MÉTODOS DISCRETOS EM TELEMÁTICA

Tamanho: px
Começar a partir da página:

Download "MÉTODOS DISCRETOS EM TELEMÁTICA"

Transcrição

1 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003

2 2 CONTEÚDO 1 - Introdução 2 - Grupos 3 - Anéis 4 - Corpos (Campos de Galois) BIBLIOGRAFIA 1 - J. R. Durbin, Modern Algebra - An Introduction, John Wiley, R. J. McEliece, Finite Fields for Computers Scientists and Engineers, Kluwer, S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall, 1995.

3 3 1 - INTRODUÇÃO Estruturas matemáticas discretas desempenham um papel importante em muitas aplicações em Engenharia. Dentre elas destacam-se: Grupos, Anéis e Corpos. Algumas Definições: ORDEM - A Ordem de um conjunto S é o número de elementos de S e é denotada por S. CONJUNTO FINITO - Um conjunto S é dito ser finito se ele tem um número finito de elementos.

4 4 FECHAMENTO - Um conjunto S é dito ser fechado em relação a uma operação se e somente se, a, b S,então a b S. ASSOCIATIVIDADE - Uma operação é dita ser associativa se e somente se, a b c = a (b c) = (a b) c. NOTAÇÃO - Para qualquer conjunto S, S * é o conjunto S * = S {0}. O MATERIAL APRESENTADO A SEGUIR TRATA DE CONJUNTOS FINITOS QUE SÃO FECHADOS EM RELAÇÃO A OPERAÇÕES ASSOCIATIVAS.

5 5 2 - GRUPOS Um Grupo é uma estrutura algébrica formada por um conjunto G e uma operação que tem inversa. Se a operação é "+" (adição), então a operação inversa é "-" (subtração) e o grupo é chamado aditivo. Se a operação é "." (multiplicação), então a operação inversa é " " (divisão) e o grupo é chamado multiplicativo. Exemplos: Grupos Infinitos i) < Z, + >, onde Z denota o conjunto dos Inteiros. ii) < R, +>, onde R denota o conjunto dos Reais. iii) < R *,. >

6 6 Grupos Finitos i) < Z n, + n > Para n = 4, < Z 4, + 4 > é um grupo de ordem 4, onde Z 4 = {0, 1, 2, 3}. O grupo tem um elemento identidade: e = 0. A tabela de composição do grupo é: ii) < Z * p, p >, p primo. Para p = 5, < Z * 5, 5 > é um grupo de ordem 4, onde Z * 5 = {1, 2, 3, 4}. O grupo tem um elemento identidade: e = 1. A tabela de composição do grupo é:

7 Grupos Abelianos Um grupo <G, > é chamado Abeliano ou Comutativo, se a b = b a, para qualquer a, b em G. Exemplos: < Z n, + n > e < Z p *, p > são grupos abelianos Grupos Cíclicos Definição: A Ordem de um elemento g <G, > é o menor inteiro r, tal que g g g... g = r vezes e onde e denota o elemento identidade do grupo.

8 8 Exemplo: Ordens dos elementos do grupo < Z 7 *, 7 >. O elemento g = 2 tem ordem r = 3, pois 2 1 2(mod 7); (mod 7); 2 3 = 8 1(mod 7). Elementos de < Z 7 *, 7 > e suas ordens: g Ordem Definição: Um grupo <G, > é chamado Cíclico se todo elemento a G pode ser expresso como uma "potência" de um dado elemento de G, chamado elemento gerador do grupo. Observe então que, em um grupo com G = n, o elemento gerador tem ordem n. Exemplos: < Z n, + n > e < Z p *, p > são grupos cíclicos.

9 Subgrupos Um Subgrupo de um grupo <G, > é um subconjunto dos elementos do conjunto G, que forma um grupo em relação à operação de G. Exemplos: i) G = < Z 6, + 6 >; seja um subgrupo H = < {0, 2, 4}, + 6 >. ii) G = < Z 7 *, 7 > 2.4. Classes Laterais Se H é um subgrupo de G, então as Classes Laterais à esquerda de G em relação à H, são os conjuntos da forma g H = {g h, h H}, onde g G.

10 10 Exemplos: i) G = < Z 12, + 12 >, H = < {0, 4, 8}, + 12 >. As classes laterais à esquerda de G em relação a H: {0, 4, 8} = {0, 4, 8} {0, 4, 8} = {1, 5, 9} {0, 4, 8} = {2, 6, 10} {0, 4, 8} = {3, 7, 11} ii) G = < Z 7 *, 7 >, H = < {1, 2, 4}, 7 >. As classes laterais à esquerda de G em relação a H: 1 7 {1, 2, 4} = {1, 2, 4} 3 7 {1, 2, 4} = {3, 6, 5} O Teorema de Lagrange: Se H é um subgrupo de G, então H divide G.

11 ANÉIS Um Anel é uma estrutura algébrica formada por um conjunto R e duas operações, onde apenas uma delas tem inversa. Se "+" e "." são as operações, a operação inversa é "-" mas " " não é uma operação válida. Exemplo: < Z n, + n, n > Para n = 4, < Z 4, + 4, 4 > é um anel de ordem 4, onde R = {0, 1, 2, 3}. As tabelas de adição e de multiplicação do anel são:

12 CORPOS Um Corpo é uma estrutura algébrica formada por um conjunto F e duas operações, ambas possuindo inversa. Se "+" e "." são as operações do corpo, então "-" e " " são as operações inversas, respectivamente. Um corpo de ordem q, isto é, um corpo com q elementos, é denotado por GF(q) ou F q. Exemplo: GF(p) = < { 0, 1, 2,..., p-1}, + p, p >, onde q = p. Para p = 3, GF(3) = <F, + 3, 3 > é um corpo de ordem 3, onde F = {0, 1, 2}.

13 13 As tabelas de adição e de multiplicação do corpo são: Algumas questões sobre GF(p) = < F, + p, p > : i) O que se pode dizer sobre a estrutura < F, + p >? Resposta: < F, + p > é um grupo aditivo. ii) E sobre a estrutura < F, p >? Resposta: CUIDADO!

14 14 < F*, p > é um grupo multiplicativo. Definição: A Característica de um corpo é o menor p, tal que (mod p vezes p) Exemplo: GF(2) é um corpo de característica p = 2. Os elementos do corpo são 0, 1, = 2 0 (mod 2), e assim p = Construção de um Corpo Finito Só existem corpos finitos GF(q) de ordem igual a uma potência de um primo, isto é, q = p m, onde m 1 é um inteiro e p é um primo. Para uma dada ordem existe apenas um corpo finito.

15 Construção de GF(p) Para construir o corpo GF(p) considere o conjunto {0,1,2,...,p-1}, e as operações de adição e multiplicação módulo p. Assim, GF(p) = < {0,1,2,...,p-1}, + p, p >. Exemplo: GF(p) = < { 0,1,2,...,p-1}, + p, p > Para p = 5, GF(5) = < {0, 1, 2, 3, 4}, + 5, 5 > é um corpo de ordem 5. Observe o grupo multiplicativo de GF(5), que é < {1, 2, 3, 4}, 5 >

16 16 Considere as potências do elemento 2: (mod5); (mod5); 2 3 = 8 3 (mod5); 2 4 = 16 1(mod5). Note que as potências de 2 geram todos os elementos do grupo (que são os elementos não nulos de GF(5)). Assim, esse grupo é cíclico pois todo elemento do grupo é uma potência de um único elemento. Esse elemento é um gerador do grupo. No nosso exemplo, 2 é um gerador do grupo multiplicativo de GF(5). Considere agora as potências do elemento 3: (mod5); 3 2 = 9 4 (mod5); 3 3 = 27 2 (mod5); 3 4 = 81 1(mod5), e 3 é outro gerador do mesmo grupo.

17 17 Elementos de < F 5 *, 5 >, grupo multiplicativo de GF(5), e suas ordens: g Ordem Definição: Se α é um gerador do grupo multiplicativo de GF(p), então α é um Elemento Primitivo do Corpo GF(p). Portanto, a ordem de um elemento primitivo em um corpo de ordem p é... Resposta: p-1. No exemplo anterior, 2 e 3 são elementos primitivos de GF(5) e ambos tem ordem 4 (que é a ordem do grupo multiplicativo de GF(5)).

18 Construção de GF(p m ), m > 1 Na construção de GF(p m ) os elementos são polinômios e as operações são adição e multiplicação módulo um certo polinômio. É, portanto, necessário definir este polinômio. Definição: Considere um polinômio, denotado por p(x), de grau m com coeficientes em GF(p), isto é, um polinômio sobre GF(p), que é irredutível em GF(p). Assim, na construção de GF(p m ), os elementos são todos os polinômios sobre GF(p) que tem grau menor que m e as operações do corpo são adição e multiplicação módulo p(x).

19 19 Exemplo: Construção de GF(2 2 ) (p = 2, m = 2), dado p(x) = x 2 +x+1 (um polinômio de grau m = 2, irredutível sobre GF(2)). Os elementos do corpo são todos os polinômios sobre GF(2) de grau menor que 2, isto é, 0, 1, x, x + 1. As tabelas de adição e multiplicação para GF(4) são: + p(x) 0 1 X X+1 p(x) 0 1 X X X X X+1 X X X+1 X X X+1 0 X+1 X 0 X X+1 1 X+1 X+1 X 1 0 X+1 0 X+1 1 X

20 20 Os mesmos resultados obtidos sobre o grupo multiplicativo de GF(p) podem ser estendidos para o grupo multiplicativo de GF(p m ), isto é, < GF * (p m ), p(x) > é um GRUPO CÍCLICO. A ordem do grupo acima é......p m 1. Que outras representações podem ser usadas para os elementos do corpo? Pense nas potências de um elemento gerador do grupo multiplicativo (ou elemento primitivo do corpo).

21 21 Exemplo: Encontrar um elemento primitivo de GF(4): Ou... encontrar um gerador do grupo multiplicativo de GF(4) Ou... encontrar um elemento de ordem 3 de GF(4) O elemento (x + 1) é um elemento primitivo de GF(4) pois, (x + 1) 1 x + 1 (mod x 2 + x + 1); (x + 1) 2 = x x (mod x 2 + x + 1); (x + 1) 3 = x 3 + x 2 + x (mod x 2 + x + 1), que são os elementos não nulos de GF(4). Exemplo: Construir GF(8) (ou GF(2 3 )), p = 2 e m = 3, dado p(x) = x 3 + x + 1.

22 22 Possíveis representações dos elementos de GF(8): polinomial, triplas binárias e potências de um elemento primitivo de GF(8). Como encontrar um elemento primitivo de GF(8) (a partir de agora, denotado α)? A idéia é usar a propriedade de que um elemento primitivo do corpo também é raiz de um polinômio primitivo. Assim, se p(x) é um polinômio primitivo de grau m sobre GF(p), os elementos de GF(p m ) podem ser representados como potências de uma raiz α de p(x). Então, como encontrar um polinômio primitivo de grau 3, sobre GF(2) (para representar os elementos de GF(2 3 )?

23 23 Definição: Um polinômio p(x), de grau m e irredutível sobre GF(p), tem ordem e (ou pertence ao expoente e) se p(x) (x e 1) mas p(x) não divide (x n 1) para n < e. O polinômio p(x) é primitivo se e = p m 1. Exemplo: Determinar a ordem de p(x) = x 3 + x Assim, e = = 7 (p = 2, m = 3) e p(x) é um polinômio primitivo de grau 3 sobre GF(2). Se α é uma raiz de p(x) = x 3 + x + 1, isto é: p(α) = α 3 + α + 1 = 0, então α é um elemento primitivo de GF(2 3 ), cujos elementos podem ser representados por potências de α (mostrado abaixo):

24 24 α 1 α (mod α 3 + α + 1) α 5 α 2 + α + 1 (mod α 3 + α + 1) α 2 α 2 (mod α 3 + α + 1) α 6 α (mod α 3 + α + 1), α 3 α + 1 (mod α 3 + α + 1), α 7 1 (mod α 3 + α + 1). α 4 α 2 + α (mod α 3 + α + 1), Assim, existem três maneiras de representar os elementos de GF(8): POLINOMIAL TRIPLA BINÁRIA POTÊNCIA DE α α α 0 X 010 α X α 2 X α 3 X 2 + X 011 α 4 X 2 + X α 5 X α 6 Exemplo: Construir GF(16) (ou GF(2 4 )), dado p(x) = x 4 + x + 1.

25 25 ALGUMAS DEFINIÇÕES 1) Um Grupo <G, > é uma estrutura algébrica, onde G é um conjunto e é uma operação definida sobre os elementos de G, que satisfaz os seguintes axiomas: i - Fechamento: g h G, g, h G. ii - Associatividade: g (h k) = (g h) k = g h k, g, h, k G. iii - Identidade: Existe um elemento e G tal que e g = g e = g, g G. iv - Inversos: Para todo g G existe o elemento g -1 G, chamado o inverso de g, tal que g g -1 = g -1 g = e. 2) Um Semigrupo <S, > é uma estrutura algébrica onde S é um conjunto e é uma operação definida sobre os elementos de S, que satisfaz os axiomas de fechamento e associatividade definidos acima. 3) Um Anel <R, +, > é uma estrutura algébrica onde R é um conjunto, e + são operações definidas sobre os elementos de R, satisfazendo: i - <R, +> é um grupo abeliano. ii - <R, > é um semigrupo. iii - A operação é distributiva em relação a +, isto é: a (b+c) = (a b)+(a c) e (b+c) a = (b a)+(c a), a, b, c R.

26 26 4) Um Corpo <F, +, > é uma estrutura algébrica, onde F é um conjunto, e + são operações definidas sobre os elementos de F, satisfazendo os seguintes axiomas. i - <F, +, > é um anel comutativo com identidade. ii - <F *, > é um grupo abeliano. 5) Se a ordem de F é finita ( F = q, digamos), então a estrutura <F, +, > é dita ser um Corpo Finito ou Campo de Galois, sendo denotada por GF(q). A ordem de um Campo de Galois é sempre uma potência de um primo, isto é, q = p m, onde p é primo e m é um inteiro 1.

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única. Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Matemática Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio

Leia mais

ÁLGEBRA. Isidorio Rodrigues Queiroz. Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

ÁLGEBRA. Isidorio Rodrigues Queiroz. Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA ÁLGEBRA Conteudista Isidorio Rodrigues Queiroz Rio de Janeiro / 2009 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/52 7 - ESTRUTURAS ALGÉBRICAS 7.1) Operações Binárias

Leia mais

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9

Ex 4.3 O anel é construído pelos polinômios S 1 1 S 2. x S 3. x 1 S 4. x 2 S 5. x 2 1 S 6. x 2 x S 7. x 2 x 1 S 8. x 3 S 9 Ex. 4.1 As palavras código são c 0 = [0 0 0 0 0 0 0], c 1 = [0 0 0 1 1 0 1], c 2 = [0 0 1 1 0 1 0], c 3 = [0 0 1 0 1 1 1], c 4 = [0 1 1 0 1 0 0], c 5 = [0 1 1 1 0 0 1], c 6 = [0 1 0 1 1 1 0], c 7 = [0

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas

Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Sobre Domínios Euclidianos

Sobre Domínios Euclidianos Sobre Domínios Euclidianos Clarissa Bergo Bianca Fujita Lino Ramada João Schwarz Felipe Yukihide Setembro de 2011 Resumo Neste texto, apresentaremos formalmente o que vem a ser domínio euclidiano, alguns

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

Parte 2. Polinômios sobre domínios e corpos

Parte 2. Polinômios sobre domínios e corpos Parte Polinômios sobre domínios e corpos Pressupomos que o estudante tenha familiaridade com os anéis comutativos com unidade, em particular com domínios e corpos. Alguns exemplos importantes são Z Q R

Leia mais

R domínio de fatoração única implica R[x] também

R domínio de fatoração única implica R[x] também R domínio de fatoração única implica R[x] também Pedro Manfrim Magalhães de Paula 4 de Dezembro de 2013 Denição 1. Um domínio integral R com unidade é um domínio de fatoração única se 1. Todo elemento

Leia mais

Provas de. Manuel Ricou Departamento de Matemática Instituto Superior Técnico

Provas de. Manuel Ricou Departamento de Matemática Instituto Superior Técnico Provas de Introdução à Álgebra Manuel Ricou Departamento de Matemática Instituto Superior Técnico 19 de Janeiro de 2008 Conteúdo 1 Enunciados de Testes 3 1.1 1 o Teste: 12/4/2000.......................

Leia mais

1. Coeficiente de Rendimento Escolar mínimo e Formação Acadêmica:

1. Coeficiente de Rendimento Escolar mínimo e Formação Acadêmica: Critérios Norteadores para o Processo Seletivo ao Programa de Pós-Graduação em Matemática da UFCG, no Curso de Mestrado, Modalidade Acadêmico - Área de Matemática - A Seleção para a área de matemática

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Curvas Elípticas sobre Corpos Finitos e Criptografia de Chave Pública

Curvas Elípticas sobre Corpos Finitos e Criptografia de Chave Pública Curvas Elípticas sobre Corpos Finitos e Criptografia de Chave Pública I Coloquio Regional da Região Centro-Oeste, 3 a 6 de novembro de 2009 Universidade Federal de Mato Grosso do Sul MINICURSO Curvas

Leia mais

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da

FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

SMA - 306 - Álgebra II Teoria de Anéis - Notas de Aulas

SMA - 306 - Álgebra II Teoria de Anéis - Notas de Aulas SMA - 306 - Álgebra II Teoria de Anéis - Notas de Aulas Professora Ires Dias - Segundo Semestre de 2001 1 Definição e Exemplos Definição 1 Um conjunto não vazio R, juntamente com duas operações binárias

Leia mais

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias

Capítulo 2. Álgebra e imagens binárias. 2.1 Subconjuntos versus funções binárias Capítulo 2 Álgebra e imagens binárias Em Análise de Imagens, os objetos mais simples que manipulamos são as imagens binárias. Estas imagens são representadas matematicamente por subconjuntos ou, de maneira

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais

Matemática. Disciplina: CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS. Varginha Minas Gerais CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Curso Pró-Técnico Disciplina: Matemática Texto Experimental 1 a Edição Antonio José Bento Bottion e Paulo Henrique Cruz Pereira Varginha Minas Gerais

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Codificação de Canal

Codificação de Canal Laboratório de Processamento de Sinais Laboratório de Sistemas Embarcados Universidade Federal do Pará 26 de janeiro de 2012 Sumário 1 Introdução a 2 Códigos de Blocos Lineares 3 Códigos Cíclicos Introdução

Leia mais

Título: Grupos Finitos Gerados por dois Elementos a e b com ba = a s b. por José Sérgio Domingues Orientador: Prof. Dr. Paulo Antônio Fonseca

Título: Grupos Finitos Gerados por dois Elementos a e b com ba = a s b. por José Sérgio Domingues Orientador: Prof. Dr. Paulo Antônio Fonseca UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS - ICEX DEPARTAMENTO DE MATEMÁTICA Título: Grupos Finitos Gerados por dois Elementos a e b com ba = a s b. por José Sérgio Domingues Orientador:

Leia mais

Divisibilidade em Domínios de Integridade

Divisibilidade em Domínios de Integridade Universidade Federal de Sergipe PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL - PROFMAT Divisibilidade em Domínios

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA I ELEMENTOS DE ANÁLISE REAL Volume 1 Por : Gregório Luís I PREFÁCIO O presente texto destina-se

Leia mais

Terceira Lista. 1 Ainda sobre domínios com fatoração única

Terceira Lista. 1 Ainda sobre domínios com fatoração única Terceira Lista Corpo de frações e elementos inteiros 1 Ainda sobre domínios com fatoração única Vamos inicialmente deixar mais claro o que se entendo por fatoração única na denição da página 8 da lista

Leia mais

Aula: Equações polinomiais

Aula: Equações polinomiais Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

Universidade de Aveiro Departamento de Matemática ILÍDIO MENDES MOREIRA CRIPTOGRAFIA DE CHAVE PÚBLICA COM BASE EM CÓDIGOS

Universidade de Aveiro Departamento de Matemática ILÍDIO MENDES MOREIRA CRIPTOGRAFIA DE CHAVE PÚBLICA COM BASE EM CÓDIGOS Universidade de Aveiro Departamento de Matemática ILÍDIO MENDES MOREIRA CRIPTOGRAFIA DE CHAVE PÚBLICA COM BASE EM CÓDIGOS Universidade de Aveiro Departamento de Matemática ILÍDIO MENDES MOREIRA CRIPTOGRAFIA

Leia mais

Estruturas Algébricas Uma Introdução Breve

Estruturas Algébricas Uma Introdução Breve 010 Estruturas Algébricas Uma Introdução Breve Uma Prof. Carlos R. Paiva NOTA PRÉVIA As breves notas que se seguem destinam-se a constituir uma introdução bastante sucinta de algumas estruturas algébricas

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

caderno Matemática Matemática e suas Tecnologias ELABORAÇÃO DE ORIGINAIS

caderno Matemática Matemática e suas Tecnologias ELABORAÇÃO DE ORIGINAIS Matemática Matemática e suas Tecnologias caderno de ELABORAÇÃO DE ORIGINAIS BETO PAIVA Professor e coordenador pedagógico em escolas de ensino médio e cursos pré-vestibulares há mais de 35 anos. LEO PAULO

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Sistemas Polinomiais, Mapas e Origamis

Sistemas Polinomiais, Mapas e Origamis Sistemas Polinomiais, Mapas e Origamis Marcelo Escudeiro Hernandes 1 Departamento de Matemática Universidade Estadual de Maringá 1 mehernandes@uem.br Introdução O que sistemas de equações polinomiais,

Leia mais

Conjuntos Numéricos. N = {0, 1, 2, 3, } Z = {, 3, 2, 1, 0, 1, 2, 3, }= {0, ±1, ±2, ±3. } Q = : p e q Z, q 6= 0

Conjuntos Numéricos. N = {0, 1, 2, 3, } Z = {, 3, 2, 1, 0, 1, 2, 3, }= {0, ±1, ±2, ±3. } Q = : p e q Z, q 6= 0 Conjuntos Numéricos Os conjuntos numéricos compõe uma parte fundamental da Matemática, notadamente no contexto de aplicação a outros campos de estudo. Atualmente tais conjuntos englobam os números naturais,

Leia mais

Capítulo 1 Erros e representação numérica

Capítulo 1 Erros e representação numérica Capítulo 1 Erros e representação numérica Objetivos Esperamos que ao final desta aula, você seja capaz de: Pré-requisitos Identificar as fases de modelagem e os possíveis erros nelas cometidos; Compreender

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Anéis e Corpos. Polinômios, Homomorsmos e Ideais

Anéis e Corpos. Polinômios, Homomorsmos e Ideais Anéis e Corpos Polinômios, Homomorsmos e Ideais Observe que há uma relação natural entre o anel Z dos inteiros e o corpo Q dos racionais que pode ser traduzida na armação Q é o menor corpo onde todo elemento

Leia mais

Notas de Aula. Álgebra Linear I

Notas de Aula. Álgebra Linear I Notas de Aula Álgebra Linear I Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula da disciplina Álgebra Linear

Leia mais

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft

Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística

Leia mais

ELETRÔNICA DIGITAL 1

ELETRÔNICA DIGITAL 1 CENTRO FEDERAL DE ENSINO TECNOLÓGICO DE SANTA CATARINA UNIDADE SÃO JOSÉ ÁREA DE TELECOMUNICAÇÕES ELETRÔNICA DIGITAL 1 CAPÍTULO 1 SUMÁRIO INTRODUÇÃO...2 1. SISTEMAS DE NUMERAÇÃO...4 1.1 Introdução...4

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 3 - ÁLGEBRA BOOLEANA 1. Introdução O ponto de partida para o projeto sistemático de sistemas de processamento digital é a chamada Álgebra de Boole, trabalho de um matemático inglês que, em um livro

Leia mais

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850.

ÁLGEBRA BOOLEANA. Foi um modelo formulado por George Boole, por volta de 1850. ÁLGEBRA BOOLEANA Foi um modelo formulado por George Boole, por volta de 1850. Observando a lógica proposicional e a teoria de conjuntos verificamos que elas possuem propriedades em comum. Lógica Proposicional

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai ANÁLISE REAL (MA0062) Adriano Pedreira Cattai http://cattai.mat.br Universidade do Estado da Bahia UNEB Semestre 2009.2 UNEB 2009.2 Sumário Apresentação.....................................................................................................................

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

Cristina Maria Marques Departamento de Matemática-UFMG 1999 ( com revisão em 2005)

Cristina Maria Marques Departamento de Matemática-UFMG 1999 ( com revisão em 2005) Introdução à Teoria de Anéis Cristina Maria Marques Departamento de Matemática-UFMG 1999 ( com revisão em 2005) 2 Prefácio Esta apostila consta das notas de aula feitas para as disciplinas Álgebra I e

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Outras Realidades. Ou: Quão bem conhecemos as nossas operações elementares?

Outras Realidades. Ou: Quão bem conhecemos as nossas operações elementares? Outras Realidades Ou: Quão bem conhecemos as nossas operações elementares? 1 Operações Binárias Todos conhecem + - x Mas o que é uma OPERAÇÃO? 2 Operações Binárias Dado um conjunto A define-se uma operação

Leia mais

M. A. Armstrong, Groups and Symmetry, Springer-Verlag, 1988, Cota 20F/ARM.

M. A. Armstrong, Groups and Symmetry, Springer-Verlag, 1988, Cota 20F/ARM. Notas de Álgebra I Estas notas são sumários alargados do curso. Nelas pretendemos referir conceitos, resultados e exemplos apresentados nas aulas teóricas. Seguimos de perto o livro M. A. Armstrong, Groups

Leia mais

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi

Funções e Aplicações. Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Funções e Aplicações Ministrado por Bruno Tenório da S Lopes Coordenado por Profa Dra Edna Maura Zuffi Maio de 2011 Índice 1 - Conjuntos Numéricos... 4 Intervalos... 5 Intervalos finitos... 5 Intervalos

Leia mais

SOFTWARE PARA ESTUDOS DE FUNÇÕES DE UMA VARIÁVEL COMPLEXA: FUNÇÕES ELEMENTARES

SOFTWARE PARA ESTUDOS DE FUNÇÕES DE UMA VARIÁVEL COMPLEXA: FUNÇÕES ELEMENTARES SOFTWARE PARA ESTUDOS DE FUNÇÕES DE UMA VARIÁVEL COMPLEXA: FUNÇÕES ELEMENTARES Edvaldo Lima da Silva 1 Faculdade de Ciências Programa de Pós-Graduação em Educação para a Ciência Universidade Estadual Paulista

Leia mais

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC,

Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, ESPAÇO VETORIAL Def. 1: Seja a quádrupla (V, K, +, ) onde V é um conjunto, K = IR ou K = IC, + é a operação (função) soma + : V V V, que a cada par (u, v) V V, associa um único elemento de V, denotado

Leia mais

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES

REVISÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE INTEGRAÇÃO DO MERCOSUL CURSO SUPERIOR DE TECNOLOGIA EM TRANSPORTES TERRESTRES REVISÃO Disciplina: Cálculo e Estatística Aplicada Professor: Dr. Fábio Saraiva da

Leia mais

Princípio das casas de pombo

Princípio das casas de pombo Princípio das casas de pombo Márcia R. Cerioli IM e COPPE, UFRJ Renata de Freitas IME, UFF Petrucio Viana IME, UFF Maio de 2014 1 Introdução Neste texto, apresentamos e exemplificamos o Princípio das Casas

Leia mais

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08

11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08 INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos

Leia mais

Aula 5 - Matemática (Gestão e Marketing)

Aula 5 - Matemática (Gestão e Marketing) ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

Corpos. Jorge Picado

Corpos. Jorge Picado Corpos e Equações Algébricas Jorge Picado Departamento de Matemática Universidade de Coimbra 2011 Versão de 21 de Agosto de 2011 Índice Introdução 1 1 Anéis e corpos 3 Exercícios 18 2 Anéis de polinómios

Leia mais

Sistemas de Numeração

Sistemas de Numeração Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Sistemas de Numeração Nuno Pombo / Miguel Neto Arquitectura Computadores I 2014/2015 1 Conversão

Leia mais

MD Teoria dos Conjuntos 1

MD Teoria dos Conjuntos 1 Teoria dos Conjuntos Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Teoria dos Conjuntos 1 Introdução O que os seguintes objetos têm em comum? um

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Introdução à Álgebra Max-Plus III Colóquio de Matemática da Região Sul

Introdução à Álgebra Max-Plus III Colóquio de Matemática da Região Sul A. T. Baraviera e Flávia M. Branco Introdução à Álgebra Max-Plus III Colóquio de Matemática da Região Sul Florianópolis, SC 2014 A. T. Baraviera e Flávia M. Branco Introdução à Álgebra Max-Plus III Colóquio

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

II. DEFINIÇÕES INICIAIS 1

II. DEFINIÇÕES INICIAIS 1 -1- ELPO: Definições Iniciais [MSL] II. DEFINIÇÕES INICIAIS 1 No que se segue, U é um conjunto qualquer e X, Y,... são os subconjuntos de U. Ex.: U é um quadrado e X, Y e Z são três círculos congruentes

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Introdução à Criptografia RSA

Introdução à Criptografia RSA UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO " U N E S P Faculdade de Engenharia de Ilha Solteira - FEIS Introdução à Criptografia RSA DEPARTAMENTO DE MATEMÁTICA Aluna: Elen Viviani Pereira

Leia mais

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções

Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária através do recurso à utiliação

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES

NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES NOTAS DE AULA CONJUNTOS, FUNÇÕES E RELAÇÕES CAPÍTULO I NOÇÕES BÁSICA DE CONJUNTOS 1. Conjuntos O conceito de conjunto aparece em todos os ramos da matemática. Intuitivamente, um conjunto é qualquer coleção

Leia mais

RELAÇÕES BINÁRIAS Produto Cartesiano A X B

RELAÇÕES BINÁRIAS Produto Cartesiano A X B RELAÇÕES BINÁRIAS PARES ORDENADOS Um PAR ORDENADO, denotado por (x,y), é um par de elementos onde x é o Primeiro elemento e y é o Segundo elemento do par A ordem é relevante em um par ordenado Logo, os

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante

Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos

Leia mais

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17.

8 8 (mod 17) e 3 34 = (3 17 ) 2 9 (mod 17). Daí que 2 67 + 3 34 8 + 9 0 (mod 17), o que significa que 2 67 + 3 34 é múltiplo de 17. Prova Teoria de Números 23/04/203 Nome: RA: Escolha 5 questões.. Mostre que 2 67 + 3 34 é múltiplo de 7. Solução: Pelo teorema de Fermat 2 6 (mod 7 e 3 7 3 (mod 7. Portanto, 2 67 = 2 64+3 = ( 2 6 4 8 8

Leia mais

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 7º ano PROFESSORAS: SANDRA MARA

Leia mais

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Teoria dos Números 1 Noções Básicas A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto Z = {..., 4, 3, 2, 1, 0, 1, 2, 3, 4...}. Ela permite resolver de

Leia mais

Apontamentos de ÁLGEBRA II. Jorge Picado

Apontamentos de ÁLGEBRA II. Jorge Picado Apontamentos de ÁLGEBRA II Jorge Picado Departamento de Matemática Universidade de Coimbra 2006 Índice Introdução 1 1 Anéis e corpos 3 Exercícios 17 2 Anéis de polinómios 23 Apêndice 1 Apontamentos para

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação

COMPUTAÇÕES NUMÉRICAS. 1.0 Representação COMPUTAÇÕES NUMÉRICAS.0 Representação O sistema de numeração decimal é o mais usado pelo homem nos dias de hoje. O número 0 tem papel fundamental, é chamado de base do sistema. Os símbolos 0,,, 3, 4, 5,

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Capítulo UM Bases Numéricas

Capítulo UM Bases Numéricas Capítulo UM Bases Numéricas 1.1 Introdução Quando o homem aprendeu a contar, ele foi obrigado a desenvolver símbolos que representassem as quantidades e grandezas que ele queria utilizar. Estes símbolos,

Leia mais

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas

Linguagens Formais e Autômatos. Alfabetos, Palavras, Linguagens e Gramáticas Linguagens Formais e Autômatos Alfabetos, Palavras, Linguagens e Gramáticas Cristiano Lehrer, M.Sc. Introdução (1/3) A Teoria das Linguagens Formais foi originariamente desenvolvida na década de 1950 com

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Capítulo 5: Transformações Lineares

Capítulo 5: Transformações Lineares 5 Livro: Introdução à Álgebra Linear Autores: Abramo Hefez Cecília de Souza Fernandez Capítulo 5: Transformações Lineares Sumário 1 O que são as Transformações Lineares?...... 124 2 Núcleo e Imagem....................

Leia mais