidor: conjunto de consumo; conjunto factível; relação de preferência ehipótesecomportamental Conjunto de consumo (ou escolha):

Leia mais

Teoria do Consumidor (Cap. 10 e 11 Krugman & Wells Cap. 3 Pyndick & Rubinfeld Cap. 3 - Varian)

Teoria do Consumidor (Cap. 10 e 11 Krugman & Wells Cap. 3 Pyndick & Rubinfeld Cap. 3 - Varian) Teoria do Consumidor (Cap. 10 e 11 Krugman & Wells Cap. 3 Pyndick & Rubinfeld Cap. 3 - Varian) Consumidor Racional Os consumidores escolhem a melhor cesta de bens que podem adquirir Questões: - como determinar

Leia mais

Teoria Microeconômica I. Prof. Marcelo Matos. Aula Introdutória

Teoria Microeconômica I. Prof. Marcelo Matos. Aula Introdutória Teoria Microeconômica I Prof. Marcelo Matos Aula Introdutória Ementa do Curso Teoria do consumidor: escolha do consumidor; preferência revelada; efeitos-renda e efeito-substituição: equação de Slutsky

Leia mais

Comportamento do consumidor Parte Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor

Comportamento do consumidor Parte Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor Comportamento do consumidor Parte 1 1. Preferências do Consumidor 2. Restrições Orçamentárias 3. A Escolha do Consumidor Comportamento do consumidor Há 3 etapas no estudo do comportamento do consumidor.

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

Introdução à Microeconomia. Renata Lèbre La Rovere. Grupo de Economia da Inovação IE/UFRJ

Introdução à Microeconomia. Renata Lèbre La Rovere. Grupo de Economia da Inovação IE/UFRJ Introdução à Microeconomia Renata Lèbre La Rovere Grupo de Economia da Inovação IE/UFRJ PARTE III: CONSUMO BIBLIOGRAFIA DA PARTE III: Krugman & Wells, cap. 10 e 11 Varian, cap. 2,3, 4,5 BIBLIOGRAFIA DESTA

Leia mais

A Teoria do Consumidor

A Teoria do Consumidor A Teoria do Como a demanda fundamenta-se no comportamento dos consumidores? Aplicações importantes da teoria que será vista: -servir de guia para elaboração e interpretação de pesquisas de mercado -fornecer

Leia mais

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas

Economia do Trabalho OFERTA DE TRABALHO. CAP. 2 Borjas Economia do Trabalho OFERTA DE TRABALHO CAP. 2 Borjas 1. INTRODUÇÃO Indivíduos procuram maximizar bem estar, consumindo bens e lazer Existe trade-off entre trabalho e lazer Indivíduos precisam de trabalho

Leia mais

Capitulo 6: A Teoria do Consumidor

Capitulo 6: A Teoria do Consumidor Capitulo 6: A Teoria do Consumidor Aplicações Guia para elaboração e interpretação de pesquisas de mercado; Fornecer métodos para comparar a eficácia de diferentes politicas de incentivo ao consumidor;

Leia mais

Capítulo 3 Preferências

Capítulo 3 Preferências Capítulo 3 Preferências Verdadeiro ou falso 3.1 Se as preferências são transitivas, mais é sempre preferível a menos. Resposta: Falsa 3.2 Uma pessoa com preferência reflexivo é alguém que não compra cuidadosamente.

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 1 - Soluções Universidade Federal de Pelotas Disciplina de Microeconomia Professor Rodrigo Nobre Fernandez Lista - Soluções ) Suponha que existam apenas dois bens e o governo resolve controlar os preços desses bens

Leia mais

Introdução à Microeconomia

Introdução à Microeconomia Introdução à Microeconomia Marcelo Pessoa de Matos Aula 20 PARTE III: CONSUMO BIBLIOGRAFIA DA PARTE III: Krugman & Wells, cap. 10 e 11 Varian, cap. 2,4,5,6 BIBLIOGRAFIA DESTA AULA: Krugman & Wells, cap.10

Leia mais

LES 101 Introdução à Economia

LES 101 Introdução à Economia Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz LES 101 - Introdução à Economia LES 101 Introdução à Economia Prof. João Martines Filho 30 / maio / 2017 Copyright 2010 Pearson

Leia mais

Aula 7 16/09/ Microeconomia. Comportamento do Consumidor. PINDYCK (2007) Capítulo 3

Aula 7 16/09/ Microeconomia. Comportamento do Consumidor. PINDYCK (2007) Capítulo 3 ula 7 16/09/2009 - Microeconomia. Comportamento do Consumidor. INDYCK (2007) Capítulo 3 Escolha do Consumidor Supondo que o consumidor maximiza a sua utilidade, temos que a cesta maximizadora deve estar

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 4: Programação Linear Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013

Leia mais

Microeconomia. Bibliografia. Arilton Teixeira Mankiw, cap. 21. Pindyck & Rubinfeld, caps. 3 e 4.

Microeconomia. Bibliografia. Arilton Teixeira Mankiw, cap. 21. Pindyck & Rubinfeld, caps. 3 e 4. Microeconomia Arilton Teieira arilton@fucape.br 2012 1 Bibliografia Mankiw, cap. 21. Pindck & Rubinfeld, caps. 3 e 4. 2 Mercados: Consumidores e Produtores P S(P, tech., insumos) P* D(P, renda, outros)

Leia mais

Restrição orçamentária

Restrição orçamentária Restrição orçamentária Objetivo da aula Economistas assumem que os consumidores devem escolher as melhores cestas que podem pagar. Uma primeira preocupação consiste, então, em definir o que podem pagar,

Leia mais

Aulas 10 e 11 / 18 e 20 de abril

Aulas 10 e 11 / 18 e 20 de abril 1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar

Leia mais

Teoria do Consumidor: Equilíbrio do Consumidor

Teoria do Consumidor: Equilíbrio do Consumidor Teoria do Consumidor: Equilíbrio do Consumidor Roberto Guena de Oliveira 16 de março de 2012 Roberto Guena de Oliveira () Equilíbrio 16 de março de 2012 1 / 36 Sumário 1 Restrição orçamentária 2 Restrição

Leia mais

A Escolha Racional relações binárias número de relações binárias 2m.p domínio imagem

A Escolha Racional relações binárias número de relações binárias 2m.p domínio imagem A Escolha Racional A racionalidade na teoria dos jogos procura perceber como os jogadores (sejam eles indivíduos, empresas, organizações, países etc.) tomam suas decisões em situações de interação estratégica.

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS FACULDADE DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA I PROF: Prof. Dr.Giácomo Balbinotto Neto Estágio Docência: Mestranda do PPGE/Economia

Leia mais

Perguntas a Serem Respondidas. 21. Teoria da Escolha do Consumidor. A Restrição Orçamentária. Oprtunidades do Consumidor

Perguntas a Serem Respondidas. 21. Teoria da Escolha do Consumidor. A Restrição Orçamentária. Oprtunidades do Consumidor 21. Teoria da Escolha do onsumidor Perguntas a Serem Respondidas Todas as curvas de demanda têm inclinação negativa? omo os salários afetam a oferta de mão-deobra? omo as taxasde jurosafetama poupança

Leia mais

Aula 15 Teoria da Produção 19/04/2010 Bibliografia: Vasconcellos (2006) Cap. 6, Mankiw (2007) Cap. 13. Texto: Eu vos declaro marido e mulheres

Aula 15 Teoria da Produção 19/04/2010 Bibliografia: Vasconcellos (2006) Cap. 6, Mankiw (2007) Cap. 13. Texto: Eu vos declaro marido e mulheres Aula 15 Teoria da Produção 19/04/2010 Bibliografia: Vasconcellos (2006) Cap. 6, Mankiw (2007) Cap. 13. Texto: Eu vos declaro marido e mulheres Teoria da produção Firma ou empresa para economia é uma unidade

Leia mais

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas.

5 AULA. Teorias Axiomáticas LIVRO. META: Apresentar teorias axiomáticas. 1 LIVRO Teorias Axiomáticas 5 AULA META: Apresentar teorias axiomáticas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Criar teorias axiomáticas; Provar a independência dos axiomas de uma

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

Algumas Preliminares Matemáticas

Algumas Preliminares Matemáticas Lista 1 de Microeconomia I Professor: Carlos E.L. da Costa Monitor: Vitor Farinha Algumas Preliminares Matemáticas Nas próximas páginas apresentam-se alguns conceitos matemáticos e teoremas que serão úteis

Leia mais

Teoria do Consumidor. Capítulo V TEORIA DO CONSUMIDOR. Introdução. Introdução. Preferências do consumidor. Restrições orçamentárias

Teoria do Consumidor. Capítulo V TEORIA DO CONSUMIDOR. Introdução. Introdução. Preferências do consumidor. Restrições orçamentárias Teoria do Consumidor TEORIA DO CONSUMIDOR A escolha por parte do consumidor Capítulo V Duas aplicações que ilustram a importância da teoria do consumidor: Cereal matinal Apple-Cinnamon Cheerios Programa

Leia mais

Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol.

Risco. Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Risco Definição: Uma lotaria é qualquer evento com um resultado incerto. Exemplos: Investimento, Jogos de Casino, Jogo de Futebol. Definição: A probabilidade de um resultado (de uma lotaria) é a possibilidade

Leia mais

Universidade Federal de Roraima Departamento de Economia

Universidade Federal de Roraima Departamento de Economia Universidade Federal de Roraima Departamento de Economia Última Atualização: 03/06/03 ) Avalie, com análise gráfica, a variação do Excedente do Consumidor e/ou Excedente do Produtor para as seguintes situações:

Leia mais

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento

Leia mais

Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos

Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos Teoria dos Jogos Algorítmica Maximização de Lucros no Design de Mecanismos Luis Gustavo Rocha Vianna. Instituto de Matemática e Estatística IME Universidade de São Paulo USP Maximização de Lucros Design

Leia mais

Economia de Trocas Pura

Economia de Trocas Pura Economia de Trocas Pura Caracterização Estamos de volta às questões colocadas por Adam Smith na Riqueza das Nações. Seria um sistema de trocas, baseado em indivíduos auto interessados, com propriedade

Leia mais

Teorema de Green Curvas Simples Fechadas e Integral de

Teorema de Green Curvas Simples Fechadas e Integral de Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Teorema de Green Agora chegamos a mais um teorema da família do Teorema Fundamental do Cálculo, mas dessa vez envolvendo integral

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO

Leia mais

COMPARAÇÕES SOBRE O COMPORTAMENTO RACIONAL SEGUNDO A ABORDAGEM DE JEVONS E A TEORIA DO CONSUMIDOR PRESENTE NOS MANUAIS

COMPARAÇÕES SOBRE O COMPORTAMENTO RACIONAL SEGUNDO A ABORDAGEM DE JEVONS E A TEORIA DO CONSUMIDOR PRESENTE NOS MANUAIS COMPARAÇÕES SOBRE O COMPORTAMENTO RACIONAL SEGUNDO A ABORDAGEM DE JEVONS E A TEORIA DO CONSUMIDOR PRESENTE NOS MANUAIS Jessyca Cordeiro Morier Mestranda HCTE-UFRJ jmorier@ufrj.br RESUMO O presente trabalho

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação ) Fundamentos.1) Conjuntos e Sub-conjuntos.) Números Inteiros.3) Funções.4) Seqüências e Somas.5) Crescimento de Funções Seqüências Uma seqüência

Leia mais

Demanda do Consumidor (Microeconomia)

Demanda do Consumidor (Microeconomia) Escolha ótima do consumidor: a demanda. Olá estimado(a) aluno(a), tudo bem? O objetivo deste artigo é apresentar algumas questões relacionadas à demanda. Ou seja, compreender de forma esquematizada qual

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática

Leia mais

Artigo ECONOMIA MONETÁRIA I [A] 24/3/2005 PROF. GIÁCOMO BALBINOTTO NETO [UFRGS] 1. Demanda de Moeda por Especulação O Modelo de James Tobin (1958)

Artigo ECONOMIA MONETÁRIA I [A] 24/3/2005 PROF. GIÁCOMO BALBINOTTO NETO [UFRGS] 1. Demanda de Moeda por Especulação O Modelo de James Tobin (1958) Demanda de Moeda por Especulação O Modelo de James Tobin (1958) Prof. Giácomo Balbinotto Neto UFRGS/FCE 25 Artigo Tobin, James (1958). Liquidity Preference as a Behaviour Toward Risk. Review of Economics

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Prova de Microeconomia

Prova de Microeconomia Prova de Microeconomia 1) Acerca do comportamento do consumidor pode-se afirmar que: I. A relação de preferência é dita racional se ela é completa e transitiva; II. Somente a relação de preferência racional

Leia mais

Oferta (Cap. 8) 2º SEMESTRE 2011

Oferta (Cap. 8) 2º SEMESTRE 2011 Oferta (Cap. 8) 2º SEMESTRE 2011 Marta Lemme - IE/UFRJ Função de Produção A função de produção é a relação entre a quantidade de insumos que uma firma usa e a quantidade de produto que ela produz. Um insumo

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Produção Roberto Guena de Oliveira USP 1 de julho de 2015 Sumário 1 O conjunto e a função de produção 2 Medidas de produtividade 3 Produção no curto prazo 4 Produção no longo prazo

Leia mais

Teoria do Consumidor: Equilíbrio do Consumidor

Teoria do Consumidor: Equilíbrio do Consumidor Teoria do Consumidor: Equilíbrio do Consumidor Roberto Guena de Oliveira 21 de março de 2011 Roberto Guena de Oliveira ( ) Preferências 21 de março de 2011 1 / 36 Sumário 1 Restrição orçamentária 2 Restrição

Leia mais

Alfred Marshall EVOLUÇÃO DO PENSAMENTO ECONÔMICO. Profa. Enimar.

Alfred Marshall EVOLUÇÃO DO PENSAMENTO ECONÔMICO. Profa. Enimar. Alfred Marshall EVOLUÇÃO DO PENSAMENTO ECONÔMICO Profa. Enimar. A partir de 1870 a análise econômica passa a ser enriquecida com o desenvolvimento da teoria neoclássica. Esta teoria se ocupa em estudar

Leia mais

Conceitos Básicos. Prof. Regis Augusto Ely. Agosto de Revisão Novembro 2012

Conceitos Básicos. Prof. Regis Augusto Ely. Agosto de Revisão Novembro 2012 Conceitos Básicos Prof. Regis Augusto Ely Agosto de 2011 - Revisão Novembro 2012 1 Metodologia da ciência econômica Teoria: conjunto de idéias sobre a realidade (Ex: teoria macroeconômica). componentes

Leia mais

σ-álgebras, geradores e independência

σ-álgebras, geradores e independência σ-álgebras, geradores e independência Roberto Imbuzeiro M. F. de Oliveira 15 de Março de 2009 Resumo Notas sobre a σ-álgebra gerada por uma variável aleatória X e sobre as condições de independência de

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Potência e Energia de um sinal

Potência e Energia de um sinal otência e nergia de um sinal Fonte: www.gaussianwaves.com/03//power-and-energy-of-a-signal/ nergia de um sinal: Definindo o termo tamanho do sinal : o processamento de sinais, geralmente um sinal é visto

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

Microeconomia. UNIDADE 5 Aula 5.1

Microeconomia. UNIDADE 5 Aula 5.1 Microeconomia UNIDADE 5 Aula 5.1 Prof - Isnard Martins Rosseti, J, Introdução à Economia, Atlas, 2006 Vasconcelos M.A, Economia Micro e Macro, 4a Edição Douglas Evans.Managerial Economics.Prentice Hall.

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

Roteiro da aula: Jogos dinâmicos com informação incompleta. Mas-Collel e Green capítulo 9 Refinamentos do conceito de Equilíbrio de Nash

Roteiro da aula: Jogos dinâmicos com informação incompleta. Mas-Collel e Green capítulo 9 Refinamentos do conceito de Equilíbrio de Nash Roteiro da aula: Jogos dinâmicos com informação incompleta Mas-Collel e Green capítulo 9 Refinamentos do conceito de quilíbrio de Nash Racionalidade seqüencial quilíbrio Bayesiano perfeito quilíbrio bayesiano

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2011/2012 Planificação Global 5º Ano 2011-2012 1/7 NÚMEROS

Leia mais

DEPARTAMENTO DE CONTABILIDADE E AUDITORIA. 1 Ano

DEPARTAMENTO DE CONTABILIDADE E AUDITORIA. 1 Ano DEPARTAMENTO DE CONTABILIDADE E AUDITORIA 1 Ano - 2010 1 Cadeira: Microeconomia 1 Esta disciplina irá capacitar o estudante a fazer análises simples do cenário económico usando conceitos por ele já conhecidos

Leia mais

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b

Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que. Max f(x) s. a a x b Considere a função f(x). Para algum x a f (x) pode não existir. Suponha que se queira resolver o seguinte PPNL: Max f(x) s. a a x b Pode ser que f (x) não exista ou que seja difícil resolver a equação

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS

Leia mais

A Teoria Neoclássica da Firma. Aula de setembro de 2008

A Teoria Neoclássica da Firma. Aula de setembro de 2008 A Teoria Neoclássica da Firma Alfred Marshall Aula 7 29-30 de setembro de 2008 Questões principais abordadas pela Teoria Neoclássica Como se relacionam produtores e consumidores no mercado? Qual o resultado

Leia mais

MAT-103 Complementos de Matemáticas para Contabilidade Prof. Juan Carlos Gutierrez Fernandez

MAT-103 Complementos de Matemáticas para Contabilidade Prof. Juan Carlos Gutierrez Fernandez MAT-03 Complementos de Matemáticas para Contabilidade Prof Juan Carlos Gutierrez Fernandez Lista : Números é funções Ano 206 Em uma pesquisa foram encontrados os seguintes resultados: 60% das pessoas entresvistadas

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso)

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Roberto Imbuzeiro Oliveira 8 de Janeiro de 2014 1 Conjuntos e funções Neste curso procuraremos fundamentar de forma precisa os fundamentos

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

MICROECONOMIA I QUESTÕES DE PROVAS CHEZERI.INFO

MICROECONOMIA I QUESTÕES DE PROVAS CHEZERI.INFO 2013 MICROECONOMIA I QUESTÕES DE PROVAS CHEZERI.INFO Sumário PARTE I... 2 [RESTRIÇÃO ORÇAMENTÁRIA]... 2 [UTILIDADE E DEMANDA]... 2 [UTILIDADE E ESCOLHA]... 3 [PREFERÊNCIAS]... 3 [ÍNDICES DE PREÇO]... 3

Leia mais

I. Conceitos Básicos

I. Conceitos Básicos I. Conceitos Básicos Escolha Múltipla 1. A economia foca-se em a) Indivíduos e como os recursos são utilizados para satisfazer as necessidades humanas. b) Dinheiro. c) Bancos d) Control 2. Um recurso é

Leia mais

Administração das Operações Produtivas

Administração das Operações Produtivas Administração das Operações Produtivas MÓDULO 14: A VISÃO DA QUALIDADE, DOS SISTEMAS E DOS MELHORAMENTOS Mesmo tendo sido acabado todo o projeto do produto e do processo, resta a atividade contínua do

Leia mais

TEORIA DO CONSUMIDOR BIBLIOGRAFIA. Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice.

TEORIA DO CONSUMIDOR BIBLIOGRAFIA. Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice. TEORIA DO CONSUMIDOR BIBLIOGRAFIA Samuelson e Nordhaus (2005), Economia., Procura e Comportamento do Consumidor; Capítulo 5 e apêndice. A RESTRIÇÃO ORÇAMENTAL R = P x.x + P y.y y = R / P y P x / P y. x

Leia mais

ESCOLHA ENTRE CONSUMO E LAZER. Prof. Antonio Carlos Assumpção

ESCOLHA ENTRE CONSUMO E LAZER. Prof. Antonio Carlos Assumpção ESOLHA ENTRE ONSUMO E LAER Prof. Antonio arlos Assumpção ESOLHA ENTRE ONSUMO E LAER Da mesma forma que os agentes econômicos escolhem uma cesta de consumo maximizadora da utilidade, sujeita a uma restrição

Leia mais

Aprendizado Bayesiano Anteriormente...

Aprendizado Bayesiano Anteriormente... Aprendizado Bayesiano Anteriormente... Conceito de Probabilidade Condicional É a probabilidade de um evento A dada a ocorrência de um evento B Universidade de São Paulo Instituto de Ciências Matemáticas

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA Monopólio 1. Indique se as afirmações a seguir são verdadeiras ou falsas e

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Custos Roberto Guena de Oliveira 8 de maio de 2017 USP 1 Sumário 1 Conceitos básicos 2 A função de custo O caso de um único fator variável Custos com um mais de um fator variável

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

1.3 Conjuntos de medida nula

1.3 Conjuntos de medida nula 1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos

Leia mais

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre:

MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre: MATEMÁTICA APLICADA Apresentação Caro aluno: A contextualização e a aplicação dos conteúdos matemáticos (já estudados) contemplarão o objetivo geral da disciplina Matemática Aplicada à Administração. Este

Leia mais

6. Frações contínuas como as melhores aproximações de um número real

6. Frações contínuas como as melhores aproximações de um número real 6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Aula 13 Teoria do Consumidor 12/04/2010 Bibliografia VASCONCELLOS (2006) Capítulo 5 e MANKIW (2007) Capítulo 7.

Aula 13 Teoria do Consumidor 12/04/2010 Bibliografia VASCONCELLOS (2006) Capítulo 5 e MANKIW (2007) Capítulo 7. Aula 13 Teoria do Consumidor 12/04/2010 Bibliografia VASCONCELLOS (2006) Capítulo 5 e MANKIW (2007) Capítulo 7. Utilidades da teoria do consumidor: a) Servir de guia para elaboração e interpretação de

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Malthus to Solow. 1. Introdução. Tópicos Especiais em Economia Aplicada - Crescimento Econômico 5/9/2005

Malthus to Solow. 1. Introdução. Tópicos Especiais em Economia Aplicada - Crescimento Econômico 5/9/2005 Malthus to Solow Gary D. Hansen (UCLA) Edward C. Prescott (Federal Reserve Bank of Minn.) NBER Working Paper 6858 Apresentação: Edilean Kleber da Silva Curso de Crescimento Econômico Professor: Sabino

Leia mais

Definições Exemplos de gramáticas

Definições Exemplos de gramáticas Definições Exemplos de gramáticas 1 Gramáticas Conceito introduzido pela lingüística Objetivo de ensinar o inglês pelo computador e conseguir um tradutor de línguas Fracasso da tradução por volta dos anos

Leia mais

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores

MATEMÁTICA 3º ANO. Novo programa de matemática Objetivos específicos. Currículo Paulo VI. Números naturais. Relações numéricas Múltiplos e divisores MATEMÁTICA 3º ANO NÚMEROS E OPERAÇÕES Tópicos Números naturais Relações numéricas Múltiplos e divisores Novo programa de matemática Objetivos específicos Realizar contagens progressivas e regressivas a

Leia mais

Universidade de Brasília Departamento de Economia Disciplina: Economia do Trabalho Professor: Carlos Alberto Período: Primeira Prova. Questões.

Universidade de Brasília Departamento de Economia Disciplina: Economia do Trabalho Professor: Carlos Alberto Período: Primeira Prova. Questões. Universidade de Brasília Departamento de Economia Disciplina: Economia do Trabalho Professor: Carlos Alberto Período: 1 2013 Primeira Prova Questões. 1. Geoffey Miller, no livro Darwin vai às Compras.

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais