Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Teorema de Lagrange Subgrupos normais e grupos quociente

Tamanho: px
Começar a partir da página:

Download "Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Teorema de Lagrange Subgrupos normais e grupos quociente"

Transcrição

1 Classes laterais Sejam G um grupo, H um subconjunto de G e a um elemento de G. Usamos as seguintes notações: ah = {ah h H} e Ha = {ha h H}. Definição (Classe lateral de H em G) Seja H um subgrupo do grupo G. O conjunto ah diz-se a classe lateral esquerda de H em G contendo a. O conjunto Ha diz-se a classe lateral direita de H em G contendo a. O elemento a diz-se um representante da classe lateral ah (ou Ha). Exemplo Sejam G = S 3 e H = {(), (1 2 3), (1 3 2)}. As classes laterais esquerdas de H em G são (1)H = H = (1 2 3)H = (1 3 2)H; (1 2)H = {(1 2), (1 2)(1 2 3), (1 2)(1 3 2)} = {(1 2), (2 3), (1 3)} = (1 3)H = (2 3)H. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

2 O GAP permite trabalhar com classes laterais direitas. (Como gh consiste dos inversos dos elementos de Hg 1, não é difícil usar também o GAP para trabalhar com classes laterais esquerdas.) Exemplo gap> s3 := SymmetricGroup(3); Sym( [ ] ) gap> Elements(last); [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] gap> h := Subgroup(s3,[ (), (1,2,3), (1,3,2) ]); Group([ (), (1,2,3), (1,3,2) ]) gap> RightCoset(h,(1,3)); RightCoset(Group( [ (), (1,2,3), (1,3,2) ] ),(1,3)) gap> Elements(last); [ (2,3), (1,2), (1,3) ] Álgebra (Curso de CC) Ano lectivo 2005/ / 173

3 Exemplo Sejam G = Z 9 e H = {0, 3, 6}. Como a operação que estamos a considerar é a adição, usamos a notação a + H em vez de ah. As classes laterais (esquerdas) de H em Z 9 são 0 + H = {0, 3, 6} = 3 + H = 6 + H = H; 1 + H = {1, 4, 7} = 4 + H = 7 + H; 2 + H = {2, 5, 8} = 5 + H = 8 + H. Exercício Sejam G = S 3 e H = {(1), (1 2)}. Determine as classes laterais (1 3)H e H(1 3). Álgebra (Curso de CC) Ano lectivo 2005/ / 173

4 Teorema de Lagrange Os exemplos e exercício anteriores levantam questões como: Quando é que ah = bh? Quando é que ah = Ha? Quantos elementos têm em comum ah e Hb? O lema seguinte ajuda a esclarecer. Lema Sejam G um grupo, H G e a, b G. Então 1. a ah; 2. ah = H se e só se a H; 3. ah = bh ou ah bh = ; 4. ah = bh se e só se a 1 b H; 5. ah = bh ; 6. ah = Ha se e só se H = aha 1 ; 7. ah é um subgrupo de G se e só se a H. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

5 Demonstração. 1. Basta notar que a = ae ah; 2. Suponhamos que ah = H. Então a = ae ah = H. Reciprocamente, se a H, então ah H, por H ser fechado para a multiplicação. Também H ah, pois, para qualquer h H, tem-se a 1 h H, logo h = eh = (aa 1 )h = a(a 1 h) ah. 3. Suponhamos que ah bh e seja x ah bh. Tem-se x = ah 1 e x = ah 2, para alguns h 1, h 2 H. Então a = xh 1 1 = bh 2h 1 1 e ah = (bh 2h 1 1 )H = b(h 2h 1 1 H) = bh. 4. Resulta de ah = bh H = a 1 bh e de Basta observar que ah bh é uma bijecção de ah em bh. 6. ah = Ha se e só se aha 1 = Haa 1 = H. 7. Se ah é um subgrupo, então e ah. Logo ah eh e, por 3, ah = eh = H. Por 2, a H. Reciprocamente, novamente por 2, ah = H. Claro que vale um resultado análogo considerando classes laterais direitas em vez de esquerdas. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

6 Teorema (Teorema de Lagrange) Se G é um grupo finito e H é um subgrupo de G, então ord(h) divide ord(g). Além disso, o número de classes laterais esquerdas (ou direitas) distintas é ord(g)/ ord(h). Demonstração. Sejam a 1 H, a 2 H,..., a r H as classes laterais esquerdas distintas de H em G. Como cada elemento de G pertence a alguma classe lateral esquerda de H (por 1 do lema anterior), tem-se G = a 1 H a 2 H a r H. Como esta união é disjunta (3 do lema anterior), tem-se G = a 1 H + a 2 H + + a r H. Usando agora 5 do lema, tem-se a i H = H, para qualquer i, logo ord(g) = r ord(h). O Teorema de Lagrange tem diversas consequências, algumas das quais, imediatas. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

7 Atendendo a que a ordem de um elemento de um grupo finito é a ordem do subgrupo por ele gerado, tem-se: Corolário (ord(a) divide ord(g)) A ordem de um elemento de um grupo finito divide a ordem do grupo. Corolário Todo o grupo de ordem prima é cíclico. Demonstração. Basta notar que um elemento diferente do elemento neutro tem como ordem a ordem do grupo. Corolário (a G = e) Sejam G um grupo finito e a G. Então a ord(g) = e. Demonstração. Tem-se ord(g) = k ord(a), para algum inteiro positivo k. Então a ord(g) = a ord(a) k = e k = e. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

8 Corolário (Pequeno Teorema de Fermat) Sejam p um primo e a um inteiro. Tem-se a p a (mod p). Demonstração. Tem-se, pelo algoritmo da divisão, a = pm + r, com 0 r < p. Logo a r (mod p), bastando então provar que r p r (mod p). Como para r = 0 o resultado é trivial, podemos supor que r U(p) (que não é mais que {1, 2,..., p 1} com a multiplicação módulo p). Então r p 1 1 (mod p) e, portanto, r p r (mod p). O número de classes laterais esquerdas (ou direitas) de um subgrupo H no grupo G designa-se por índice de H em G e denota-se por (G : H). Corolário Se G é um grupo finito e H é um subgrupo de G, então (G : H) = ord(g)/ ord(h). Nota Existem exemplos que mostram que o recíproco do Teorema de Lagrange falso. Álgebra (Curso de CC) Ano lectivo 2005/ / 173

9 Álgebra (Curso de CC) Ano lectivo 2005/ / 173

Usando indução pode então mostrar-se o seguinte:

Usando indução pode então mostrar-se o seguinte: Proposição Sejam G e H grupos cíclicos finitos. Então G H é cíclico se e só se ord(g) e ord(h) forem primos entre si. Exercício Faça a demonstração da proposição anterior. Usando indução pode então mostrar-se

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Observação Como para k > 1 se tem (a 1, a 2,..., a k ) = (a 1, a k )(a 1, a k 1 ) (a 1, a 2 ), um ciclo de comprimento par é uma permutação ímpar e um ciclo de comprimento ímpar é uma permutação par. Proposição

Leia mais

Teorema (Teorema fundamental do homomorfismo)

Teorema (Teorema fundamental do homomorfismo) Teorema (Teorema fundamental do homomorfismo) Seja ϕ : G H um homomorfismo de grupos. Então G/ ker ϕ ϕ(g). Demonstração. Vamos mostrar que a correspondência ψ : G/ ker ϕ ϕ(g) dada por ψ(g ker ϕ) = ϕ(g)

Leia mais

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula

Leia mais

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204

Breve referência à Teoria de Anéis. Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Breve referência à Teoria de Anéis Álgebra (Curso de CC) Ano lectivo 2005/2006 191 / 204 Anéis Há muitos conjuntos, como é o caso dos inteiros, dos inteiros módulo n ou dos números reais, que consideramos

Leia mais

f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn).

f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn). Teoremas de isomorfismo. Teorema (Teorema de Isomorfismo). Seja f : A B um homomorfismo de grupos. Então A/ ker(f) = Im(f). Demonstração. Seja N := ker(f) e seja f : A/N Im(f), f(xn) := f(x). Mostramos

Leia mais

Sumário. 1 Ação de Grupos 3. 2 Teoremas de Sylow Aula 02/09/

Sumário. 1 Ação de Grupos 3. 2 Teoremas de Sylow Aula 02/09/ Sumário 1 Ação de Grupos 3 2 Teoremas de Sylow 5 2.1 Aula 02/09/2011................................ 5 2 SUMÁRIO Capítulo 1 Ação de Grupos Seja G um grupo e S um G-conjunto. No estudo de aç ao de grupos,

Leia mais

Propriedades dos inteiros Aritmética modular Aplicações (detecção de erros e sistema RSA)

Propriedades dos inteiros Aritmética modular Aplicações (detecção de erros e sistema RSA) Propriedades dos inteiros Aritmética modular Aplicações (detecção de erros e sistema RSA) Sabe-se que a mensagem 77; 43; 0 foi obtida por codificação usando o código RSA com a chave pública m = 4037 e

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

Geradores e relações

Geradores e relações Geradores e relações Recordamos a tabela de Cayley de D 4 (simetrias do quadrado): ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 0 ρ 0 ρ 90 ρ 180 ρ 270 h v d 1 d 2 ρ 90 ρ 90 ρ 180 ρ 270 ρ 0 d 2 d 1 h v ρ 180 ρ 180

Leia mais

Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3.

Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. 1. Seja x um elemento de ordem 24. Calcule a ordem de x 22, x 201, x 402, x 611 e x 1000. 2. Faça

Leia mais

Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho

Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho Gabarito da primeira prova de Álgebra III - 29/04/2010 Prof. - Juliana Coelho QUESTÃO 1 (2,5 pts) - Seja G um grupo e considere seu centro Z(G) = {a G ab = ba para todo b G}. (a) Seja H um subgrupo de

Leia mais

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.

, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1. Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles

Leia mais

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade

Corpos. Um domínio de integridade finito é um corpo. Demonstração. Seja D um domínio de integridade com elemento identidade Corpos Definição Um corpo é um anel comutativo com elemento identidade em que todo o elemento não nulo é invertível. Muitas vezes é conveniente pensar em ab 1 como sendo a b, quando a e b são elementos

Leia mais

TEORIA DE GRUPOS APLICADO AO CUBO DE RUBIK

TEORIA DE GRUPOS APLICADO AO CUBO DE RUBIK TEORIA DE GRUPOS APLICADO AO CUBO DE RUBIK Antonio Sidiney da Costa Oliveira 23 de outubro de 2015 Resumo Esse trabalho terá como objetivo apresentar a teoria de grupos voltada para o cubo, mas especificamente

Leia mais

Aula 11 IDEAIS E ANÉIS QUOCIENTES META. Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS

Aula 11 IDEAIS E ANÉIS QUOCIENTES META. Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS Aula 11 IDEAIS E ANÉIS QUOCIENTES META Apresentar o conceito de ideal e definir anel quociente. OBJETIVOS Aplicar as propriedades de ideais na resolução de problemas. Reconhecer a estrutura algébrica de

Leia mais

1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 = b 2 = e e ba = a 2 b.

1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 = b 2 = e e ba = a 2 b. Problema 1 1. Num grupo G, sejam a e b dois elementos diferentes da identidade e tais que a 3 b 2 e e ba a 2 b. (a) Indique, justificando, se: i. a é sempre igual a b; ii. a nunca é igual a b; iii. a pode

Leia mais

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação

(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};

Leia mais

1 Grupos (23/04) Sim(R 2 ) T T

1 Grupos (23/04) Sim(R 2 ) T T 1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.

Leia mais

a = bq + r e 0 r < b.

a = bq + r e 0 r < b. 1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b, c Z denotamos por a b : a divide b

Leia mais

1 Base de um Espaço Vetorial

1 Base de um Espaço Vetorial Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga

Leia mais

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas.

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas. Aula 04 O CONCEITO DE GRUPO META Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. OBJETIVOS Definir e exemplificar grupos e subgrupos. Aplicar as propriedades dos grupos na

Leia mais

Primeira prova de Álgebra III - 07/05/2015 Prof. - Juliana Coelho Entregar dia 09/05/2015 até as 11h00.

Primeira prova de Álgebra III - 07/05/2015 Prof. - Juliana Coelho Entregar dia 09/05/2015 até as 11h00. Primeira prova de Álgebra III - 07/05/205 Prof. - Juliana Coelho Entregar dia 09/05/205 até as h00. Justifique suas respostas citando o resultado ou exercício da apostila (quando permitido) que está sendo

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

MÉTODOS DISCRETOS EM TELEMÁTICA

MÉTODOS DISCRETOS EM TELEMÁTICA 1 MÉTODOS DISCRETOS EM TELEMÁTICA MATEMÁTICA DISCRETA Profa. Marcia Mahon Grupo de Pesquisas em Comunicações - CODEC Departamento de Eletrônica e Sistemas - UFPE Outubro 2003 2 CONTEÚDO 1 - Introdução

Leia mais

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 1. Escreva os elementos de S 4 nas duas notações. Observe que S 4 = 4! = 24. Os elementos de S 4 tem a forma 1 a, 2 b, 3 c, 4 d onde a sequência abcd é uma das seguintes: 1234, 1243, 1324, 1342, 1423,

Leia mais

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências

MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.

Leia mais

Ordens e raízes primitivas

Ordens e raízes primitivas Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 7 Ordens e raízes primitivas 1 Polinômios Dado um anel comutativo K, definimos o anel comutativo K[x] como

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos

Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos Introdução à Chave Pública Troca de chaves Diffie-Hellman Grupos finitos Grupos cíclicos Troca de Chaves de Diffie-Hellman Parâmetros públicos p, α Alice: 1 Sorteia a = K pra {2, 3,..., p 2} 3 Envia para

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

Corpos estendidos no espaço em grupos

Corpos estendidos no espaço em grupos Corpos estendidos no espaço em grupos Carlos Shine Vamos ver como conceitos de teoria dos números (especialmente números mod p) podem ser generalizados com conceitos de Álgebra. 1 Corpos Em termos simples,

Leia mais

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas. Aula 05 GRUPOS QUOCIENTES METAS Estabelecer o conceito de grupo quociente. OBJETIVOS Definir classes laterais e estabelecer o teorema de Lagrange. Aplicar o teorema de Lagrange na resolução de problemas.

Leia mais

Conjuntos Abelianos Maximais

Conjuntos Abelianos Maximais Conjuntos Abelianos Maximais (Dedicado para meu filho Demetrius) por José Ivan da Silva Ramos (Doutor em Álgebra e membro efetivo do Centro de Ciências Exatas e Tecnológicas da Universidade Federal do

Leia mais

GRUPOS ALGUNS GRUPOS IMPORTANTES. Professora: Elisandra Bär de Figueiredo

GRUPOS ALGUNS GRUPOS IMPORTANTES. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo GRUPOS DEFINIÇÃO 1 Sejam G um conjunto não vazio e (x, y) x y uma lei de composição interna em G. Dizemos que G é um grupo em relação a essa lei se (a) a operação

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Introdução à Algebra para Criptografia de Curvas Elipticas

Introdução à Algebra para Criptografia de Curvas Elipticas Introdução à Algebra para Criptografia de Curvas Elipticas Pedro Antonio Dourado de Rezende Departamento de Ciência da Computação Universidade de Brasilia Abril 2003 ECC Introdução: Grupos 1 Simbologia:

Leia mais

Corpos estendidos no espaço em grupos respostas dos exercícios

Corpos estendidos no espaço em grupos respostas dos exercícios Corpos estendidos no espaço em grupos respostas dos exercícios Carlos Shine Não se assuste com o tamanho das soluções a seguir. Eu tentei colocar o máximo de informação relacionada possível nas soluções

Leia mais

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012

NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012 NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de

Leia mais

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52

Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52 1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

LISTA CLASSES LATERAIS, TEOREMA DE LAGRANGE 17. Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas.

LISTA CLASSES LATERAIS, TEOREMA DE LAGRANGE 17. Seja G um grupo e sejam H e K subgrupos de G cujas ordens sejam relativamente primas. MAT5728 - Álgebra 2o. semestre/2008 LISTA 1 1. GRUPOS 1. Seja G um grupo. Mostre que se ab 2 = a 2 b 2, para quaisquer a, b G, então G é abeliano. 2. a Se G é um grupo no qual ab i = a i b i, para três

Leia mais

Ideais em anéis de grupo

Ideais em anéis de grupo Ideais em anéis de grupo Allysson Gomes Dutra 19 de julho de 2014 Resumo: A proposta deste trabalho é apresentar algumas construções de ideais em um anel de grupos RG se utilizando de subgrupos normais

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

P-GRUPOS E O TEOREMA DE CAUCHY. Conceituar p-grupos e estabelecer o Teorema de Cauchy

P-GRUPOS E O TEOREMA DE CAUCHY. Conceituar p-grupos e estabelecer o Teorema de Cauchy Aula 08 P-GRUPOS E O TEOREMA DE CAUCHY META Conceituar p-grupos e estabelecer o Teorema de Cauchy OBJETIVOS Definir p-grupos e aplicar suas propriedades na resolução de problemas. Reconhecer o teorema

Leia mais

3 Sistema de Steiner e Código de Golay

3 Sistema de Steiner e Código de Golay 3 Sistema de Steiner e Código de Golay Considere o sistema de Steiner S(5, 8, 24, chamaremos os seus blocos de octads. Assim, as octads são subconjuntos de 8 elementos de um conjunto Ω com 24 elementos

Leia mais

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração

Leia mais

Conhecer um pouco mais de perto as propriedades do grupo das permutações de nível.

Conhecer um pouco mais de perto as propriedades do grupo das permutações de nível. Aula 07 MAIS SOBRE O GRUPO SIMÉTRICO META Conhecer um pouco mais de perto as propriedades do grupo das permutações de nível. OBJETIVOS Reconhecer elementos de Reconhecer os subgrupos e de Aplicar propriedades

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017

Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017 Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Alguns Teoremas Básicos de Grupos e Suas Aplicações. Samuel Feitosa

XIX Semana Olímpica de Matemática. Nível U. Alguns Teoremas Básicos de Grupos e Suas Aplicações. Samuel Feitosa XIX Semana Olímpica de Matemática Nível U Alguns Teoremas Básicos de Grupos e Suas Aplicações Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Alguns

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Consequências do Teorema do Valor Médio

Consequências do Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.

Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em

Leia mais

Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos

Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos Grupos livres e apresentações, grupos hopfianos e grupos residualmente finitos Bárbara Lopes Amaral Professora Ana Cristina Vieira Tópicos Especiais em Teoria de Grupos Belo orizonte Dezembro de 2010 Grupos

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais

MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais MA14 - Aritmética Unidade 22 Resumo Aritmética das Classes Residuais Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG

Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos. Ana Cristina Vieira. Departamento de Matemática - ICEx - UFMG 1 Conceitos Básicos sobre Representações e Caracteres de Grupos Finitos Ana Cristina Vieira Departamento de Matemática - ICEx - UFMG - 2011 1. Representações de Grupos Finitos 1.1. Fatos iniciais Consideremos

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

No que segue, X sempre denota um espaço topológico localmente compacto

No que segue, X sempre denota um espaço topológico localmente compacto O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK No que segue, sempre denota um espaço topológico localmente compacto Hausdorff. Se f : R é uma função, então supp f denota o{ suporte (relativamente

Leia mais

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 MAT 317 - Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 1 Nome : Número USP : Assinatura : Professor : Severino Toscano do Rêgo Melo 2 3 4 5 Total Podem tentar fazer todas as questões.

Leia mais

1 Subespaços Associados a uma Matriz

1 Subespaços Associados a uma Matriz 1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.

Leia mais

Aula 09 OS TEOREMAS DE SYLOW META. Estabelecer os teoremas de Sylow. OBJETIVOS. Identificar. Aplicar os teoremas de Sylow na resolução de problemas.

Aula 09 OS TEOREMAS DE SYLOW META. Estabelecer os teoremas de Sylow. OBJETIVOS. Identificar. Aplicar os teoremas de Sylow na resolução de problemas. Aula 09 OS TEOREMAS DE SYLOW META Estabelecer os teoremas de Sylow. OBJETIVOS Identificar. Aplicar os teoremas de Sylow na resolução de problemas. PRÉ-REQUISITOS O curso de Fundamentos de Matemática e

Leia mais

Resolução dos Exercícios 31/05-09/06.

Resolução dos Exercícios 31/05-09/06. Resolução dos Exercícios 31/05-09/06. 1. Seja A um domínio de integridade. Mostre que todo subgrupo finito de U(A) é cíclico. Seja K o corpo de frações de A. Então A é um subanel de K (identificado com

Leia mais

extensões algébricas.

extensões algébricas. META: Determinar condições necessárias e/ou suficientes para caracterizar extensões algébricas. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Reconhecer se uma dada extensão é algébrica. PRÉ-REQUISITOS

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 6 de Setembro de 2018 Matriz inversa Já discutimos adição, subtração e multiplicação de matrizes A divisão, da forma como conhecemos em aritmética escalar, não é definida para

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Aprendendo Álgebra com o Cubo Mágico p.1/32

Aprendendo Álgebra com o Cubo Mágico p.1/32 Aprendendo Álgebra com o Cubo Mágico Waldeck Schützer www.dm.ufscar.br/ waldeck/ V Semana da Matemática da UFU FAMAT, 25 a 28 de Outubro de 2005 Aprendendo Álgebra com o Cubo Mágico p.1/32 Resumo 1. Conhecendo

Leia mais

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef

(Mini) Apostila de Teoria de Grupos. Dimiter Hadjimichef (Mini) Apostila de Teoria de Grupos Dimiter Hadjimichef Porto Alegre 2012 1. Teoria de Grupos 1.1 Muitas definições... Definição 1: Grupo Um conjunto G = {a,b,c,...} é dito formar um grupo se existir uma

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os

Leia mais

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS O TEOEMA ESPECTAL PAA OPEADOES AUTO-ADJUNTOS Mariane Pigossi, oberto de A. Prado, Depto. de Matemática e Computação, FCT, UNESP, 19060-900, Presidente Prudente, SP E-mail: marianepigossi@gmail.com, robertoprado@fct.unesp.br

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE LICENCIATURA EM MATEMÁTICA GABRIELLY HALAS

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE LICENCIATURA EM MATEMÁTICA GABRIELLY HALAS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CURSO DE LICENCIATURA EM MATEMÁTICA GABRIELLY HALAS RELAÇÕES ENTRE TEORIA DE REPRESENTAÇÕES DE GRUPOS E A ÁLGEBRA MULTILINEAR: UMA INTRODUÇÃO NAÏF TRABALHO DE

Leia mais

PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME

PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME 22 a 26 de outubro de 2012 PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO PICME Anais do Congresso de Pesquisa, Ensino e Extensão- CONPEEX (2012) 9627-9631 POLINÔMIOS CICLOTÔMICOS E TEOREMA DE WEDDERBURN

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Um algoritmo para estimar o segundo grupo de homologia de algum grupo finitamente apresentado

Um algoritmo para estimar o segundo grupo de homologia de algum grupo finitamente apresentado Um algoritmo para estimar o segundo grupo de homologia de algum grupo finitamente apresentado VIEIRA, Flávio Pinto; BUENO, Ticianne Proença Adorno, SERCONECK, Shirlei Instituto de Matemática e Estatística,

Leia mais

Aplicar as propriedades imediatas dos homomorfismos de grupos. Aplicar os teoremas dos homomorfismos na relação de problemas.

Aplicar as propriedades imediatas dos homomorfismos de grupos. Aplicar os teoremas dos homomorfismos na relação de problemas. Aula 06 HOMOMORFISMOS DE GRUPOS META Apresentar o conceito de homomorfismo de grupos OBJETIVOS Reconhecer e classificar os homomorfismos. Aplicar as propriedades imediatas dos homomorfismos de grupos.

Leia mais

2007/2008 Resolução do 1 o exame

2007/2008 Resolução do 1 o exame Introdução à Álgebra 2007/2008 Resolução do 1 o exame 1. Diga, em cada caso, se a afirmação é verdadeira ou falsa, justificando a sua resposta com uma demonstração, ou um contra-exemplo. Nesta questão,

Leia mais

Tabelas de Caracteres de Grupos Finitos

Tabelas de Caracteres de Grupos Finitos Tabelas de Caracteres de Grupos Finitos Teresa Conde Encontro Nacional NTM 12 de Setembro de 2009 Objectivos: Objectivos: Noções básicas da Teoria das Representações Objectivos: Noções básicas da Teoria

Leia mais

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r

Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r. n = qd + r Matemática Discreta September 18, 2018 1 1 Divisão de inteiros Teorema 1.1 (Teorema de divisão de Euclides). Dados n Z e d N, existe uma única dupla q Z, r {0,..., d 1} tal que n = qd + r Dizemos que a

Leia mais

Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016

Técnicas de Demonstração. Raquel de Souza Francisco Bravo   17 de novembro de 2016 Técnicas de Demonstração e-mail: raquel@ic.uff.br 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

d(t x, Ty) = d(x, y), x, y X.

d(t x, Ty) = d(x, y), x, y X. Capítulo 6 Espaços duais 6.1 Preliminares A análise funcional foi nos seus primórdios o estudo de funcionais. Assim, nos dias de hoje um princípio fundamental da análise funcional é a investigação de espaços

Leia mais

Reticulados e Álgebras de Boole

Reticulados e Álgebras de Boole Capítulo 3 Reticulados e Álgebras de Boole 3.1 Reticulados Recorde-se que uma relação de ordem parcial num conjunto X é uma relação reflexiva, anti-simétrica e transitiva em X. Um conjunto parcialmente

Leia mais

Topologia e Análise Linear. Maria Manuel Clementino, 2013/14

Topologia e Análise Linear. Maria Manuel Clementino, 2013/14 Maria Manuel Clementino, 2013/14 2013/14 1 ESPAÇOS MÉTRICOS Espaço Métrico Um par (X, d) diz-se um espaço métrico se X for um conjunto e d : X X R + for uma aplicação que verifica as seguintes condições,

Leia mais

MAT0313 Álgebra III Lista 5

MAT0313 Álgebra III Lista 5 MAT0313 Álgebra III Lista 5 2008 1. (a) Se G é um grupo no qual (ab) i = a i b i, para três inteiros consecutivos i e para quaisquer a, b G, demonstre que G é abeliano. (b) Vale o mesmo resultado se (ab)

Leia mais