Lóg L ica M ca at M em e ática PROF.. J EAN 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lóg L ica M ca at M em e ática PROF.. J EAN 1"

Transcrição

1 Lógica Matemática PRO. JEAN 1

2 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2

3 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL TERMO (Palavra) Definição: Definição de um objeto. Exemplo: Paula Um filme de terror Triângulo retângulo 3

4 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO Definição: Todo o conjunto de termos ou símbolos que exprimem um pensamento de sentido completo. Exemplo: Todo homem é mortal. A Lua é um satélite da Terra. 4

5 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO As PROPOSIÇÕES transmitem pensamentos, isto é, afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes. 5

6 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL Lógica Matemática Adota regras fundamentais do pensamento: I - PRINCÍPIO (Axioma) DA NÃO CONTRADIÇÃO: Uma proposição NÃO pode ser ALSA e ERDADEIRA ao mesmo tempo. O Brasil é pentacampeão de futebol. O Brasil possui pena de morte. erdade () also () 6

7 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL Lógica Matemática Adota regras fundamentais do pensamento: II - PRINCÍPIO (Axioma) DO TERCEIRO EXCLUÍDO: Toda proposição ou é erdadeira ou alsa, isto é, verifica-se sempre um destes casos e nunca um terceiro. LÓGICA BIALENTE 7

8 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL ALOR LÓGICO O alor Lógico de uma PROPOSIÇÃO é: ERDADE se esta for ERDADEIRA; ALSIDADE se a PROPOSIÇÃO for ALSA. 8

9 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL ALOR LÓGICO Dos 2 princípios e do valor lógico: Toda proposição tem um, e somente um, dos valores,. 9

10 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO SIMPLES (ÁTOMOS) Proposição NÃO contém nenhuma outra proposição como parte integrante de si mesmo. Minha casa é grande. Seu olhos são azuis. Está calor. 10

11 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO SIMPLES (ÁTOMOS) São designadas pelas letras latinas minúsculas p,q,r,s,..., chamadas letras proposicionais. p: Minha casa é grande. q: Seu olhos são azuis. r: Está calor. 11

12 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO COMPOSTAS (MOLÉCULAS) ormada pela combinação de 2 ou mais PROPOSIÇÕES. Minha casa é grande e meu carro é azul. Seu olhos são azuis ou verdes. Se está calor então é verão. 12

13 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÃO COMPOSTAS (MOLÉCULAS) São designadas pelas letras latinas maiúsculas P,Q,R,S,..., chamadas letras proposicionais. P: Minha casa é grande e meu carro é azul. Q: Seu olhos são azuis ou verdes. R: Se está calor então é verão. 13

14 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL PROPOSIÇÕES COMPOSTAS (MOLÉCULAS) Também chamadas de fórmulas proposicionais ou fórmulas. Notação: P(q,r,s) significa que P é uma proposição composta das proposições atômicas q,r e s. 14

15 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL CONECTIO Definição: Termos usados para formar novas proposições a partir de outras. E OU SE......SE E ENTÃO... SOMENTE SE

16 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL CONECTIO Exemplos: P: Minha casa é grande e meu carro é azul. Q: Choverá amanhã ou cairá uma ponte. R: Se sou maringaense então sou paranaense. S: O triângulo é equilátero se e somente se é equiângulo. 16

17 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL TABELA-ERDADE: Exibe todos os possíveis valores lógicos da proposição composta correspondentes a todas as possíveis atribuições de valores lógicos às proposições simples componentes. Sejam p e q 2 átomos. Os valores lógicos possíveis para cada um deles é: 1 2 p 1 2 q 17

18 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL TABELA-ERDADE: Seja P uma molécula: P(p,q). A tabela-verdade para P é: p q Arranjos Binários com repetição de 2 elementos: e 18

19 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL TABELA-ERDADE: Seja Q uma molécula: Q(p,q,r). p q r Arranjos Ternários com repetição de 2 elementos: e 19

20 LÓGICA MATEMÁTICA INTRODUÇÃO ao CÁLCULO PROPOSICIONAL NOTAÇÃO (p): alor lógico da proposição atômica p. (p) = ou (p)= (P): alor lógico da proposição molecular P. (P) = ou (P)= 20

21 Operadores Lógicos Assim como operamos com números, as proposições também podem ser operadas utilizando os operadores lógicos. São eles: Conjunção - E (Λ) Disjunção - Ou () Condicional Se... então () Bi-condicional Se e somente se ( ) 21

22 E p q p Λ q alor somente quando ambas as proposições p e q forem iguais a!!! 22

23 p: A neve é branca. () q: 2 < 5 () p Λ q : A neve é branca e 2 < 5 () p: O enxofre é verde. () q: 7 é um número primo. () p Λ q : O enxofre é verde e 7 é um número primo () 23

24 OU p q p q alor somente quando ambas as proposições p e q forem iguais a!!! 24

25 p: Paris é a capital da rança. () q: 9 4 = 5 () p q : Paris é a capital da rança ou 9 4 = 5 () p: Roma é a capital da Rússia. () q: π é um número irracional. () p q : Roma é a capital da Rússia ou π é um número irracional ()

26 p: O Jean é cabeludo. () q: O Maradona é gente boa. () p q : O Jean é cabeludo ou o Maradona é gente boa. () 26

27 Condicional p q p q alor somente quando o antecedente (p) for igual a e o consequente (q) for igual a!!! 27

28 p: Hitler era austríaco. () q: = 13 () p q : Se Hitler era austríaco então = 13. () p: O mês de maio tem 31 dias. () q: A Terra é plana.() p q : Se o mês de maio tem 31 dias então a Terra é plana. () 28

29 Bi-condicional p q p q alor somente quando ambas as proposições p e q forem iguais!!! 29

30 p: Roma fica na Europa. () q: A neve é branca. () p q : Roma fica na Europa se e somente se a neve é branca. () p: A Terra é plana. () q: π é um número racional. () p q : A Terra é plana se e somente se π é um número racional. () 30

31 Negação Dada uma proposição p, sua negação será denotada por ~p (não p). Se p é verdadeira então ~p será falsa e vice versa. 31

32 Ex: Negação p = Paula está usando tênis preto. ~p = Paula não está usando tênis preto. 32

33 Ex: Negação p = Paula está usando tênis preto. ~p = Paula não está usando tênis preto. Ex: p = Esta frase possui cinco palavras. 33

34 Ex: Negação p = Paula está usando tênis preto. ~p = Paula não está usando tênis preto. Ex: p = Esta frase possui cinco palavras. ~p = Esta frase não possui cinco palavras. 34

35 Algumas observações sobre a negação A negação de sempre é 35

36 Algumas observações sobre a negação A negação de sempre é existe uma vez que não 36

37 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é 37

38 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é existe uma vez que 38

39 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é existe uma vez que A negação de p e q é 39

40 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é existe uma vez que A negação de p e q é ~p ou ~q 40

41 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é existe uma vez que A negação de p e q é ~p ou ~q A negação de p ou q é 41

42 Algumas observações sobre a negação A negação de sempre é existe uma vez que não A negação de nunca é existe uma vez que A negação de todos é existe algum que não A negação de nenhum é existe algum que 42

43 (CESGRANRIO CAPES/2008) Chama-se tautologia à proposição composta que possui valor lógico verdadeiro, quaisquer que sejam os valores lógicos das proposições que a compõem. Sejam p e q proposições simples e ~p e ~q as suas respectivas negações. Em cada uma das alternativas abaixo, há uma proposição composta, formada por p e q. Qual corresponde a uma tautologia? 43

44 a) p ^ q p q p ^ q Não é uma tautologia, é uma contingência! 44

45 b) p ^ ~q p q ~q p ^ ~q Não é uma tautologia, é uma contingência! 45

46 c) (p ^ q) (~p ^ q) p q ~p p ^ q ~p ^ q (p ^ q) (~p ^ q) Não é uma tautologia, é uma contingência! 46

47 d) (p v q) (p ^ q) p q p v q p ^ q (p v q) (p ^ q) Não é uma tautologia, é uma contingência! 47

48 e) (p ^ q) (p ^ q) p q p ^ q p ^ q (p ^ q) (p ^ q) É uma tautologia! 48

49 Tabela verdade Dada uma composição de proposições, podemos construir sua tabela verdade. A tabela verdade é uma tabela que mostra o valor lógico da composição a partir do valor lógico de suas premissas. Ex: (p Λ (~q v r)) (~r q) 49

50 p q r ~q ~r ~q v r pλ (~qvr) ~r q prop (p Λ (~q v r)) (~r q) 50

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação

CCAE. Lógica Aplicada a Computação - Cálculo Proposicional - Parte I. UFPB - Campus IV - Litoral Norte. Centro de Ciências Aplicadas e Educação CCAE Centro de Ciências Aplicadas e Educação UFPB - Campus IV - Litoral Norte Lógica Aplicada a Computação - Cálculo Proposicional - Parte I Estes slides foram criados pelo Professor Alexandre Duarte Para

Leia mais

Proposições e Conectivos

Proposições e Conectivos Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Proposições e Conectivos Lógica Computacional 1 Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Noções de lógica matemática Conceitos Básicos

Noções de lógica matemática Conceitos Básicos Conceitos Básicos CH f Noções de lógica matemática Conceitos Básicos CH 1 Conceitos Básicos - E CH CH f ^ Noções de lógica matemática Conceitos Básicos - E CH CH ^ 2 Conceitos Básicos - OU CH CH f Noções

Leia mais

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto

Álgebra das Proposições. Prof. Guilherme Tomaschewski Netto Álgebra das Proposições Prof. Guilherme Tomaschewski Netto guilherme.netto@gmail.com Roteiro! Lógica Matemática clássica! Proposições! alores lógicos! Conectivos! Fórmulas Lógicas! Exemplos de aplicações

Leia mais

LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E Autora: Prof. Dra. Denise Candal

LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E Autora: Prof. Dra. Denise Candal LÓGICA MATEMÁTICA PROPOSIÇÕES SIMPLES E COMPOSTAS Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com htt://www.rafaeldiasribeiro.com.br Autora: Prof. Dra. Denise Candal 1 Definição: Chama-se roosição

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira.

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira. Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Lógica Proposicional 1 Proposição Uma rase é uma proposição apenas quando admite um dos dois valores lógicos: Falso (F) ou Verdadeiro

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade I LÓGICA. Profa. Adriane Paulieli Colossetti Unidade I LÓGICA Profa. Adriane Paulieli Colossetti O que é lógica A lógica ensina a colocar ordem no pensamento. Sistemas Dicotônicos Proposições: São sentenças declarativas, que satisfazem três princípios

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Matemática para controle:

Matemática para controle: Matemática para controle: Introdução à Lógica Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Introdução

Leia mais

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa

1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa Raciocínio Lógico Lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições. DEFINIÇÃO: Proposição: conjunto

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores

2 AULA. Conectivos e Quantificadores. lógicas. LIVRO. META: Introduzir os conectivos e quantificadores 1 LIVRO Conectivos e Quantificadores Lógicos META: Introduzir os conectivos e quantificadores lógicos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Compreender a semântica dos conectivos

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

Aula 2: Linguagem Proposicional

Aula 2: Linguagem Proposicional Lógica para Computação Primeiro Semestre, 2015 Aula 2: Linguagem Proposicional DAINF-UTFPR Prof. Ricardo Dutra da Silva Linguagens naturais, como o nosso Português, podem expressar ideias ambíguas ou imprecisas.

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Álgebra de Boole Roteiro no. 10 - Atividades didáticas de 2007 8 de Outubro de 2007- Arq: elementos10.tex Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses(at)matematica(pt)uel(pt)br

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Noções de Lógica. Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12.

Noções de Lógica. Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12. Noções de Lógica Proposições Frases para as quais se pode atribuir o valor verdadeiro ou falso. Exs: 1) Quatro vezes três é igual a 12. 2) Florianópolis é capital de SC. 3) O Brasil faz fronteira com a

Leia mais

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme

Ló gica. Para Concursos Públicos. Professor Luiz Guilherme Ló gica Para Concursos Públicos Professor Luiz Guilherme 2014 1 Lógica Para Concursos Públicos Proposição... 2 Valor Lógico das Proposições... 2 Axiomas da Lógica... 2 Tabela Verdade:... 3 Conectivos:...

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

Lógica para Computação

Lógica para Computação Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Linguagem informal x linguagem formal; Linguagem proposicional: envolve proposições e conectivos,

Leia mais

INSS 2016 Técnico CESPE

INSS 2016 Técnico CESPE INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da

Leia mais

AULÃO INSS RACIOCÍNIO LÓGICO Prof. Ronilton Loyola Equivalências Notáveis 1. Contrapositiva da Condicional: (P Q) ( Q P) Ex.: Se faz sol, então vou à praia é equivalente a Se não vou à praia, então não

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz

Aula 03 Estruturas Condicionais. Prof. Filipe Wall Mutz Aula 03 Estruturas Condicionais Prof. Filipe Wall Mutz Agenda Operadores Relacionais Estrutura Condicional Operadores Lógicos É comum nos algoritmos surgirem situações em que a execução de uma ação está

Leia mais

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição

PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição PROPOSIÇÕES Conceito de Proposição Definição: chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. As proposições transmitem pensamentos, isto é,

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

O recurso solicita a mudança do gabarito da alternativa C para a alternativa A.

O recurso solicita a mudança do gabarito da alternativa C para a alternativa A. Nível: SUPERIOR Área: Raciocínio Lógico QUESTÃO 14. O recurso solicita a mudança do gabarito da alternativa C para a alternativa A. A alternativa correta é a letra C. O item em questão envolve Princípio

Leia mais

José Luiz de Morais. RACiOCÍNIO LÓGICO

José Luiz de Morais. RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO José Luiz de Morais RACiOCÍNIO LÓGICO RACIOCÍNIO LÓGICO Prof José Luiz de Morais PROPOSIÇÕES Proposições Simples Proposições Simples Proposição simples átomo ou partícula atômica É a

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas.

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. LÓGICA 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma proposição verdadeira

Leia mais

Propriedades Semânticas da Lógica Proposicional(Capítulo 3)

Propriedades Semânticas da Lógica Proposicional(Capítulo 3) Propriedades Semânticas da Lógica Proposicional(Capítulo 3) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tautologia 2. Satisfatível 3. Contingência 4. Contraditória

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

Noções de Lógica - Teoria e Exercícios

Noções de Lógica - Teoria e Exercícios ALUNO(A) C O L É G I O PROFESSOR (A) Alan Jefferson Série 1º ano Noções de Lógica - Teoria e Exercícios PROPOSIÇÃO Chama-se proposição ou sentença toda oração declarativa que pode ser classificada em verdadeira

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

ESTRUTURAS LÓGICAS CARREIRAS FISCAIS / 2015

ESTRUTURAS LÓGICAS CARREIRAS FISCAIS / 2015 ESTRUTURAS LÓGICAS 1.1) CONCEITO DE PROPOSIÇÃO É todo conjunto de palavras ou símbolos que exprimem uma ideia de sentido completo e que, além disso, pode ser julgado como verdadeiro () ou falso (). Exemplos:

Leia mais

Construção de tabelas verdades

Construção de tabelas verdades Construção de tabelas verdades Compreender a Lógica como instrumento da ciência e como estrutura formal do pensamento, conhecendo e compreendendo as operações com os principais conceitos proposicionais

Leia mais

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período CEM CADERNO DE EXERCÍCIOS MASTER Raciocínio Lógico e Matemático TCM Banca: IBFC Período 2010 2016 Sumário Tabela Verdade das Proposições Compostas... 3 Tautologia, Contradição e Contingência... 8 Equivalências

Leia mais

Raciocínio Lógico - Parte II

Raciocínio Lógico - Parte II Apostila escrita pelo professor José Gonçalo dos Santos Contato: jose.goncalo.santos@gmail.com Raciocínio Lógico - Parte II Sumário 1. Operações Lógicas sobre Proposições... 1 2. Tautologia, contradição

Leia mais

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO

Leia mais

(Questões de provas resolvidas e comentadas) Carlos R. Torrente

(Questões de provas resolvidas e comentadas) Carlos R. Torrente (Questões de provas resolvidas e comentadas) Carlos R. Torrente Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Torrente, Carlos Roberto Raciocínio lógico

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição.

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. aula 07 (Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Negação de Proposições

Leia mais

Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 05 Operações Lógicas sobre Proposições. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 05 Operações Lógicas sobre Proposições Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Outras Traduções; Valor Lógico de Operações sobre proposições. Tabela da Verdade

Leia mais

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições.

A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Capítulo 1 CÁLCULO PROPOSICIONAL 1. PROPOSIÇÕES E CONECTIVOS A Lógica Matemática se ocupa da análise e relações entre certas sentenças, quase sempre de conteúdo matemático, chamadas proposições. Uma proposição

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Autor: Jusdewbe Tatiane de Souza Mora 1 Introdução: LÓGICA O estudo da Lógica, é o estudo dos métodos e princípios usados para distinguir o raciocínio correto do incorreto. Esta definição

Leia mais

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas

Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas

Leia mais

Logica para computação

Logica para computação Logica para computação Lógica Informal: Argumentos l Um argumento é uma sequência de proposições na qual uma delas é a conclusão e as demais são premissas. As premissas justificam a conclusão. Exemplo

Leia mais

Professor: Adriano Sales Matéria: Lógica e Conjunto

Professor: Adriano Sales Matéria: Lógica e Conjunto Professor: Adriano Sales Matéria: Lógica e Conjunto Lógica Qual é o significado de argumentação? Segundo o dicionário Houaiss é: ARGUMENTAÇÃO: Arte, ato ou efeito de argumentar; Troca de palavras em controvérsia

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

Apostila de Raciocínio Lógico Notas de Aula Professor Joselias 2010 LÓGICA

Apostila de Raciocínio Lógico Notas de Aula Professor Joselias 2010 LÓGICA LÓGICA eremos nas próximas linhas a definição do que vem a ser uma proposição, bem como o seu cálculo proposicional antes de chegarmos ao nosso objetivo maior que é estudar as estruturas dos argumentos,

Leia mais

Lógica Binária. Princípios

Lógica Binária. Princípios Lógica Binária Lógica Binária Proposição é toda a expressão da qual faz sentido dizer que é verdadeira ou falsa. Cada proposição tem um e um só valor lógico, Verdadeiro (1) ou Falso (0). Princípios Princípio

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de

Leia mais

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira.

Lógica e Raciocínio. Lógica Proposicional. Universidade da Madeira. Lógica e Raciocínio Uniersidade da Madeira htt://dme.uma.t/edu/ler/ Lógica Proosicional 1 Proosição Uma rase é uma roosição aenas quando admite um dos dois alores lógicos: Falso (F) ou Verdadeiro (V).

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Edirlei Soares de Lima Lógica Proposicional Lógica muito simplificada. A sentenças são formadas por conectivos como:

Leia mais

AEP FISCAL CURSO DE RACIOCÍNIO LÓGICO

AEP FISCAL CURSO DE RACIOCÍNIO LÓGICO AEP FISCAL CURSO DE RACIOCÍNIO LÓGICO Auditor Fiscal da Receita Federal do Brasil, Analista Tributário da Receita Federal do Brasil e Auditor Fiscal do Trabalho. Prof. Weber Campos webercampos@gmail.com

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 07 Agentes Lógicos Edirlei Soares de Lima Introdução Humanos possuem conhecimento e raciocinam sobre este conhecimento. Exemplo: João jogou

Leia mais

Lógica Proposicional

Lógica Proposicional Slides da disciplina Lógica para Computação, ministrada pelo Prof. Celso Antônio Alves Kaestner, Dr. Eng. (kaestner@dainf.ct.utfpr.edu.br) entre 2007 e 2008. Alterações feitas em 2009 pelo Prof. Adolfo

Leia mais

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha RACIOCÍNIO LOGICO- MATEMÁTICO Prof. Josimar Padilha Um jogo é constituído de um tabuleiro com 4 filas (colunas) numeradas de 1 a 4 da esquerda para direita e de 12 pedras 4 de cor amarela, 4 de cor verde

Leia mais

Programação de Computadores:

Programação de Computadores: Instituto de C Programação de Computadores: Introdução a Algoritmos (Parte II) Luis Martí Instituto de Computação Universidade ederal luminense lmarti@ic.uff.br - http://lmarti.com Roteiro da Aula de Hoje

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios

Leia mais

CAPÍTULO 4 - OPERADORES E EXPRESSÕES

CAPÍTULO 4 - OPERADORES E EXPRESSÕES CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada

Leia mais

Simbolização de Enunciados com Conectivos

Simbolização de Enunciados com Conectivos Lógica para Ciência da Computação I Lógica Matemática Texto 4 Simbolização de Enunciados com Conectivos Sumário 1 Conectivos: simbolização e sintaxe 2 2 Enunciados componentes 5 2.1 Observações................................

Leia mais

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.

MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens. MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um

Leia mais

Representação de Conhecimento. Lógica Proposicional

Representação de Conhecimento. Lógica Proposicional Representação de Conhecimento Lógica Proposicional Representação de conhecimento O que éconhecimento? O que érepresentar? Representação mental de bola Representação mental de solidariedade Símbolo como

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal Tudo bem com vocês? Em breve teremos o concurso do TCM/RJ e sabemos

Leia mais

RL Edição Fevereiro 2014

RL Edição Fevereiro 2014 RL Edição Fevereiro 2014 01. Sejam dados dois conjuntos não vazios, A, B, e sejam A e B seus respectivos conjuntos complementares no conjunto Universo considerado. Se um elemento x é tal que x A B, então

Leia mais

FUNDAMENTOS DE LÓGICA E ALGORITMOS

FUNDAMENTOS DE LÓGICA E ALGORITMOS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE FUNDAMENTOS DE LÓGICA E ALGORITMOS AULA 01 Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 27/05/2016 SUMÁRIO Introdução

Leia mais