Sumário. Raciocínio Lógico. Aula 1 - Conceitos básicos de raciocínio lógico: proposições; Aula 2 - Valores lógicos das proposições;

Tamanho: px
Começar a partir da página:

Download "Sumário. Raciocínio Lógico. Aula 1 - Conceitos básicos de raciocínio lógico: proposições; Aula 2 - Valores lógicos das proposições;"

Transcrição

1 Raciocínio Lógico Sumário Aula 1 - Conceitos básicos de raciocínio lógico: proposições; Aula 2 - Valores lógicos das proposições; Aula 3 - Sentenças abertas; Aula 4 - Número de linhas da tabela verdade; Aula 5 - conectivos; Aula 6 - Proposições simples e proposições compostas. Aula 7 - Tautologia. Aula 8 - Operação com conjuntos Aula 9 - Cálculos com porcentagens.

2 Proposição É um termo usado em lógica para descrever o conteúdo de asserções. Uma asserção é um conteúdo que pode ser tomado como verdadeiro ou falso. Asserções são abstrações de sentenças não lingüísticas que a constituem. A natureza das proposições é altamente controversa entre filósofos, muitos dos quais são céticos sobre a existência de proposições. Muitos lógicos preferem evitar o uso do termo proposição em favor de usar sentença. Diferentes sentenças podem expressar a mesma proposição quando têm o mesmo significado. Por exemplo, "A neve é branca" e "Snow is white" são sentenças diferentes, mas ambas dizem a mesma coisa, a saber, que a neve é branca. Logo, expressam a mesma proposição. Outro exemplo de sentença que expressa a mesma proposição que as anteriores é "A precipitação de pequenos cristais de água congelada é branca", pois "precipitação de pequenos cristais de água congelada" é a definição de "neve". Na lógica aristotélica uma proposição é um tipo particular de sentença, a saber, aquela que afirma ou nega um predicado de um sujeito. Proposições são usualmente consideradas como o conteúdo de crenças e outros pensamentos representativos. Elas também podem ser o objeto de outras atitudes, como desejo, preferência, intenção, como em "Desejo um carro novo" e "Espero que chova", por exemplo. Também não é raro contrastar com a noção de proposição como conteúdo mental a noção de proposições russellianas. De facto, boa parte da discussão em torno da natureza da proposição travada no século XX e contemporaneamente, oscila e, por vezes, tenta conciliar ambas noções Segundo Quine, toda proposição é uma frase mas nem toda frase é uma proposição; uma frase é uma proposição apenas quando admite um dos dois valores lógicos: Falso (F)ou Verdadeiro (V). Exemplos:

3 1. Frases que não são proposições o o o Pare! Quer uma xícara de café? Eu não estou bem certo se esta cor me agrada 2. Frases que são proposições o o o o A lua é o único satélite do planeta terra (V) A cidade de Salvador é a capital do estado do Amazonas (F) O numero 712 é ímpar (F) Raiz quadrada de dois é um número irracional (V) Composição de Proposições É possível construir proposições a partir de proposições já existentes. Este processo é conhecido por Composição de Proposições. Suponha que tenhamos duas proposições, 1. A = "Maria tem 23 anos" 2. B = "Maria é menor" Pela legislação corrente de um país fictício, uma pessoa é considerada de menor idade caso tenha menos que 18 anos, o que faz com que a proposição B seja F, na interpretação da proposição A ser V. Vamos a alguns exemplos: 1. "Maria não tem 23 anos" (nãoa) 2. "Maria não é menor"(não(b)) 3. "Maria tem 23 anos" e "Maria é menor" (A e B) Aula 2 - Valores lógicos de uma proposição Seguindo adiante no estudo da linguagem proposicional em matemática, temos que ter em mente que só existem dois valores lógicos para uma proposição: A verdade e a falsidade.

4 Se a proposição for verdadeira seu valor lógico é a verdade e se a proposição for falsa seu valor lógico será a falsidade. Perceba que em lógica matemática não se diz que a proposição é mentirosa. O correto e o mais elegante é dizer que a proposição é falsa. É mais ou menos como nos debates políticos, onde nenhum dos debatedores dizem que o outro está mentindo, mas sim dizem que seu oponente falta com a verdade em seus argumentos. É claro que nos debates os políticos fazem isso menos por elegância e mais por medo de serem punidos por chamar o oponente de mentiroso... Voltando ao que interessa, os símbolos utilizados para os valores lógicos da proposição são: V se a proposição for verdadeira. F se a proposição for falsa. Relembrando os dois princípios básicos que regem a lógica matemática: I Não pode existir uma proposição falsa e verdadeira ao mesmo tempo (princípio da não contradição). II Toda proposição é verdadeira ou falsa, não existindo um terceiro caso. (princípio do terceiro excluído). Entendemos então que uma proposição só pode ter um dos valores lógicos: V ou F. Vejamos algumas proposições como exemplo: 1. A aceleração da gravidade na Terra é 9,80665 m/s² 2. A França é um país europeu. 3. O rio Nilo cruza o território Brasileiro

5 4. O Flamengo foi campeão mundial em 1981 Nos exemplos acima, verificamos que as proposições 1,2 e 4 são verdadeiras (V) e apenas a proposição 3 é falsa (F). Se você não gostou do exemplo dado, nós entendemos, afinal, esse valor para a aceleração da gravidade é apenas aproximado... Esse negócio de Falso e Verdadeiro pode parecer coisa boba, mas é muito importante seguir num ritmo de passo-a-passo para que nada fique perdido no caminho. A experiência nos mostra que uma das grandes desgraças no ensino de matemática são as pequenas coisas que passam batidas pelo estudante e que no final acabam impedindo que ele avance no aprendizado. Proposição Simples e Composta Uma proposição pode ser simples (também denominada atômica) ou composta (também denominada molecular). As proposições simples apresentam apenas uma afirmação. Pode-se considerá-las como frases formadas por apenas uma oração. As proposições simples são representadas por letras latinas minúsculas. Exemplos: (1) p: eu sou estudioso; (2) q: Maria é bonita: (3) r: > 12. Uma proposição composta é formada pela união de duas ou mais proposições simples. Indica-se uma proposição composta por letras latinas maiúsculas. Se P é uma proposição composta das proposições simples p, q, r,..., escreve-se P (p, q, r,...). Quando P estiver claramente definida não há necessidade de indicar as proposições simples entre os parênteses, escrevendo simplesmente P. Exemplos: (4) P: Paulo é estudioso e Maria é bonita. P é composta das proposições simples p: Paulo é estudioso e q: Maria é bonita.

6 (5) Q: Maria é bonita ou estudiosa. Q é composta das proposições simples p: Maria é bonita e q: Maria é estudiosa. (6) R: Se x = 2 então x = 5. R é composta das proposições simples p: x = 2 e q: x = 5. (7) S: a > b se e somente se b < a. S é composta das proposições simples p: a > b e q: b < a. Tabela-Verdade O conjunto de proposições e seus valores lógicos podem ser dispostos numa tabela, que chamamos de Tabela-Verdade. Exemplo: Sejam p e q as proposições. Então temos a tabela: p q V V V F F V F F Observe que o número de linhas da tabela depende do número de proposições, e pode-se obter fazendo 2 n ( onde n é a quantidade de proposições) Conectivos São as partículas que servem para agrupar as sentenças. As sentenças simples não usam conectivos. As compostas são formadas por duas ou mais proposições ligadas a essas partículas (e, ou, se...então, se e somente se)

7 Exemplo: Se o quadrilátero tem lados paralelos 2 a 2, então, é um paralelogramo O valor lógico de uma proposição é totalmente determinado pelos valores lógicos das proposições simples que a constituem e pela operação dos conectivos, que podem ser: Conectivo de conjunção("e" - representado por ^) Se: p: Maria tem um gato q: José tem um cachorro A proposição composta p^q será: Maria tem um gato e José tem um cachorro Então, p^q somente é verdadeira se ambas as proposições são verdadeiras. Se ambas, ou uma delas é falsa, a proposição será falsa. Assim, pode-se expressar a tabela verdade de conjunção como: p q p^q V V V F F V F F V F F F Exemplo: p: O Brasil está na Europa q: A Argentina está na América do Sul Como: v(p) = F e v(q) = V Então: v(p^q) = F Conectivo de disjunção ( "ou" - representado por v)

8 Neste caso, devemos antes analisar o conectivo "ou". Ele pode ser "inclusivo" (considera os dois casos) ou "exclusivo" (considera apenas um dos casos) Exemplo: p: Paulo é professor ou administrador q: Maria é jovem ou idosa No primeiro caso, o "ou" é inclusivo pois, pelo menos uma das proposições é verdadeira, podendo ser ambas. Mas no caso da segunda, o "ou" é exclusivo, pois somente uma das proposições poderá ser verdadeira. Assim, pode-se expressar a tabela-verdade da disjunção "inclusiva" como: p q p v p V V V F F V F F V V V F Exemplo: p: Paris é a capital do Brasil q: 9-6 = 3 Como v(p) = F e v(q) = V Então: v(p v q) = V Da mesma forma, pode-se expressar a tabela-verdade da disjunção "exclusiva" como: p q p v p V V V F F V F V V

9 F F F Nota: Em nada se falando ao contrário, consideramos sempre o "ou"como "inclusivo". Conectivo Condicional( "se... então" - representado por -> ) Numa proposição condicional que se encontra entre o "se"e o "então" é chamado de antecedente ( ou implicante) e o que segue ao "então" é chamado de consequente ( ou implicado). Uma proposição condicional afirma que o seu antecedente implica o seu consequente. Não afirma ser o antecedente verdadeiro, mas se o for, o consequente também será. Também não afirma que o consequente é verdadeiro, mas somente que é verdadeiro se o antecedente o for. Qualquer proposição p^ ~q é verdadeira, ou seja, quando o antecedente é verdadeiro e o consequente é falso. Para a proposição ser verdadeira p^ ~q deve ser falsa, ou ainda ~p^ ~q deve ser verdadeira. Assim, pode-se expressar a tabela-verdade da condicional como: p q ~q p^ ~q ~(p^~q) p -> q V V F F V V V F V V F F F V F F V V F F V F V V Nota-se que p->q abrevia apenas ~(p^~q). Também não se deve esperar uma "conexão real" entre o antecedente e o consequente. Tudo que se afirma é que a implicação material só será falsa quando o antecedente for verdadeiro e o consequente falso, conforme tabela resumo a seguir:

10 p q p->q V V V F F V F F V F V V Exemplo: p: log 100 = 3 q: Cabral descobriu o Brasil log 100 = 3 -> Cabral descobriu o Brasil Como: v(p) = F e v(q) = V Então: v(p->q) = V Conectivo Bicondicional( "se, e somente se... então" - representado por <- ->) Se juntarmos as sentenças p->q e q->p, veremos que (p->q) ^(q->p) equivale a <-->q. Em resumo, a bicondicionalidade ocorre quando ambas as sentenças são verdadeiras ou falsas e a falsidade ocorre quando as sentenças tiverem valores lógicos diferentes, conforme tabela abaixo: p q p<-->q V V V F F V F F V F F V Exemplo: p: o quadrado tem lados de tamanhos diferentes q: 14 é um número ímpar O quadrado tem lados diferentes <--> 14 é um número ímpar

11 Como: v(p) = F e v(q) = F Então v(p<-->q) = V Conectivo de negação( representado por ~ ) Dada uma proposição: "A água é mais leve que o ar" sua negação acontece se dizemos: É falso que a água é mais leve que o ar ou ainda A água não é mais leve que o ar Pode-se resumir tal fato com a tabela abaixo: p ~ p V F F V Para procedermos com os raciocínios lógicos citados vale lembrarmos algumas propriedades, tais como: p^q <--> q^p p v q <--> q v p p^(q^r) <--> (p^q)^r p v (q v r) <--> (p v q) v r p^(q v r) <--> (p^q) v (p^r) p v (q^r) <--> (p v q) ^(p v r) ~(p^r) <-->~p v ~r ~(p v r) <--> ~p ^~r ~(~p) <--> p TAUTOLOGIA Dizemos ter uma tautologia quando numa proposição composta sempre temos

12 apenas o valor lógico V Exemplo: p v ~ p CONTRADIÇÃO Dizemos ter uma contradição quando numa proposição composta sempre temos apenas o valor lógico F Exemplo: p ^ ~ p CONTINGÊNCIA Dizemos ter uma contingência quando numa proposição composta temos os valores lógicos V e F Exemplo: p -> ~p Proposição recíproca Obtemos quando invertemos as sentenças: Exemplo: Se x = 4 -> x < 5 ou x = 5 a recíproca será: x=5 ou x < 5 -> x=4 Proposição inversa Obtemos quando negamos as sentenças: Exemplo: Se x > b -> a > 2 a inversa será: x = b ou x < b -> a=2 ou a < 2 Proposição contrapositiva Obtemos quando invertemos as negativas das sentenças: Exemplo: Se a > b -> c < d a contrapositiva será: c=d ou c > d -> a=b ou a < b Exercícios Resolvidos 1. Qual a negação de:

13 Resp. 2. Qual o valor lógico de: "É falso que 3+4 = 7 e = 5 Temos que: v(3+4=7) = V e v(2+2=5) = F Então: v(3+4=7 ^ 2+2=5) = F logo: Resp = [~(3+4=7 ^ 2+2=5)] = V 3. Determine o valor lógico da sentença : "Se 4+4=9, então eu sou rei da Espanha" Se: p : 4+4 = 9 q : eu sou rei da Espanha Então v(p) = F e v(q) = F logo Resp = v(p->q) = V 4. Sejam as proposições: p: os agricultores se mobilizam q : a reforma agrária continua sem solução Simbolize a sentença : "Se os agricultores não se mobilizam, então a reforma agrária continua sem solução" Temos que: ~p : os agricultores não se mobilizam

14 Logo Resp ~p ->q 5. Sejam as proposições: p : sen (pi - x) = cos x q : pi < 3 Qual o valor lógico de: (p->q) v (~p->~p)" Temos que v(p) = F e v(q) = F logo: v(p->) = V Da mesma forma v(~p) = V e v(~q) = V logo : v(~p -> ~q) = V Então Resp Verdadeiro 6. Sabendo-se que os valores lógicos das proposições "p", "q" e "r" são, respectivamente, V,F e V, determine o valor lógico da proposição: [ (p<-->q) -> p ] v (p ->r) Temos que: v(p) = V, v(q) = F e v(r) = V Então v(p<-->q) = F v[(p<-->q) -> p] = F v(p -> r) = V Logo v[(p<-->q) ->p] v (p->r) = V Então Resp: Verdadeiro

15 Sentença Aberta Considere as seguintes frases: I. Ele foi o melhor jogador do mundo em II. (x + y) / 5 é um número inteiro. III. João da Silva foi o Secretário da Fazenda do Estado de São Paulo em É verdade que APENAS a) I e II são sentenças abertas. B) I e III são sentenças abertas c) II e III são sentenças abertas d) I é uma senteça aberta e) II é uma senteça aberta Para a resolução, apenas é necessário saber o que são sentenças abertas. E o que é isso? Define-se como sentença aberta aquela sentença simples cujo resultado (falso ou verdadeiro) é desconhecido, por conter um elemento indefinido ou por conter variáveis. Na primeira frase está dito que "ele foi o melhor jogador do mundo em 2005". Mas quem é ele? Quem acompanha o futebol pode até saber que o Ronaldinho Gaúcho foi eleito o melhor jogador naquele ano pela FIFA. Mas isso não está expresso na frase. Isto é, dependendo de quem se esteja falando a frase poderá ser verdadeira ou falsa. Por isso, essa é uma sentença aberta. Já a segunda frase contém variáveis, o que a tornará verdadeira ou falsa a depender dos valores que forem atribuídos a "x" e "y". Essa também é uma sentença aberta. A última frase, ao contrário, não é uma sentença aberta, pois não há elementos desconhecidos ou variáveis. "João da Silva foi...". Resposta: A

16 Operação com Conjuntos Conheça as principais operações com conjuntos e saiba como aplicá-las e resolver os exercícios. Nesta aula você vai estudar, União de conjuntos, Interseção de conjuntos, Diferença de conjuntos, Complementar de conjuntos, Elementos do conjunto, Partição de conjuntos e muito mais. União de Conjuntos(c ) Dados os conjuntos A e B, define-se o conjunto união A c B = { x; x 0 A ou x 0 B}. Exemplo: {0,1,3} c { 3,4,5 } = { 0,1,3,4,5}. Percebe-se facilmente que o conjunto união contempla todos os elementos do conjunto A ou do conjunto B. Propriedades imediatas: a) A c A = A b) A c φ = A c) A c B = B c A (a união de conjuntos é uma operação comutativa) d) A c U = U, onde U é o conjunto universo. Interseção de Conjuntos (1 ) Dados os conjuntos A e B, define-se o conjunto interseção A 1 B = {x; x 0 A e x 0 B}. Exemplo: {0,2,4,5} 1 { 4,6,7} = {4}. Percebe-se facilmente que o conjunto interseção contempla os elementos que são comuns aos conjuntos A e B. Propriedades imediatas: a) A 1 A = A b) A 1 i = i c) A 1 B = B 1 A ( a interseção é uma operação comutativa) d) A 1 U = A onde U é o conjunto universo. São importantes também as seguintes propriedades das operações com conjuntos:

17 P1. A 1 ( B c C ) = (A 1 B) c ( A 1 C) (propriedade distributiva) P2. A c ( B 1 C ) = (A c B ) 1 ( A c C) (propriedade distributiva) P3. A 1 (A c B) = A (lei da absorção) P4. A c (A 1 B) = A (lei da absorção) Obs: Se A 1 B = φ, então dizemos que os conjuntos A e B são Disjuntos. Diferença A - B = {x ; x 0 A e x ó B}. Observe que os elementos da diferença são aqueles que pertencem ao primeiro conjunto, mas não pertencem ao segundo. Exemplos: {0,5,7} - {0,7,3} = {5}. {1,2,3,4,5} - {1,2,3} = {4,5}. Propriedades imediatas: a) A - φ = A b) φ - A = φ c) A - A = d) A - B B - A ( a diferença de conjuntos não é uma operação comutativa). Complementar de um conjunto Quando se estuda Operações com Conjuntosrecisa-se entender a complementar de um conjnto. Trata-se de um caso particular da diferença entre dois conjuntos. Assim é, que dados dois conjuntos A e B, com a condição de que B d A, a diferença A - B chama-se, neste Caso particular: O complementar de B em relação ao conjunto universo U, ou seja, U - B,é indicado pelo símbolo B.Observe que o conjunto B é formado por todos os elementos que não pertencem ao conjunto B, ou seja: B = {x; x ó B}. É óbvio, então, que:

18 a) B 1 B = φ b) B 1 B = U c) φ = U d) U = φ_ Partição de um conjunto Seja A um conjunto não vazio. Define-se como partição de A, e representa-se por part(a), qualquer subconjunto do conjunto das partes de A (representado simbolicamente por P(A)), que satisfaz simultaneamente, às seguintes condições: 1 - nenhuma dos elementos de part(a) é o conjunto vazio. 2 - a interseção de quaisquer dois elementos de part(a) é o conjunto vazio. 3 - a união de todos os elementos de part(a) é igual ao conjunto A. Exemplo: Seja A = {2, 3, 5} Os subconjuntos de A serão: {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, e o conjunto vazio - Ø. Assim, o conjunto das partes de A será: P(A) = { {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5}, Ø } Vamos tomar, por exemplo, o seguinte subconjunto de P(A): X = { {2}, {3,5} } Observe que X é uma partição de A - cuja simbologia é part(a) - pois: a) nenhum dos elementos de X é Ø. b) {2} 1 {3, 5}ó = Ø c) {2} U {3, 5} = {2, 3, 5} = A Sendo observadas as condições 1, 2 e 3 acima, o conjunto X é uma partição do conjunto A. Observe que Y = { {2,5}, {3} } ; W = { {5}, {2}, {3} }; S = { {3,2}, {5} } são outros exemplos de partições do conjunto A.

19 Outro exemplo: o conjunto Y = { {0, 2, 4, 6, 8, }, {1, 3, 5, 7, } } é uma partição do conjunto N dos números naturais, pois {0, 2, 4, 6, 8, } {1, 3, 5, 7, } = Ø e {0, 2, 4, 6, 8, } U {1, 3, 5, 7, } = N. Número de elementos da união de dois conjuntos Sejam A e B dois conjuntos, tais que o número de elementos de A seja n(a) e o número de elementos de B seja n(b). Nota: o número de elementos de um conjunto, é também conhecido com cardinal do conjunto. Representando o número de elementos da interseção A 1 B por n(a 1 B) e o número de elementos da união A c B por n(a c B), podemos escrever a seguinte fórmula: n(a c B) = n(a) + n(b) - n(a c B) Cálculos com Porcentagem As frações (ou razões) que possuem denominadores (o número de baixo da fração) iguais a 100, são conhecidas por razões centesimais e podem ser representadas pelo símbolo "%". O símbolo "%" é lido como "por cento". "5%" lê-se "5 por cento". "25%" lê-se "25 por cento". O símbolo "%" significa centésimos, assim "5%" é uma outra forma de se escrever 0,05, ou por exemplo. Aulas de Porcentagem Veja as seguintes razões: Podemos representá-las na sua forma decimal por: E também na sua forma de porcentagens por:

20 Como calcular um valor percentual de um número? Agora que temos uma visão geral do que é porcentagem, como calcular quanto é 25% de 200? Multiplique 25 por 200 e divida por 100: Se você achar mais fácil, você pode simplesmente multiplicar 25% na sua forma decimal, que é 0,25 por 200: Assim temos: 1. 4% de 32 = 0, = 1, % de 180 = 0, = % de 150 = 0, = % de 126 = 0, = 44, % de 715 = 1, = % de 60 = 1, = % de 48 = 2, = 96 Repare que no quinto item, 100% de 715 corresponde ao próprio 715, isto ocorre porque 100% representa o todo, ocorre porque 100% é a razão de 100 para 100 (100 : 100) que é igual a 1. Por isto 100% de um número x é o próprio número x, já que o estaremos multiplicando por 1, para sabermos o valor da porcentagem. Analisando os itens de 1 a 4, podemos também perceber que quando o percentual é menor 100%, o número resultante será menor que o número original. Nos itens 6 e 7 percebemos que o resultado é maior que o número original. Isto ocorre porque o percentual é maior que 100%. Exercícios I 01. Sendo p a proposição Paulo é paulista e q a proposição Ronaldo é carioca, traduzir para a linguagem corrente as seguintes proposições: a) ~q b) p ^ q c) p v q d) p " q

21 e) p " (~q) 02. Sendo p a proposição Roberto fala inglês e q a proposição Ricardo fala italiano traduzir para a linguagem simbólica as seguintes proposições: a) Roberto fala inglês e Ricardo fala italiano. b) Ou Roberto não fala inglês ou Ricardo fala italiano. c) Se Ricardo fala italiano então Roberto fala inglês. d) Roberto não fala inglês e Ricardo não fala italiano. 03. (UFB) Se p é uma proposição verdadeira, então: a) p ^ q é verdadeira, qualquer que seja q; b) p v q é verdadeira, qualquer que seja q; c) p ^ q é verdadeira só se q for falsa; d) p =>q é falsa, qualquer que seja q e) n.d.a. 04. (MACK) Duas grandezas x e y são tais que "se x = 3 então y = 7". Pode-se concluir que: a) se x 3 antão y 7 b) se y = 7 então x = 3 c) se y 7 então x 3 d) se x = 5 então y = 5 e) se x = 7 então y = (ABC) Assinale a proposição composta logicamente verdadeira: a) (2 = 3) => (2. 3 = 5) b) (2 = 2) => (2. 3 = 5) c) (2 = 3) e (2. 3 = 5) d) (2 = 3) ou (2. 3 = 5) e) (2 = 3) e (~ ( 2= 2)) 06. (UGF) A negação de x > -2 é: a) x > 2 b) x #-2 c) x < -2 d) x < 2 e) x #2

22 07. (ABC) A negação de todos os gatos são pardos é: a) nenhum gato é pardo; b) existe gato pardo; c) existe gato não pardo; d) existe um e um só gato pardo; e) nenhum gato não é pardo. 08. (ABC) Se A negação de o gato mia e o rato chia é: a) o gato não mia e o rato não chia; b) o gato mia ou o rato chia; c) o gato não mia ou o rato não chia; d) o gato e o rato não chiam nem miam; e) o gato chia e o rato mia. 09. Duas grandezas A e B são tais que "se A = 2 então B = 5". Pode-se concluir que: a) se A 2 antão B 5 b) se A = 5 então B = 2 c) se B 5 então A 2 d) se A = 2 então B = 2 e) se A = 5 então B (VUNESP) Um jantar reúne 13 pessoas de uma mesma família. Das afirmações a seguir, referentes às pessoas reunidas, a única necessariamente verdadeira é: a) pelo menos uma delas tem altura superior a 1,90m; b) pelo menos duas delas são do sexo feminino; c) pelo menos duas delas fazem aniversário no mesmo mês; d) pelo menos uma delas nasceu num dia par; e) pelo menos uma delas nasceu em janeiro ou fevereiro. Gabarito I: 01. a) Paulo não é paulista. b) Paulo é paulista e Ronaldo é carioca. c) Paulo é paulista ou Ronaldo é carioca.

23 d) Se Paulo é paulista então Ronaldo é carioca. e) Se Paulo é paulista então Ronaldo não é carioca. 02. a) p ^ q b) (~p) v p c) q " p d) (~p) ^ (~q) 03. B 04. C 05. A 06. C 07. C 08. C 09. C 10. C Exercícios II Use a descrição abaixo para resolver os exercícios 11 e 12. Chapeuzinho Vermelho ao entrar na floresta, perdeu a noção dos dias da semana. A Raposa e o Lobo Mau eram duas estranhas criaturas que freqüentavam a floresta. A Raposa mentia às segundas, terças e quartasfeiras, e falava a verdade nos outros dias da semana. O Lobo Mau mentia às quintas, sextas e sábados, mas falava a verdade nos outros dias da semana. 11. Numa ocasião Chapeuzinho Vermelho encontrou a Raposa sozinha. Ela fez as seguintes afirmações: - Eu menti ontem - Eu mentirei daqui a 3 dias. Qual era o dia da semana? 12. Em que dias da semana é possível a Raposa fazer cada uma das seguintes afirmações: A) Eu menti ontem e eu mentirei amanhã B) Eu menti ontem ou eu mentirei amanhã C) Se menti ontem, então mentirei de novo amanhã D) Menti ontem se e somente mentirei amanhã.

24 13. (FGV) Na residência assaltada, Sherlock encontrou os seguintes vestígios deixados pelos assaltantes, que julgou serem dois, pelas marcas de sapatos deixadas no carpete: - Um toco de cigarro - Cinzas de charuto - Um pedaço de goma de mascar - Um fio de cabelo moreno As suspeitas recaíram sobre cinco antigos empregados, dos quais se sabia o seguinte: - Indivíduo M: só fuma cigarro com filtro, cabelo moreno, não mastiga goma. - Indivíduo N: só fuma cigarro sem filtro e charuto, cabelo louro, não mastiga goma. - Indivíduo O: não fuma, é ruivo, mastiga goma. - Indivíduo P: só fuma charuto, cabelo moreno, não mastiga goma. - Indivíduo Q: só fuma cigarro com filtro, careca, mastiga goma. Sherlock concluirá que o par de meliantes é: ( a ) M e Q ( b ) N e P ( c ) M e O ( d ) P e Q ( e ) M e P 14. Roberto, Sérgio, Carlos, Joselias e Auro estão trabalhando em um projeto, onde cada um exerce uma função diferente: um é Economista, um é estatístico, um é administrador, um é advogado, um é contador. - Roberto, Carlos e o estatístico não são Paulistas. - No fim de semana, o contador joga futebol com Auro. - Roberto, Carlos e Joselias vivem criticando o advogado.

25 - O Administrador gosta de trabalhar com Carlos, Joselias e Sérgio, mas não gosta de trabalhar com o contador. Pode-se afirmar que Sérgio é o: ( a ) Economista ( b ) Estatístico ( c ) Administrador ( d ) Advogado ( e ) Contador 15. Assinale a opção correta: 5? 5? 5? 5 ( a ) + = ( b ) + + = ( c ) = + + ( d ) x = ( e ) x = 16. Que número fica diretamente acima de 119 na seguinte disposição de números? ( a ) 98 ( b ) 99 ( c ) 100 ( d ) 101 ( e ) 102

26 17. Qual é a metade do dobro do dobro da metade de 2? ( a ) 1 ( b ) 2 ( c ) 3 ( d ) 4 ( e ) Se: Filho é igual a A Pai é igual a B Mãe é igual a C Avô é igual a D Tio é igual a E Qual é o A do B da C do A? ( a ) A ( b ) B ( c ) C ( d ) D ( e ) E 19. Dois amigos, A e B, conversaram sobre seus filhos. A dizia a B que tinha 3 filhas, quando B perguntou a idade das mesmas. Sabendo A que B gostava de problemas de aritmética, respondeu da seguinte forma: O produto das idades das minhas filhas é 36. A soma de suas idades é o número daquela casa ali em frente. Depois de algum tempo B retrucou: Mas isto não é suficiente para que eu possa resolver o problema. A pensou um pouco e respondeu: Tem razão. Esqueci-me de dizer que a mais velha toca piano. Com base nesses dados, B resolveu o problema. Pergunta-se: qual a idade das filhas de A?

27 20. No dia do resultado do concurso de Bolsa de Estudo do Curso Pré-Fiscal, os cinco primeiros classificados foram entrevistados (Joãozinho, Pedro, Débora, Maria e Sônia). Então resolveram, cada um, fazer uma declaração verdadeira e outra falsa, a seguir: 21. Joãozinho: A Maria ficou em segundo lugar. Eu em quarto lugar. Pedro: Fiquei em terceiro lugar. A Sônia em quinto lugar. Débora: A Maria foi a primeira e eu o segundo. Maria: O Pedro foi o primeiro. Eu fiquei em quinto lugar. Sônia: Eu fui o segundo lugar, a Maria foi a terceira. Então, podemos afirmar que a classificação do 1º ao 5º lugar foi: ( a ) Pedro, Maria, Débora, Joãozinho e Sônia; ( b ) Maria, Débora, Pedro, Joãozinho e Sônia; ( c ) Pedro, Débora, Maria, Joãozinho e Sônia; ( d ) Pedro, Débora, Maria, Sônia e Joãozinho; ( e ) Maria, Débora, Pedro, Sônia e Joãozinho; 22. (AFTN/96) Três amigas, Tânia, Janete e Angélica, estão sentadas lado a lado em um teatro. Tânia sempre fala a verdade; Janete às vezes fala a verdade; e Angélica nunca fala a verdade. A que está sentada à esquerda diz: Tânia é quem está sentada no meio. A que está sentada no meio diz: Eu sou Janete. Finalmente, a que está sentada à direita diz: Angélica é quem está sentada no meio. A que está sentada à esquerda, a que está sentada no meio e a que está sentada à direita são, respectivamente: ( a ) Janete, Tânia e Angélica ( b ) Janete, Angélica e Tânia ( c ) Angélica, Janete e Tânia ( d ) Angélica, Tânia e Janete ( e ) Tânia, Angélica e Janete

28 23. (TRT) Certo dia, em sua fazenda, Ana percebeu que o único relógio da casa um enorme relógio de carrilhão havia parado. Deu-lhe corda e, achando que era aproximadamente 10h, colocou os ponteiros marcando 10h. Foi então até a fazenda vizinha descobrir a hora certa. Lá chegou às 11h20min e de lá partiu às 11h30min. Chegando em sua fazenda verificou que o relógio marcava 10h30min. Se Ana foi e voltou com a mesma velocidade, qual a hora do seu retorno a sua casa? ( a ) 11h40min ( b ) 11h50min ( c ) 12h ( d ) 12h10min ( e ) 12h15min Gabarito II 11. Segunda-feira 12. a) Segunda ou quarta-feira b) Quinta ou domingo c) Quarta, sexta, sábado ou domingo d) Segunda, quarta, sexta ou sábado. 13. letra D 14. letra D 15. letra D 16. letra B - Basta observar que o último número de cada linha é sempre um quadrado perfeito, logo a linha que possui o número 119 termina com o número 121, o anterior 120 possui 100 acima, logo o número 119 possui o número 99 acima. 17. letra B 18. letra E Qual é o filho do pai da mãe do filho? É o tio 19. Idades: 2, 9, letra C 21. letra B

29 22. letra A

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo 11 de outubro de 2016

Lógica Proposicional Parte I. Raquel de Souza Francisco Bravo   11 de outubro de 2016 Lógica Proposicional Parte I e-mail: raquel@ic.uff.br 11 de outubro de 2016 Lógica Matemática Cáculo Proposicional Uma aventura de Alice Alice, ao entrar na floresta, perdeu a noção dos dias da semana.

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno

Fundamentos de Lógica e Algoritmos. Aula 1.3 Proposições e Conectivos. Prof. Dr. Bruno Moreno Fundamentos de Lógica e Algoritmos Aula 1.3 Proposições e Conectivos Prof. Dr. Bruno Moreno bruno.moreno@ifrn.edu.br Argumentos Lógicos As premissas do argumento são chamadas de proposições; A conclusão

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

4 a Parte Lógica Formal Aspectos Introdutórios Resumo Teórico

4 a Parte Lógica Formal Aspectos Introdutórios Resumo Teórico Registro CMI 40616 Aula Proposição 4 a Parte Lógica Formal Aspectos Introdutórios Resumo Teórico Toda proposição é uma frase mas nem toda frase é uma proposição; uma frase é uma proposição apenas quando

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 04 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 04 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Tabela da Verdade; Operações Lógicas sobre Proposições; Revisando As proposições

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES

Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES Lógica Matemática e Computacional Não sou o melhor, sei disso, mas faço o melhor que posso!! RANILDO LOPES 2. Conceitos Preliminares 2.1. Sentença, Verdade e Proposição Cálculo Proposicional Como primeira

Leia mais

MATEMÁTICA Questões comentadas Daniela Arboite

MATEMÁTICA Questões comentadas Daniela Arboite MATEMÁTICA Questões comentadas Daniela Arboite TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação de direitos autorais é punível

Leia mais

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009 Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 02 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Considere as afirmações: I. A camisa é azul ou a gravata é branca. II. Ou o sapato é marrom ou a camisa

Leia mais

LÓGICA E CONJUNTO. Professor: Adriano Sales

LÓGICA E CONJUNTO. Professor: Adriano Sales LÓGICA E CONJUNTO Professor: Adriano Sales LÓGICA Qual é o significado de argumentação? Segundo o dicionário Houaiss é: ARGUMENTAÇÃO: Arte, ato ou efeito de argumentar; Troca de palavras em controvérsia

Leia mais

Professor: Adriano Sales Matéria: Lógica e Conjunto

Professor: Adriano Sales Matéria: Lógica e Conjunto Professor: Adriano Sales Matéria: Lógica e Conjunto Lógica Qual é o significado de argumentação? Segundo o dicionário Houaiss é: ARGUMENTAÇÃO: Arte, ato ou efeito de argumentar; Troca de palavras em controvérsia

Leia mais

AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8

AULA 1 Frases, proposições e sentenças 3. AULA 2 Conectivos lógicos e tabelas-verdade 5. AULA 3 Negação de proposições 8 Índice AULA 1 Frases, proposições e sentenças 3 AULA 2 Conectivos lógicos e tabelas-verdade 5 AULA 3 Negação de proposições 8 AULA 4 Tautologia, contradição, contingência e equivalência 11 AULA 5 Argumentação

Leia mais

OFICINA DA PESQUISA APOSTILA 3 MATEMÁTICA COMPUTACIONAL. Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva

OFICINA DA PESQUISA APOSTILA 3 MATEMÁTICA COMPUTACIONAL. Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 3 MATEMÁTICA COMPUTACIONAL Autor do Conteúdo: Prof. Msc. Júlio Cesar da Silva juliocesar@eloquium.com.br Alterações eventuais

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO

DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem

Leia mais

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César Lógica Matemática UNIDADE I Professora: M.Sc. Juciara do Nascimento César 1 A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01

Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01 Raciocínio lógico matemático: proposições, conectivos, equivalência e implicação lógica, argumentos válidos. PART 01 PROPOSIÇÕES Denomina-se proposição a toda frase declarativa, expressa em palavras ou

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Aula 1 Teoria com resolução de questões FGV

Aula 1 Teoria com resolução de questões FGV Aula 1 Teoria com resolução de questões FGV AULA 01 Olá futuro servidor do TRT 12, Meu nome é Fabio Paredes, sou professor de Raciocínio Lógico Matemático e terei o prazer de ajudá-los nesta árdua missão

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Prof. João Giardulli. Unidade I LÓGICA

Prof. João Giardulli. Unidade I LÓGICA Prof. João Giardulli Unidade I LÓGICA Introdução A primeira qualidade do estilo é a clareza. Aristóteles Introdução Aristóteles é considerado o precursor da lógica. Aristóteles (384-322 a.c.) Introdução

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Proposições frases AFIRMATIVAS que aceitam julgamento: Verdadeiro - Acontece Falso - Não acontece Há frases que não aceitam valorações lógicas Verdadeiro/Falso Exemplos: 1) Interrogativas:

Leia mais

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO RACIOCÍNIO LÓGICO AULA 01 LÓGICA PROPOSICIONAL DEFINIÇÃO A Lógica estuda o pensamento como ele deveria ser, sem a influência de erros ou falácias. As falácias em torno do raciocínio humano se devem a atalhos

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Prof. Tiago Semprebom, Dr. Eng. 09 de abril de 2013

Prof. Tiago Semprebom, Dr. Eng. 09 de abril de 2013 Lógica Clássica e Lógica Simbólica Prof. Tiago Semprebom, Dr. Eng. Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José tisemp@ifsc.edu.br 09 de abril de 2013 Prof. Tiago

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de

Leia mais

Matemática Discreta e Raciocínio Lógico

Matemática Discreta e Raciocínio Lógico Matemática Discreta e Raciocínio Lógico 51. (ABC) A negação de o gato mia e o rato chia é: (A) o gato não mia e o rato não chia; (B) o gato mia ou o rato chia; (C) o gato não mia ou o rato não chia; (D)

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por: LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/53 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

RACIOCÍNIO LÓGICO

RACIOCÍNIO LÓGICO RACIOCÍNIO LÓGICO 01- Analise as premissas e a conclusão do argumento a seguir e responda se é VÁLIDO ou NÃO. "Basta ser estudioso para vencer no concurso; ora, todos os alunos do curso Degrau Cultural

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1 UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

Introdução à Logica Computacional. Aula: Lógica Proposicional - Sintaxe e Representação

Introdução à Logica Computacional. Aula: Lógica Proposicional - Sintaxe e Representação Introdução à Logica Computacional Aula: Lógica Proposicional - Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício

Leia mais

Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação

Introdução à Logica Computacional. Aula: Lógica Proposicional -Sintaxe e Representação Introdução à Logica Computacional Aula: Lógica Proposicional -Sintaxe e Representação Agenda Resolução de exercício da aula 1 Definições Proposição simples Conectivos Proposição composta Sintaxe Exercício

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica de IME, UFF 7 de novembro de 2013 Sumário em... em Sintaxe da A lógica que estamos definindo é uma extensão de LS e é chamada de Lógica de Ordem,, por uma razão que será esclarecida mais adiante.

Leia mais

TABELA VERDADE. por: André Aparecido da Silva. Disponível em:

TABELA VERDADE. por: André Aparecido da Silva. Disponível em: TABELA VERDADE por: André Aparecido da Silva Disponível em: http://www.oxnar.com.br/aulas/logica Normalmente, as proposições são representadas por letras minúsculas (p, q, r, s, etc). São outros exemplos

Leia mais

A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto

A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA A Linguagem dos Teoremas - Parte II Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de maio

Leia mais

LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016

LÓGICA MATEMÁTICA. Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte: RELEMBRANDO 23/02/2016 LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com RELEMBRANDO Quando a precedência não estiver explicitada através de parênteses, a ordem é a seguinte:

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional SLIDE 1I Professor Júlio Cesar da Silva juliocesar@eloquium.com.br site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium Google+:

Leia mais

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa Raciocínio Lógico Lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições. DEFINIÇÃO: Proposição: conjunto

Leia mais

3 Cálculo Proposicional

3 Cálculo Proposicional 3 Cálculo Proposicional O Cálculo Proposicional é um dos tópicos fundamentais da Lógica e consiste essencialmente da formalização das relações entre sentenças (ou proposições), de nidas como sendo frases

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

Introdução à Lógica Proposicional Sintaxe

Introdução à Lógica Proposicional Sintaxe Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe PASSOS PARA O ESTUDO DE LÓGICA Prof a Maria das Graças Marietto graca.marietto@ufabc.edu.br 2 ESTUDO DE LÓGICA O estudo

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno, CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e

Leia mais

Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Questões de Concursos Aula 03 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Sabendo que os valores lógicos das proposições simples p e q são, respectivamente, a verdade e a falsidade,

Leia mais

Bases Matemáticas. Aula 1 Elementos de Lógica e Linguagem Matemática. Prof. Rodrigo Hausen. 24 de junho de 2014

Bases Matemáticas. Aula 1 Elementos de Lógica e Linguagem Matemática. Prof. Rodrigo Hausen. 24 de junho de 2014 Aula 1 Elementos de Lógica e Linguagem Matemática Prof. Rodrigo Hausen 24 de junho de 2014 Definição Uma proposição é uma sentença declarativa que é verdadeira ou falsa, mas não simultaneamente ambas.

Leia mais

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está

Leia mais

BIZU PARA POLÍCIA FEDERAL PROFESSOR: GUILHERME NEVES

BIZU PARA POLÍCIA FEDERAL PROFESSOR: GUILHERME NEVES Olá, pessoal! Meu nome é Guilherme Neves e estou ministrando o curso de Raciocínio Lógico para o concurso da Polícia Federal que será realizado pelo CESPE-UnB. Vamos, de uma maneira sucinta, fazer uma

Leia mais

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas.

n. 6 Equivalências Lógicas logicamente equivalente a uma proposição Q (p, q, r, ), se as tabelas-verdade destas duas proposições são idênticas. n. 6 Equivalências Lógicas A equivalência lógica trata de evidenciar que é possível expressar a mesma sentença de maneiras distintas, preservando, o significado lógico original. Def.: Diz-se que uma proposição

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS ESPECIAIS Conjunto Vazio O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto vazio usaremos os símbolos: { } ou. Atenção: Quando os símbolos { } ou, aparecerem

Leia mais

A CASA DO SIMULADO DESAFIO QUESTÕES MINISSIMULADO 17/360

A CASA DO SIMULADO DESAFIO QUESTÕES MINISSIMULADO 17/360 1 DEMAIS SIMULADOS NO LINK ABAIXO CLIQUE AQUI REDE SOCIAL SIMULADO 17/360 RLM INSTRUÇÕES TEMPO: 30 MINUTOS MODALIDADE: CERTO OU ERRADO 30 QUESTÕES CURTA NOSSA PÁGINA MATERIAL LIVRE Este material é GRATUITO

Leia mais

NHI Lógica Básica (Lógica Clássica de Primeira Ordem)

NHI Lógica Básica (Lógica Clássica de Primeira Ordem) NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

Lógica Matemática Para Concursos

Lógica Matemática Para Concursos A matemática geralmente é vista como complicada para a maioria dos concursandos, mas isso já é passado, atualmente o que assusta os candidatos é a lógica matemática ou também conhecida como lógica proposicional

Leia mais

Matemática Discreta e Raciocínio Lógico

Matemática Discreta e Raciocínio Lógico Matemática Discreta e Raciocínio Lógico 1. Se A é o conjunto de letras da palavra catarata e B é o conjunto de letras da palavra catraca, então: (A) card(a) < card(b) (B) card(a) = card(b) + 1 (C) card(a)

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

MAT Laboratório de Matemática Primeira Lista de Exercícios Professora Barbara Valério

MAT Laboratório de Matemática Primeira Lista de Exercícios Professora Barbara Valério MAT1513 - Laboratório de Matemática Primeira Lista de Exercícios - 2019 Professora Barbara Valério 1. Dado o seguinte esquema: D o estudante comete erros, C há motivação para o estudo, F o estudante aprende

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 2 - Proposicionais Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Lógicas Proposições compostas - Definição 1

Leia mais

ALESE. Assembleia Legislativa do Estado de Sergipe. Volume I. Técnico Legislativo / Área Apoio Técnico Administrativo

ALESE. Assembleia Legislativa do Estado de Sergipe. Volume I. Técnico Legislativo / Área Apoio Técnico Administrativo Assembleia Legislativa do Estado de Sergipe ALESE Técnico Legislativo / Área Apoio Técnico Administrativo Volume I Edital Nº 01/2018 de Abertura de Inscrições JN071-A-2018 DADOS DA OBRA Título da obra:

Leia mais

Raciocínio Lógico

Raciocínio Lógico Raciocínio Lógico 01. Um senhor de idade deixou o seguinte testamento: Deixo 1/3 da minha fortuna para minha única filha e o restante para a criança que ela está esperando, se for homem; deixo 1/2 da minha

Leia mais

Raciocínio Lógico Matemático

Raciocínio Lógico Matemático Raciocínio Lógico Matemático Cap. 4 - Implicação Lógica Implicação Lógica Antes de iniciar a leitura deste capítulo, verifique se de fato os capítulos anteriores ficaram claros e retome os tópicos abordados

Leia mais

Aprendendo. Raciocínio. Lógico

Aprendendo. Raciocínio. Lógico Aprendendo Raciocínio Lógico Raciocínio Lógico Equivalência de Proposições Compostas Duas proposições são consideradas EQUIVALENTES entre si, quando elas transmitem a mesma ideia. De forma prática, dizemos

Leia mais

Raciocínio Lógico Matemático. Pré Prova TST

Raciocínio Lógico Matemático. Pré Prova TST Raciocínio Lógico Matemático Pré Prova TST # DICA 1 # LEMBRAR-SE DOS CONJUNTOS NUMÉRICOS ELEMENTARES Números Naturais N = {0, 1, 2, 3, 4,... } Números Inteiros Z = {..., -4, -3, -2, -1, 0, 1, 2, 3,...

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

OBS.1: As palavras Se e então podem estar ocultas na. Proposição

OBS.1: As palavras Se e então podem estar ocultas na. Proposição RACIOCÍNIO LÓGICO PRO. IGOR BRASIL 1) Proposição: Observação!!! Não são proposições 1. 2. 3. 4. 5. 6. 7. 2) Conectivos São utilizados em proposições.» O conectivo e é conhecido por, representado pelo símbolo

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

CASA TRIBUNAIS RACIOCÍNIO LÓGICO

CASA TRIBUNAIS RACIOCÍNIO LÓGICO CASA TRIBUNAIS RACIOCÍNIO LÓGICO Proposição Prof. Bruno Villar www.acasadoconcurseiro.com.br Raciocínio Lógico PROPOSIÇÃO TEMA: PROPOSIÇÃO A proposição lógica é o alicerce na construção do conhecimento

Leia mais

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E

Leia mais

Simulado Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Simulado Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Simulado Aula 03 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Argumento é a afirmação de que uma sequência de proposições, denominadas premissas, acarreta outra proposição, denominada

Leia mais

RLM Material de Apoio Professor Jhoni Zini

RLM Material de Apoio Professor Jhoni Zini PRINCÍPIOS LÓGICOS 1. Segundo a lógica aristotélica, as proposições têm como uma de suas propriedades básicas poderem ser verdadeiras ou falsas, isto é, terem um valor de verdade. Assim sendo, a oração

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

Introdução à Lógica Proposicional Sintaxe e Semântica

Introdução à Lógica Proposicional Sintaxe e Semântica Bacharelado em Ciência e Tecnologia BC&T Introdução à Lógica Proposicional Sintaxe e Semântica SINTAXE E SEMÂNTICA Prof a Maria das Graças Marietto graca.marietto@ufabc.edu.br 2 LINGUAGEM SIMBÓLICA: COMPONENTES

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados Estudamos até agora a lógica proposicional Predicados Estudamos até agora a lógica proposicional A lógica proposicional têm possibilidade limitada de expressão.

Leia mais

Atenção: Esse conectivo transmite a ideia de e / ou e não apenas a de exclusão como muitas pessoas imaginam.

Atenção: Esse conectivo transmite a ideia de e / ou e não apenas a de exclusão como muitas pessoas imaginam. CONCEITO DE PROPOSIÇÃO É todo conjunto de palavras ou símbolos que exprimem uma ideia de sentido completo e que, além disso, pode ser julgado como verdadeiro (V) ou falso (F). NÃO SÃO PROPOSIÇÕES Frases

Leia mais