3 Espaços com Produto Interno

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "3 Espaços com Produto Interno"

Transcrição

1 3 Espaços com Produto Interno 3.1 Produtos Internos em Espaços Vetoriais Seja V um espaço vetorial. Um produto interno em V é uma função, : V V R que satisfaz P1) = v, u para todos u, v V ; P2) u, v + w = + u, w para todos u, v, w V ; P3) αu, v = α para todos u, v V e todo α R; P4) u, u 0 para todo u V e u, u = 0 se, e somente se, u = 0. (O Produto Interno Usual em R 2 ) (a, b), (c, d) = ac + bd é um produto interno em R 2. Este produto interno é facilmente generalizado para R n. Exemplo 2 (a, b), (c, d) = ac + 8bd + 2ad + 2bc é um produto interno em R 2. Exemplo 3 (x 1, y 1 ), (x 2, y 2 ) = x 1 x 2 y 1 y 2 não é um produto interno em R 2. Exemplo 4 (Espaço de funções contínuas) Seja V = {f : [0, 1] R ; f é contínua}. A função, : V V R definida por é um produto interno em V. f, g = 1 0 f(x)g(x) dx 3.2 Espaços Vetoriais Euclidianos Um espaço vetorial euclidiano é um espaço vetorial de dimensão finita, munido de um produto interno. 3.3 Norma de um Vetor Seja V um espaço vetorial com produto interno,. Dado v V define-se a norma de v, indicada por v, por v = v, v. 1

2 Observações Se v = 1, o vetor v é dito um vetor unitário. Dizemos, também que v está normalizado. Todo vetor v não nulo pode ser normalizado. Basta fazer u = v v. Propriedades Seja V um espaço vetorial com produto interno,. São válidas as seguintes propriedades: P1) v 0 para todo v V. Além disto, v = 0 se, e só se, v = 0. P2) αv = α v para todo α real e todo v V. P3) Desigualdade de Cauchy-Schwarz: u v para todos u, v V. P4) Desigualdade Triangular: u + v u + v para todos u, v V. 3.4 Ângulo entre Dois Vetores Se u e v são vetores não nulos, a desigualdade de Cauchy-Schwarz fornece as seguintes equivalências: u v 1 u v u v 1 1 u v 1 Estas últimas desigualdades nos permitem garantir que existe um número real θ, 0 θ π tal que u v. Sejam u e v dois vetores não nulos de um espaço vetorial com produto interno,. Definimos o ângulo entre estes vetores como o número real θ, 0 θ π tal que u v. Seja V = R 2 munido do produto interno usual. Então, o ângulo θ entre os vetores u = (1, 0) e v = (1, 1) é π/4. 2

3 Exemplo 2 Seja V = R 2 munido do produto interno (x 1, y 1 ), (x 2, y 2 ) = x 1 x 2 + 2y 1 y 2 x 1 y 2 x 2 y 1. Então, o ângulo θ entre os vetores u = (1, 0) e v = (1, 1) satisfaz Logo, θ = 0. u v = Vetores Ortogonais Seja V um espaço vetorial com produto interno. Dizemos que dois vetores u e v de V são ditos ortogonais quando = 0. Tal fato é denotado por u v. Observação Sejam u e v dois vetores não nulos em um espaço vetorial com produto interno e seja θ o ângulo entre estes vetores. Então, u v = 0 u v = 0 θ = π 2. Seja V = R 2 com o produto interno dado por (x 1, y 1 ), (x 2, y 2 = 2x 1 x 2 + x 1 y 2 + x 2 y 1 + 2y 1 y 2. Temos (1, 0), ( 1, 2) = 0, isto é (1, 0) e ( 1, 2) são ortogonais com relação a este produto interno. Por outro lado, (1, 0), (0, 1) = 1, logo (1, 0) e (0, 1) não são ortogonais com relação a este produto interno. Na realidade, o ângulo θ entre estes dois vetores satisfaz ou seja, θ = π/3. Observações (1, 0), (0, 1) (1, 0) (0, 1 = 1 2, 1. O vetor 0 V é ortogonal a qualquer vetor de V. 2. Se u v, então αu v para todo α real. 3. Se u 1 v e u 2 v, então (u 1 + u 2 ) v. 4. Das observações acima, temos que dado v V o conjunto v = {u V ; u v} é um subespaço vetorial de V. 3

4 3.6 Conjunto Ortogonal de Vetores Seja V um espaço vetorial com produto interno,. Dizemos que um conjunto de vetores {v 1, v 2,..., v n } V é ortogonal quando dois vetores distintos quaisquer são sempre ortogonais, isto é, v i, v j = 0 sempre que i j. Seja V = R 4 com o produto interno usual. Consideremos o conjunto B = {v 1 = (1, 1, 1, 1), v 2 = (1, 1, 1, 1), v 3 = (1, 1, 0, 0), v 4 = (0, 0, 1, 1)}. Podemos facilmente perceber que v 1, v 2 = v 1, v 3 = v 1, v 4 = v 2, v 3 = v 2, v 4 = v 3, v 4 = 0. Logo, B é um conjunto ortogonal de vetores de R 4. Propriedade Um conjunto ortogonal de vetores não nulos A = {v 1, v 2,..., v n } é linearmente independente (LI). Dizemos que uma base B = {v 1, v 2,..., v n } de V é ortogonal quando B é um conjunto ortogonal. Se, além disto, todos os seus vetores forem unitários, isto é, v i = 1 para todo i = 1,..., n, dizemos que B é uma base ortonormal. Exemplo 2 Vimos, no exemplo anterior, que B = {v 1 = (1, 1, 1, 1), v 2 = (1, 1, 1, 1), v 3 = (1, 1, 0, 0), v 4 = (0, 0, 1, 1)} é um conjunto ortogonal de R 4 com o produto interno usual. Pela propriedade anterior, B é um conjunto LI. Como B possui 4 vetores e dim R 4 = 4, segue que B é uma base ortogonal de R 4. B não é uma base ortonormal, pois, por exemplo, v 1 = 2. Porém, normalizando cada vetor de B obtemos uma base B ortonormal { } { B vi 1 = = v i 2 (1, 1, 1, 1), 1 } 2 (1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1). 2 Observação Seja B = {v 1, v 2,..., v n } uma base ortogonal de um espaço vetorial. com produto interno Dado um vetor w V, existem reais a 1, a 2,..., a n tais que w = a 1 v 1 + a 2 v a n v n. 4

5 Efetuando o produto interno de w por v i obtemos w, v i = a 1 v 1 + a 2 v a n v n, v i w, v i = a 1 v 1, v i + a 2 v 2, a a n v n, v i w, v i = a i v i, v i pois v j, v i = 0 quando i j. Daí, a i-ésima coordenada de w na base B é dada por a i = w, v i v i, v i. Exemplo 3 Consideremos o vetor w = (1, 2, 3, 4) R 4 com o produto interno usual. Com relação à base ortogonal B = {v 1 = (1, 1, 1, 1), v 2 = (1, 1, 1, 1), v 3 = (1, 1, 0, 0), v 4 = (0, 0, 1, 1)} podemos escrever onde w = a 1 v 1 + a 2 v 2 + a 3 v 3 + a4v 4 a 1 = w, v 1 v 1, v 1 = 3 4 ; a 2 = w, v 2 v 2, v 2 = 1; a 3 = w, v 3 v 3, v 3 = 1 2 ; a 4 = w, v 4 v 4, v 4 = 1 2. Pelo visto acima, possuir bases ortogonais, ou ortonormais, é de grande utilidade. Ficam duas perguntas a serem respondidas: 1) Consideremos espaço vetorial V com produto interno,. Existe uma base ortogonal de V? 2) Em caso afirmativo, como encontrar tal base? Para responder a estas perguntas temos o seguinte processo, denominado processo de ortogonalização de Gram-Schmidt: Seja V um espaço vetorial de dimensão finita, com produto interno,. Seja B = {v 1, v 2,..., v n } uma base qualquer de V. Sejam w 1 = v 1 ; w 2 = v 2 v2,w1 w 1,w 1 w 1; w 3 = v 3 v3,w1 w 1,w 1 w 1 v3,w2 w 2,w 2 w 2; 5

6 ...; w n = v n vn,w1 w 1,w 1 w 1... v3,wn 1 w n 1,w n 1 w n 1. Definimos,então, o conjunto B = {w 1, w 2,..., w n }. O processo apresentado é denominado processo de ortogonalização de Gram- Schmidt. Exemplo 4 Consideremos R 4 munido do produto interno usual e a base B = {v 1 = (1, 1, 0, 0), v 2 = (0, 1, 1, 0), v 3 = (0, 0, 1, 1), v 4 = (0, 1, 0, 1)}. Aplicando o processo de ortogonalização de Gram-Schmidt obtemos B = { w 1 = (1, 1, 1, 1), w 2 = w 4 = ( 12, 12, 1, 0 ), w 3 = ( 1 2, 1 2, 1 2, 1 )}. 2 ( 1 3, 1 3, 1 ) 3, 1, Propriedades Sejam V, B e B como descritos acima. São válidas as seguintes propriedades. B é uma base ortogonal de V. Para todo i = 1,..., n, [v 1, v 2,..., v i ] = [w 1, w 2,..., w i ]. Para se obter uma base ortonormal de V, basta tomarmos. B = {w 1 / w 1,..., w n / w n } 3.7 Conjuntos Ortogonais Sejam S 1 e S 2 subconjuntos não vazios de um espaço vetorial V com produto interno,. Dizemos que S 1 é ortogonal a S 2, representado por S 1 S 2, se qualquer vetor v 1 S 1 é ortogonal a qualquer vetor v 2 S 2, isto é, se v 1, v 2 = 0 para todos v 1 S 1 e v 2 S 2. Os conjuntos S 1 = {( 2, 1, 2, 2), ( 4, 2, 0, 0), (0, 0, 1, 1)} e S 2 = {(1, 2, 0, 0), (3, 6, 1, 1)} são ortogonais com relação ao produto interno usual de R 4. 6

7 Propriedade Sejam V um espaço vetorial com produto interno, e B = {v 1,..., v n } uma base de um subespaço S de V. Se um vetor u V é ortogonal a todos os vetores da base B, então u é ortogonal a qualquer vetor de S. Dizemos, neste caso, que u é ortogonal a S e representamos tal fato por u S. 3.8 Complemento Ortogonal Sejam V um espaço vetorial com produto interno, e S um subespaço vetorial de V. O conjunto S = {v V ; v S} dos vetores de V que são ortogonais a S é denominado complemento ortogonal de S. Seja V = R 3 com o produto interno usual. Seja S = {(x, y, z) ; x + y = 0}. Então, S = {(x, y, z) ; x y = 0, z = 0}. Exemplo 2 Seja V = R 3 com o produto interno dado por (x 1, y 1, z 1 ), (x 2, y 2, z 2 ) = 2x 1 x 2 + 2x 1 y 2 + x 2 y 1 + 2y 1 y 2 + z 1 z 2. Seja S = {(x, y, z) ; x + y = 0}. Então, S = {(x, y, z) ; y = z = 0}. Propriedade Seja S um subespaço vetorial de um espaço vetorial V com produto interno. Então, S é um subespaço vetorial de V. 7

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES

APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras Silvia Gonçalves Santos Definição 1 Seja R um anel com unidade. O radical de Jacobson de R, denotado por J(R), é o ideal (à esquerda) dado pela

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

ESPAÇOS VETORIAIS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

ESPAÇOS VETORIAIS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga ESPAÇOS VETORIAIS Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Sabe-se que o conjunto 2 ( x, y) / x, y é interpretado geometricamente como o plano cartesiano. O par ordenado (x,y)

Leia mais

Dependência linear e bases

Dependência linear e bases Dependência linear e bases Sadao Massago 2014 Sumário 1 Dependência linear 1 2 ases e coordenadas 3 3 Matriz mudança de base 5 Neste texto, introduziremos o que é uma base do plano ou do espaço 1 Dependência

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

Capítulo 6: Transformações Lineares e Matrizes

Capítulo 6: Transformações Lineares e Matrizes 6 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 6: Transformações Lineares e Matrizes Sumário 1 Matriz de uma Transformação Linear....... 151 2 Operações

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Introdução à Álgebra de Lie

Introdução à Álgebra de Lie Introdução à Álgebra de Lie Wilian Francisco de Araujo Universidade Tecnológica Federal do Paraná e-mail: wilianfrancisco@gmail.com Estou certo, absolutamente certo de que... essas teorias será reconhecido

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL 1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL PAULO RAFAEL DE LIMA E SOUZA PRODUTO INTERNO E ESPAÇOS VETORIAIS FORTALEZA

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,

Leia mais

1 A Álgebra do corpo dos números complexos

1 A Álgebra do corpo dos números complexos Números Complexos - Notas de Aulas 1 1 A Álgebra do corpo dos números complexos 1.1 Preliminares Suponhamos fixado no plano um sistema retangular de coordenadas. Como usual, designaremos os pontos do planos

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Álgebra Linear I - Aula 5. Roteiro

Álgebra Linear I - Aula 5. Roteiro 1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS*

OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* OPERADORES LINEARES ESPECIAIS: CARACTERIZAÇÃO EM ESPAÇOS DE DIMENSÃO DOIS* FABIANA BARBOSA DA SILVA, ALINE MOTA DE MESQUITA ASSIS, JOSÉ EDER SALVADOR DE VASCONCELOS Resumo: o objetivo deste artigo é apresentar

Leia mais

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2)

Espaço Dual, Transposta e Adjunta (nota da álgebra linear 2) Espaço Dual, Transposta e Adjunta nota da álgebra linear 2) Sadao Massago Outubro de 2009 1 Espaço Dual Dado um espaço vetorial V sobre o corpo F, o espaço dual V é o espaço de todas transformações lineares

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio

XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio XXXV Olimpíada Cearense de Matemática Nível 3 - Ensino Médio Reservado para a correção Prova Probl. 1 Probl. Probl. 3 Probl. 4 Probl. 5 Total # 3000 Nota - - - - - - - - - - - - - - - - - - - - - - - -

Leia mais

Vetores em R n e C n, Vetores Espaciais

Vetores em R n e C n, Vetores Espaciais Capítulo 1 Vetores em R n e C n, Vetores Espaciais 1.1 INTRODUÇÃO A noção de vetor pode ser motivada ou por uma lista de números e índices, ou por meio de certos objetos da Física. Vejamos ambas maneiras.

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

A lei dos cossenos da geometria plana estabelece que a 2 = b 2 +c 2 2bc cosâ. Podemos ver as possíveis situações na figura acima.

A lei dos cossenos da geometria plana estabelece que a 2 = b 2 +c 2 2bc cosâ. Podemos ver as possíveis situações na figura acima. Capítulo 4 Produtos e aplicações Palavras-chave: produto escalar, produto vetorial, produto misto, vetores ortogonais, base ortogonal, base ortonormal, ângulos, distâncias, projeção ortogonal, área de

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

Álgebra Linear. Sérgio L. Zani

Álgebra Linear. Sérgio L. Zani Álgebra Linear Sérgio L Zani Segundo Semestre de 2001 2 Sumário 1 Espaços Vetoriais 5 11 Introdução e Exemplos 5 12 Propriedades 8 2 Subespaços Vetoriais 9 21 Introdução e Exemplos 9 22 Propriedades 10

Leia mais

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay)

(x 1 + iy 1 ) + (x 2 + iy 2 ) = x 1 + x 2 + i(y 1 + y 2 ) a(x + iy) = ax + i(ay) Espaços Vetoriais Definição. Um espaço vetorial sobre R é um conjunto V no qual se tem definida uma adição e uma multiplicação de seus elementos por escalares (isto é, por números reais), ou seja, dados

Leia mais

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15

Espaços vectoriais com produto interno. ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Capítulo 6 Espaços vectoriais com produto interno ALGA 2007/2008 Mest. Int. Eng. Biomédica Espaços vectoriais com produto interno 1 / 15 Definição e propriedades Seja V um espaço vectorial real. Chama-se

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Produto interno no espaço vectorial R n

Produto interno no espaço vectorial R n ALGA - 008/09 - Produto interno 8 Produto interno no espaço vectorial R n A noção de produto interno de vectores foi introduzida no ensino secundário, para vectores de R e R : Neste capítulo generaliza-se

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5.

1. O conjunto dos polinômios de grau m, com 2 m 5, acrescido do polinômio nulo, é um subespaço do espaço P 5. UFPB/PRAI/CCT/DME - CAMPUS II DISCIPLINA: Álgebra Linear ALUNO (A): 2 a LISTA DE EXERCÍCIOS 1 a PARTE: QUESTÕES TIPO VERDADEIRO OU FALSO COM JUSTI- FICATIVA. 1. O conjunto dos polinômios de grau m com

Leia mais

Lista de exercícios: Unidade 1 Espaços Vetoriais

Lista de exercícios: Unidade 1 Espaços Vetoriais Lista de exercícios: Unidade 1 Espaços Vetoriais Nos problemas de 1 a 7 apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Controle do Professor

Controle do Professor Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Disciplina Aulas: Segunda-feira e terça-feira: 8:00 até 9:50 Avaliações: listas de exercícios e três provas; Sala: 222; Livros. Conteúdos Plano de Ensino

Leia mais

Åaxwell Mariano de Barros

Åaxwell Mariano de Barros Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ö Ð Ó Å Ö Ò Ó ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹ ¼½ ÐÙÐÓ Î ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ËÓ ÄÙ ¹ ÅA ¾¼½½ ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Reta Orientada....................................

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides

Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Teoria espectral de operadores lineares limitados

Teoria espectral de operadores lineares limitados Capítulo 8 Teoria espectral de operadores lineares limitados A teoria espectral é um dos ramos principais da análise funcional moderna e suas aplicações. Essencialmente consiste no inverso de certos operadores,

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

2 Conceitos Básicos da Geometria Diferencial Afim

2 Conceitos Básicos da Geometria Diferencial Afim 2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial

Leia mais

onde V R 2 Ex: a norma do vetor W (-1,2) é: No Scilab, a norma é obtida através da função norm(w). No Geogebra, pelo comando comprimento[w]

onde V R 2 Ex: a norma do vetor W (-1,2) é: No Scilab, a norma é obtida através da função norm(w). No Geogebra, pelo comando comprimento[w] A norma de um vetor ( V ) ) é utilizada para calcular comprimento de um vetor. Segue do Teorema de Pitágoras que a norma de um vetor pode ser calculada usando as suas componentes, pela fórmula: onde V

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Marília Brasil Xavier REITORA Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odivaldo Teixeira Lopes ARTE FINAL DA CAPA Odivaldo Teixeira

Leia mais

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ÍNDICE MATRIZES SISTEMAS DE EQUAÇÕES LINEARES ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA ÍNDICE MATRIZES Definição 1 Igualdade 2 Matrizes Especiais 2 Operações com Matrizes 3 Classificação de Matrizes Quadradas 9 Operações Elementares 11 Matriz Equivalente por Linha 11 Matriz na Forma Escalonada

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

Dep. Matemática Pura. FCUP ÁLGEBRA LINEAR II

Dep. Matemática Pura. FCUP ÁLGEBRA LINEAR II Dep. Matemática Pura. FCUP ÁLGEBRA LINEAR II Resumo das aulas teóricas e práticas 1. o ano da licenciatura em Matemática Ano lectivo de 005/06 João Nuno Tavares ÍNDICE: 1 Determinantes. Produtos vectorial

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que

AULA Exercícios. DEMONSTRAR QUE UMA TRANSFORMAÇÃO É LINEAR Se A é uma matriz real m n e. u R, a aplicação T : R R tal que Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Universidade da Beira Interior Cursos: Engenharia Informática, Ensino da Informática, Matemática Aplicada e Matemática /Informática

Universidade da Beira Interior Cursos: Engenharia Informática, Ensino da Informática, Matemática Aplicada e Matemática /Informática 5. Normalização avançada 5.1. Dependências Multivalor (DM) As dependências funcionais são um caso particular de um tipo mais geral de dependências lógicas, entre os atributos de uma relação, que são as

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

MA13 Geometria AV2 2014

MA13 Geometria AV2 2014 MA1 Geometria AV 014 Questão 1 [,0 pt ] Na figura a seguir temos que BAC = /, BAD = y/, medidos em radianos, e AB =. Com base nessas informações: a Epresse a área dos triângulos ABC e ABD como funções

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

MATEMÁTICA Especialização. Algebra Linear. Adélia Conceição Diniz Carlos A. Raposo da Cunha Francinildo Nobre Ferreira Guilherme Chaud Tizziotti

MATEMÁTICA Especialização. Algebra Linear. Adélia Conceição Diniz Carlos A. Raposo da Cunha Francinildo Nobre Ferreira Guilherme Chaud Tizziotti MATEMÁTICA Especialização Algebra Linear Adélia Conceição Diniz Carlos A. Raposo da Cunha Francinildo Nobre Ferreira Guilherme Chaud Tizziotti Adélia Conceição Diniz Carlos A. Raposo da Cunha Francinildo

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

VETORES NO ² E NO ³. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

VETORES NO ² E NO ³. Álgebra Linear e Geometria Analítica Prof. Aline Paliga VETORES NO ² E NO ³ Álgebra Linear e Geometria Analítica Prof. Aline Paliga 2.1 DECOMPOSIÇÃO DE UM VETOR NO PLANO Dados dois vetores v 1 e v 2, não colineares, qualquer vetor v (coplanar com v 1 e v 2

Leia mais

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse,

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse, Programa 1. Vetores no Plano e no Espaço: conceito; adição de vetores; multiplicação de vetor por n real; combinação linear de vetores; coordenadas; produto interno; produto vetorial; produto misto. 2.

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares DMPA IM UFRGS Cálculo Numérico Índice Sistema de Equações Lineares 1 Sistema de Equações Lineares 2 com pivoteamento parcial 3 Método de Jacobi Método Gauss-Seidel Sistema de Equações Lineares n equações

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

Geometria analítica. Professor Me: Lucas Corrêa de Almeida

Geometria analítica. Professor Me: Lucas Corrêa de Almeida Geometria analítica Professor Me: Lucas Corrêa de Almeida Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição

Leia mais

Tabelas de Caracteres de Grupos Finitos

Tabelas de Caracteres de Grupos Finitos Tabelas de Caracteres de Grupos Finitos Teresa Conde Encontro Nacional NTM 12 de Setembro de 2009 Objectivos: Objectivos: Noções básicas da Teoria das Representações Objectivos: Noções básicas da Teoria

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais