INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE"

Transcrição

1 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso. Denotaremos as proposições por letras minúsculas (p, q, r, s,...). p: A lua é um satélite da terra. q: Brasília é capital do Brasil. r: 5 Para distinguir bem uma preposição devemos nos basear em 2 princípios da lógica: (I) Princípio da não-contadição: uma preposição não pode ser verdadeira e falsa ao mesmo tempo. (II) Princípio do terceiro excluído: toda a preposição ou é verdadeira ou é falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro. Não é preposição por exemplo: s: faça as tarefas amanhã Valores lógicos das proposições Chama-se valor lógico de uma proposição a VERDADE se a proposição é verdadeira (V) e a FALSIDADE se a proposição é falsa (F). Todas a proposição tem um, e um só, dos valores (V ou F). p: O mercúrio é mais pesado que a água q: O sol gira em torno da terra. O valor lógico da proposição p é a VERDADE (V) e o valor lógico da proposição q é a FALSIDADE (F). Proposições simples e proposições compostas Proposição simples ou atômica é aquela quando não contém nenhuma outra proposição como parte integrante de si mesma, representado por letras latinas minúsculas (p, q, r, s,...) chamadas letras proposicionais. p: Carlos é estudante q: O número 9 é quadrado perfeito Proposição composta ou molecular (fórmulas proposicionais ou fórmulas) é aquela quando é formada pela combinação de duas ou mais preposições, representado pelas letras latinas maiúsculas ( P, Q, R, S,...) também chamadas letras proposicionais. P: Toda função é crescente e positiva. P(r,s) r: Toda função é crescente. s: Toda função é positiva. Conectivos São palavras (ou símbolos) que usamos para formar novas proposições a partir de duas. e p q ou p q se... então p q se e somente se p q não (negação) ~ ou ~p ou p A função f(x)=x 2 é continua e não-negativa. p: f(x)=x 2 é contínua. q: f(x)=x 2 é negativa. P: p ~q Notação O valor lógico de uma proposição simples p indica por v(p). Assim, exprime-se que p é verdadeiro (v), escrevendo v(p)=v ou se falsa v(p)=f. Tabela verdade O valor lógico de uma proposição composta poderá ser obtido a partir dos valores lógicos das proposições simples que a compõem.

2 2 Vamos definir os valores lógicos dos conectivos através de uma tabela verdade (TV): Negação (~p) p ~p V F F V p q: Paris é capital da França ou 9 4 = 5 (V) v(p q) = v(p) v(q) = V V = V b) p: Roma é capital da Rússia. (F) q: = 12. (V) p q: Paris é capital da Rússia ou = 12 (V) v(p q) = v(p) v(q) = F V = V a) p: O sol é uma estrela. ~p: O sol não é uma estrela. b) q: A lua é um satélite. ~q: A lua não é um satélite. Conjunção (p q) V F F F V F F F F a) p: A neve é branca. (V) q: 2 < 5 p q: A neve é branca e 2<5 (V) v(p q) = v(p) v(q) = V V = V b) p: O enxofre é incolor. (F) q: 7 é um número primo. (V) p q: O enxofre é incolor e 7 é um nº primo (F) v(p q) = v(p) v(q) = F V = F Disjunção (p q) V F V F V V F F F a) p: Paris é capital da França. (V) q: 9 4 = 5 (V) Condicional (p q) V F F F V V F F V a) p: O mês de maio tem 31 dias. (v) q: A terra é plana. (F) p q: Se o mês de maio tem 31 dias, então a Terra é plana. (F) v(p q) = v(p) v(q) = V F = F b) p: A lua é um planeta. (F) q: Ela gira em torno do sol. (V) p q: Se a lua é um planeta, então ela gira em torno da terra. (V) v(p q) = v(p) v(q) = F V = V Bicondicional (p q) V F F F V F F F V a) p: Lisboa é capital de Portugal. (V) q: A terra é plana. (F) p q: Lisboa é capital de Portugal se, e somente se, a Terra é plana. (F) v(p q) = v(p) v(q) = V F = F

3 3 b) p: Paris fica na América. (F) q: Tiradentes foi enforcado (V) p q: Paris fica na América se. E somente se, Tiradentes foi enforcado.. (F) v(p q) = v(p) v(q) = F V = F j) Faça a TV de: ( p (~q r)) ~(q (p ~r)) p, q e r são 3 proposições, logo 2 n = 2 3 = 8 linhas Exemplos: a) p: = 3 v(p) = F v(~p)=v v(~(~p))=f b) v(2 + 3 = 5 e 9 = 3 ) = V c) v(2 < 3 e 8 é racional) = F d) v(9 5 = 16 ou = 3,14) = F e) v( 1 é real ou 13 é irracional) = V f) v( se é real então {1, 2} {1, 2, 3}) = V OBS.: Uma tabela verdade (TV) de uma proposição compostas com n proposições terá 2 n linhas. g) Construa a TV da proposição ~(p ~p) n= 2 proposições 2 n = 2 1 = 2 linhas p ~p p ~p ~(p ~p) V F F V h) Sabendo que v(p) = V e v(q) = F, determine v(~(p q) ~p ~q) v(p q) = V, v(~p q) = F, v(~p) = F v(~q) = V, v(~p ~q) = F v(~(p q) ~p ~q) = V i) Sabendo que v(r) = V, determine v(p ~q r) v(~q r) = V v(p) = V ou v(p) = F V V ou F V, logo = V v(p ~q r)= V l) Se v(q) = V, encontre v((p q) (~q ~p)) v(~q)=f F V ou F F logo dá V V(p) = V ou v(p) = F V V ou F V logo dá V v((p q) (~q ~p))=v m) Faça a TV de: ( p q) (q r) (p r) p, q e r são 3 proposições, logo 2 n = 2 3 = 8 linhas

4 4 Leis associativas: 1. (A B) C A (B C) 2. (A B) C A (B C) Leis distributivas: 3. A (B C) (A B) (A C) 4. A (B C) (A B) (A C) Leis de dupla negação: 5. ~~A A Equivalência da condicional: 6. A B ~A B 7. A B ~B ~A Tautologia, contradições e contingências Tautologia é uma proposição composta onde a ultima coluna da tabela verdade encerra com a letra V. OBS.: Na falta de parêntese, a hierarquia que se segue é: 1º) ~ 2º) ou 3º) 4º) Proposições logicamente equivalentes Dizemos que duas proposições são logicamente equivalentes ou, simplesmente, que são equivalentes quando são compostas pelas mesmas proposições simples e os resultados de suas tabelas-verdade são idênticos. Uma conseqüência prática da equivalência lógica é que ao trocar dada proposição por qualquer outra que lhe seja equivalente, estamos apenas mudando a maneira de dizê-la. A equivalência lógica entre duas proposições, A e B, pode ser representada simbolicamente como: A B Da definição de equivalência lógica pode-se demonstrar as seguintes equivalências: Contradição ou falácia é a proposição cuja ultima linha da TV se encerra somente com a letra F. Contingência é a proposição que não é falácia nem tautologia. Negação de proposições compostas Um problema de grande importância para a lógica é o da identificação de proposições equivalentes à negação de uma proposição dada. Negar uma proposição simples é uma tarefa que não oferece grandes obstáculos. Entretanto, podem surgir algumas dificuldades quando procuramos identificar a negação de uma proposição composta. Como já vimos anteriormente, a negação de uma proposição deve ter sempre valor lógico oposto ao da proposição dada. Desse modo, sempre que uma proposição A for verdadeira, a sua negação não A deve sempre ser falsa e sempre que A for falsa, não A deve ser verdadeira. Ou seja, a negação de uma proposição deve ser contraditória com a proposição dada.

5 5 A tabela abaixo mostra as equivalências mais comuns para as negações de algumas proposições compostas: Proposição Negação direta Equivalência da negação A e B Não (A e B) Não A ou não B A ou B Não (A ou B) Não A e não B Se a então B Não (se a então B) A e não B A se e somente se B Não (A se e somente se B) [(A e não B) ou (B e não A)] Todo A é B Não (todo A é B) Algum A não é B Algum A é B Não (algum A é B) Nenhum A é B Exercícios: 1) Determinar o valor (V ou F) de cada uma das seguintes proposições: a) O número 17 é primo. b) Fortaleza é a capital do Maranhão c) Tiradentes morreu afogado. d) (3 + 5) 2 = e) -1 < -7 f) 0, é uma dizima periódica simples. g) O hexaedro regular tem 8 arestas. h)todo número divisível por 5 termina em 5. i) O produto de 2 nº ímpares é um número ímpar. j) O número 125 é cubo perfeito. l) 0, 4 e -4 são as raízes da equação x 3 16x = 0 2) Sejam as proposições p: Está frio e q: Está chovendo. Traduzir para a linguagem corrente as seguintes proposições: a) ~p b) p q c) p q d) q p e) p ~q f) p ~q g) ~p ~q h) p ~q i) p ~q p 3) Determinar v(p) em cada um dos seguintes casos, sabendo: a) v(q) = F e v(p q) = F b) v(q) = F e v(p q) = F c) v(q) = F e v(p q) = F d) v(q) = F e v(q p) = V e) v(q) = V e v(p q) = F f) v(q) = F e v(q p) = V 4) Determine v(p) e v(q) em cada um dos seguintes casos, sabendo que: a) v(p q) = V e V(p q) = F b) v(p q) = V e V(p q) = F c) v(p q) = V e V(p q) = V d) v(p q) = V e V(p q) = V e) v(p q) = F e V(~p q) = V 5) Construir as TV das seguintes proposições: a) ~p r q ~r b) p r q ~r c) p (p ~r) q r d) (p q r) (~p q ~r) 6) Determinar P(VFV) em cada um dos seguintes casos: a) P(p, q, r) = p (q r) b) P(p, q, r) = (p ~q) r c) P(p, q, r) = ~p (q ~r) d) P(p, q, r) = (p q) (p r) e) P(p, q, r) = (p ~r) (q ~r) f) P(p, q, r) = ~(p ~q) (~p r) 7) Sabendo que as preposições p e q são verdadeiras e que as preposições r e s são falsas, determinar o valor lógico (V ou F) de cada uma das seguintes proposições: a) p q r b) r s q c) q p s d) p ~(r s) e) (q s) r f) ~r p q g) (q r) (p s) h) (r s) (p q) i) (p ~q) r j) ~((r p) (s q)) k) (s r) (~p r) l) r q (~p r)

6 6 8) Sabendo que os valores lógicos das proposições p, q, r e s são respectivamente V, V, F e F, determinar o valor lógico (V ou F) de cada umas das seguintes proposições: a) p q q p b) (r p) (p r) c) (p r) (~p ~r) d) ~(p q) ~p ~q e) ~(p s) ~p ~s f) ~((p s) (s r)) 9) Determinar quais das seguintes proposições são tautológicas, contraválidas, ou contingentes: a) p (~p q) b) ~p q (p q) c) p (q (q p)) d) ((p q) q) p e) p ~q (p ~q) f) ~p ~q (p q) g) p (p q) r h) p q (p q r) Gabarito: 1) a) V b) F c) f d) F e ) F f) V g) F h) F i) V j) V l) V 2) a) Não esta frio. b) Está frio e está chovendo. c) Está frio ou está chovendo. d) Está chovendo se, e somente se, está frio. e) Se esta frio, então não esta chovendo. f) está frio ou não está chovendo. g) não está frio e não está chovendo h) Está frio se, e somente se, não está chovendo. i) Se está frio e não está chovendo, então está frio. 3) a) V ou F b) F c) V d) V ou F e) F f) F. 4) a) v(p)=f e v(q)=f ou V b) v(p)=v e v(q)=f c) v(p)=(q)=v d) v(p)=(q)=v e) v(p)=f e v(q)=v 5) a) b) c) d) p q r ~p r q ~r V V V F V V F V V V F F V F F F V F F F F V p q r p r q ~r V V V F F V F V F V F F F F F F V F F F F V p q r p (p ~r) q r F V V F V V F V F V F F F F F F V V F F F F p q r (p q r) (~p q ~r) V V V F F V F V V V F F V F F F V V F F F V 6) a) V b) V c) F d) V e ) F f ) F 7) a) F b) V c) F d) V e) V f) V g) V h) V i) F j) F k) V l) V 8) a) V b) F c) V d) V e) F f) V 9) a, b, c, g, h são tautológicas d, e, f são contingentes.

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Proposições e Conectivos

Proposições e Conectivos Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Proposições e Conectivos Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E Autora: Prof. Dra. Denise Candal

LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E Autora: Prof. Dra. Denise Candal LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E COMPOSTAS Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com htt://www.rafaeldiasribeiro.com.br Autora: Prof. Dra. Denise Candal 1 Definição: Chama-se roosição

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira.

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira. Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Lógica Proposicional 1 Proposição Uma rase é uma proposição apenas quando admite um dos dois valores lógicos: Falso (F) ou Verdadeiro

Leia mais

Noções de lógica matemática Conceitos Básicos

Noções de lógica matemática Conceitos Básicos Conceitos Básicos CH f Noções de lógica matemática Conceitos Básicos CH 1 Conceitos Básicos - E CH CH f ^ Noções de lógica matemática Conceitos Básicos - E CH CH ^ 2 Conceitos Básicos - OU CH CH f Noções

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição.

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. aula 07 (Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Negação de Proposições

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti Unidade I LÓGICA Profa. Adriane Paulieli Colossetti O que é lógica A lógica ensina a colocar ordem no pensamento. Sistemas Dicotônicos Proposições: São sentenças declarativas, que satisfazem três princípios

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Autor: Jusdewbe Tatiane de Souza Mora 1 Introdução: LÓGICA O estudo da Lógica, é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. Esta definição

Leia mais

Propriedades Semânticas da Lógica Proposicional(Capítulo 3)

Propriedades Semânticas da Lógica Proposicional(Capítulo 3) Propriedades Semânticas da Lógica Proposicional(Capítulo 3) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tautologia 2. Satisfatível 3. Contingência 4. Contraditória

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas.

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. LÓGICA 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma proposição verdadeira

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições.

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Capítulo 1 CÁLCULO PROPOSICIONAL 1. PROPOSIÇÕES E CONECTIVOS A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Uma proposição

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 03 Proposições e Conectivos. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 03 Proposições e Conectivos Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Proposições: Valores Lógicos; Tipos (simples e compostas). Conectivos. Revisando O que é

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa Raciocínio Lógico Lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições. DEFINIÇÃO: Proposição: conjunto

Leia mais

Professor: Adriano Sales Matéria: Lógica e Conjunto

Professor: Adriano Sales Matéria: Lógica e Conjunto Professor: Adriano Sales Matéria: Lógica e Conjunto Lógica Qual é o significado de argumentação? Segundo o dicionário Houaiss é: ARGUMENTAÇÃO: Arte, ato ou efeito de argumentar; Troca de palavras em controvérsia

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO

Leia mais

Simbolização de Enunciados com Conectivos

Simbolização de Enunciados com Conectivos Lógica para Ciência da Computação I Lógica Matemática Texto 4 Simbolização de Enunciados com Conectivos Sumário 1 Conectivos: simbolização e sintaxe 2 2 Enunciados componentes 5 2.1 Observações................................

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

Interpretações, cap. 8 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani

Interpretações, cap. 8 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani Interpretações, cap. 8 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani 1 1 Signicado e verdade condições para verdadeiro ou falso: Como um argumento é (intuitivamente) válido se não é possível

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

Raciocínio Lógico - Parte II

Raciocínio Lógico - Parte II Apostila escrita pelo professor José Gonçalo dos Santos Contato: jose.goncalo.santos@gmail.com Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

Matemática para controle:

Matemática para controle: Matemática para controle: Introdução à Lógica Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Introdução

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I

Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I Prova de Agente de Polícia Federal 01 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson Caderno de Questões Tipo I Texto 1. Um jovem, ao ser flagrado no aeroporto portando certa

Leia mais

Noções de Lógica. Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12.

Noções de Lógica. Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12. Noções de Lógica Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12. 2) Florianópolis é capital de SC. 3) O Brasil faz fronteira com a

Leia mais

O recurso solicita a mudança do gabarito da alternativa C para a alternativa A.

O recurso solicita a mudança do gabarito da alternativa C para a alternativa A. Nível: SUPERIOR Área: Raciocínio Lógico QUESTÃO 14. O recurso solicita a mudança do gabarito da alternativa C para a alternativa A. A alternativa correta é a letra C. O item em questão envolve Princípio

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.

Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur

Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA

PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA PROCESSAMENTO DE DADOS / SISTEMAS DE INFORMAÇÃO TRABALHO SEMESTRAL DE MATEMÁTICA:LÓGICA MATEMÁTICA EQUIPE DE MATEMÁTICA 1) Sejam as proposições: p : Marcos é alto. q : Marcos é elegante. r : Marcos é inteligente.

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos}

= {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos} = {números irracionais} = {números reais positivos} = {números reais negativos} = {números reais não positivos} = {números reais não negativos} 2 2 = 1 + 1 = 2 = 2 = 2 2 3 + 2 3 2 < > < > < < < > > > 3

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo

Leia mais

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período CEM CADERNO DE EXERCÍCIOS MASTER Raciocínio Lógico e Matemático TCM Banca: IBFC Período 2010 2016 Sumário Tabela Verdade das Proposições Compostas... 3 Tautologia, Contradição e Contingência... 8 Equivalências

Leia mais

Analista Tributário da Receita Federal do Brasil ESAF

Analista Tributário da Receita Federal do Brasil ESAF Analista ributário da Receita Federal do Brasil ESAF - 0 0. A negação da proposição se Paulo estuda, então Marta é atleta é logicamente equivalente à proposição: a) Paulo não estuda e Marta não é atleta.

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Noções de Lógica - Teoria e Exercícios

Noções de Lógica - Teoria e Exercícios ALUNO(A) C O L É G I O PROFESSOR (A) Alan Jefferson Série 1º ano Noções de Lógica - Teoria e Exercícios PROPOSIÇÃO Chama-se proposição ou sentença toda oração declarativa que pode ser classificada em verdadeira

Leia mais

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Em breve teremos o concurso para Polícia Civil do Distrito Federal. A banca organizadora

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Álgebra de Boole Roteiro no. 10 - Atividades didáticas de 2007 8 de Outubro de 2007- Arq: elementos10.tex Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses(at)matematica(pt)uel(pt)br

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem.

O TRATAMENTO MATERIAL DA LPC Valorações como interpretações para a linguagem. COMPLEMENTO DO ARQUIVO ANTERIOR Texto Outras noções sintáticas que desempenharão um papel importante no futuro são as de esquema de fórmulas e de instância de um esquema. Um esquema de fórmula é uma expressão

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais