OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2

Tamanho: px
Começar a partir da página:

Download "OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2"

Transcrição

1 OPERANDO NÚMEROS INTEIROS COM O ÁBACO Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 Resumo O aprendizado das operações fundamentais, sendo elas a adição, a subtração, a multiplicação e a divisão, no conjunto dos números inteiros é extremamente importante para o estudo de Matemática. E é um conteúdo em que os estudantes costumam apresentar muitas dificuldades e dúvidas. Visando a facilitar o processo ensino-aprendizagem dessas operações no conjunto dos números inteiros, idealizamos o trabalho com material concreto como uma alternativa para atingir esse objetivo. Um instrumento de cálculo milenar muito utilizado, principalmente na cultura oriental, como ferramenta no estudo de Matemática é o ábaco. Em geral, é utilizado para estudar o sistema de numeração decimal e realizar operações entre números naturais, mas também pode servir como ferramenta no estudo das operações no conjunto dos números inteiros. O ábaco é composto por uma base e suas hastes, e ainda inúmeras argolas, para serem colocadas nas hastes, geralmente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar entre outras posições referentes ao sistema de numeração decimal. Nesse estudo, utilizaremos um ábaco formado por uma base e duas hastes, onde uma representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas. Fazendo uso de um roteiro de atividades, primeiramente faremos diversas representações de números inteiros nesse ábaco, salientando que um mesmo número possui infinitas formas de representação. Depois, ainda utilizando esse roteiro como material de apoio, serão apresentadas atividades onde faremos adição de números inteiros relacionando o acréscimo de argolas com a idéia de soma que todos possuem. A partir da reflexão e discussão sobre os resultados obtidos será deduzida a regra de sinais para essa operação. Relacionando a retirada de argolas do ábaco com a subtração e o acréscimo de grupos de argolas 1 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 2 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 572

2 no ábaco com a multiplicação, serão feitas as deduções para as regras de sinais das operações de subtração e multiplicação de números inteiros. Em todas as etapas acima indicadas o grupo será orientado para a percepção de que as regras de sinais dessas operações podem ser deduzidas a partir da análise dos resultados obtidos no estudo realizado com o ábaco. A utilização de material concreto para a construção do conhecimento envolvido nesse estudo permitirá uma maior participação do estudante no processo ensino-aprendizagem do que costuma ser no processo de ensino tradicional desse conteúdo. Acreditamos que a relação entre conteúdo, material e estudante quando também é física torna-se mais perceptível para os estudantes e, portanto mais eficaz. Assim, esperamos que este trabalho mostre uma forma alternativa de aprender Matemática, especialmente o tema proposto, que seja ao mesmo tempo prazerosa, agradável e participativa. Palavras-chave: ábaco; operações com números inteiros; ensino-aprendizagem. Introdução Nosso objetivo nesse mini-curso é propor uma metodologia de ensino para o processo ensino-aprendizagem das operações de adição, subtração e multiplicação de números inteiros. Esse conteúdo foi escolhido devido às dificuldades apresentadas pelos alunos para entender essas operações. Como alunas do Curso de Licenciatura em Matemática da PUCRS, realizamos, na disciplina de estágio, trabalho semelhante com alunos do Ensino Fundamental e pensamos, neste evento, socializar nossa experiência com outros professores e futuros professores. Segundo Teixeira (1993) a aprendizagem das operações com números inteiros precisa de ações e linguagens para ser assimilada. E de acordo com Nascimento (2002) é na 6ª série do Ensino Fundamental, quando os alunos iniciam o estudo dos números inteiros, onde os professores percebem que muitos não realizam adição e subtração corretamente. Visando a auxiliar no processo ensino-aprendizagem desse conteúdo, optamos por desenvolver uma metodologia a partir da idéia de Bianchini (2004) que sugere a utilização de um ábaco em sala de aula para trabalhar as operações no conjunto dos números inteiros. Duarte (2001, p.48) também diz que [...] o ábaco, uma criação do pensamento humano, surgido de uma necessidade colocada pela prática, traz implícitos em si alguns princípios e propriedades. A exploração desses princípios e propriedades contidos no ábaco traz a possibilidade de criação de novos instrumentos[...]. 573

3 O ábaco é um instrumento milenar utilizado para realizar cálculos, inicialmente criado e utilizado no oriente, hoje é mundialmente conhecido e frequentemente utilizado no processo ensino-aprendizagem do sistema de numeração decimal. O ábaco geralmente é composto por uma base, argolas e quatro hastes, comumente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar do sistema de numeração decimal. Esperamos que com nosso estudo possamos auxiliar outros professores de Matemática em sua atuação profissional. Metodologia Primeiramente, serão apresentados slides para discutir com os participantes o que é ábaco, para que ele serve e mostrar seus diferentes formatos. Depois, emprestaremos os materiais necessários para que os participantes, em duplas, montem um ábaco com uma base e duas hastes. Uma haste representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas Após a montagem desse ábaco, entregaremos a cada participante a primeira folha do roteiro de atividades que será utilizado durante o mini-curso, onde constarão as propostas da atividade e poderão ser registrados os resultados obtidos. O trabalho das duplas será acompanhado e orientado da seguinte forma: leitura das páginas do roteiro para todo o grupo, auxílio conforme as necessidades que surgirem durante a realização das atividades e exposição, comparação e debate dos resultados com todo o grupo. Após a primeira, cada página do roteiro será entregue à dupla somente quando a anterior tiver sido concluída. E ao final das atividades referentes a um mesmo objetivo, é o momento onde faremos uma reflexão sobre o trabalho com o grupo. No roteiro, inicialmente trabalharemos com a representação de números inteiros no ábaco. Assim como no ábaco convencional, o valor de uma argola depende de sua posição no ábaco, isto é, uma argola colocada na haste das unidades positivas representa uma unidade positiva ao passo que uma argola colocada na haste das unidades negativas representa uma unidade negativa. A representação de um único número inteiro pode ser feita de infinitas formas diferentes. Identificar essas formas é indispensável para realizar as operações e para tanto, consideraremos que uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas, ou seja, juntas elas somam zero. Concluída a etapa de representação dos números inteiros, iniciaremos com a operação de adição, onde com o acréscimo de argolas será realizada a operação. Depois da adição, trabalharemos associando a idéia de tirar argolas do ábaco com a operação subtração. Após, trabalharemos associando as idéias de acréscimo e grupo à operação multiplicação. Nas 574

4 etapas acima descritas através da análise e discussão dos resultados, os participantes deduzirão as regras de sinais utilizadas nessas operações no conjunto dos números inteiros. Ao término das atividades propostas pelo roteiro, serão exibidos em slides, alguns registros de um grupo da 6ª série do Ensino Fundamental que utilizou o ábaco na aprendizagem das operações com números inteiros. Esboço do roteiro de atividades que será utilizado Aprendendo com o ÁBACO Parte 1 Nessa atividade, nós iremos estudar novos números, e para isso utilizaremos um ábaco como o da figura abaixo. Nesse ábaco temos apenas duas hastes, uma para representar unidades positivas e outra para representar unidades negativas. Com ele, poderemos representar vários números diferentes. Para fazer isso corretamente precisamos prestar atenção a três regras: 1- uma argola na haste das unidades positivas representa uma unidade positiva; 2- uma argola na haste das unidades negativas representa uma unidade negativa; 3- uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas. Conhecendo as regras, vamos fazer algumas representações no ábaco. a) Se colocarmos 2 argolas na haste positiva, como ficaria o ábaco? Você pode escrever essa representação utilizando números conhecidos? Se sim, escreva. b) E se colocarmos 5 argolas na haste positiva e 2 argolas na haste negativa? 575

5 Você pode escrever, utilizando números conhecidos? Que número você usaria? c) E se não colocarmos argolas no ábaco? Que número poderíamos utilizar para representar o ábaco sem argolas? d) E se colocarmos 7 argolas na haste positiva e 7 argolas na haste negativa? Que número poderíamos utilizar para representar o ábaco? e) O número utilizado no item d) mudaria se acrescentássemos mais argolas na haste positiva e a mesma quantia de argolas na haste negativa? Por quê? f) Mas, se colocarmos 2 argolas na haste negativa, como ficaria o ábaco? Utilizando números, escreva essa representação. g) Coloque no ábaco agora, 4 argolas na haste positiva e 8 argolas na haste negativa, como ficou? Utilizando números, escreva essa representação. h) Agora que já sabemos representar vários números diferentes, que tal exercitar esse conhecimento! 1- Represente em seu ábaco, o número zero de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 576

6 2- Represente em seu ábaco, o número 4 de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 3- Represente em seu ábaco, o número -3 de cinco maneiras diferentes, e registre-as nas ilustrações abaixo. Muito bem! Agora, você já sabe representar números positivos e negativos no ábaco!!! Aprendendo com o ÁBACO Parte 2 Nessa atividade, nós utilizaremos as representações de números inteiros no ábaco para estudar algumas operações no conjunto dos números inteiros. 1- Represente em seu ábaco o número 3, depois acrescente duas argolas na haste positiva de seu 2- Represente em seu ábaco o número 4, depois acrescente três argolas na haste negativa de seu 3- Represente em seu ábaco o número -5, depois acrescente duas argolas na haste positiva de seu 4- Represente em seu ábaco o número -2, depois acrescente três argolas na haste negativa de seu 577

7 5- Represente em seu ábaco o número -6, depois acrescente oito argolas na haste positiva de seu 6- Represente em seu ábaco o número 2, depois acrescente quatro argolas na haste negativa de seu 7- Represente em seu ábaco o número -10, depois acrescente quatro argolas na haste positiva de seu 8- Represente em seu ábaco o número 12, depois acrescente catorze argolas na haste negativa de seu 9- Represente em seu ábaco o número -8, depois acrescente oito argolas na haste positiva de seu 10- Represente em seu ábaco o número 2, depois acrescente duas argolas na haste negativa de seu O que você fez nos itens de 1 a 6 pode ser representado através de símbolos conhecidos e muito utilizados em Matemática. Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior Que operação você acaba de descobrir no conjunto dos inteiros? Agora, faça com seu ábaco as somas indicadas abaixo. a) (+8) + (+4) = g) (-3) + (-7) = m) (+3) + (-7) = b) (+6) + (+2) = h) (-8) + (-5) = n) (+9) + (-6) = c) (+9) + (+3) = i) (-6) + (-4) = o) (+6) + (-8) = d) (+17) + (+11) = j) (-13) + (-8) = p) (+10) + (-6) = e) (+14) + (+13) = k) (-9) + (-14) = q) (-15) + (+8) = f) (+9) + (+12) = l) (-12) + (-3) = r) (-17) + (+11) = Analisando os resultados encontrados, o que você pode concluir? 578

8 Até agora, nós representávamos um número no ábaco e acrescentávamos mais algumas argolas, nesse momento nós faremos um pouco diferente. Lembre-se que um mesmo número pode ser representado de várias maneiras diferentes. 11- Represente em seu ábaco o número 3, depois retire duas argolas da haste positiva de seu 12- Represente em seu ábaco o número 4, depois retire três argolas da haste negativa de seu 13- Represente em seu ábaco o número -5, depois retire duas argolas da haste positiva de seu 14- Represente em seu ábaco o número -2, depois retire três argolas da haste negativa de seu 15- Represente em seu ábaco o número -6, depois retire oito argolas da haste positiva de seu 16- Represente em seu ábaco o número 2, depois retire quatro argolas da haste negativa de seu 17- Represente em seu ábaco o número -10, depois retire quatro argolas da haste positiva de seu 18- Represente em seu ábaco o número 9, depois retire 10 argolas da haste negativa de seu ábaco. Analisando o ábaco que número você obteve? 19- Represente em seu ábaco o número -8, depois retire oito argolas da haste positiva de seu 20- Represente em seu ábaco o número 2, depois retire duas argolas da haste negativa de seu Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior

9 Agora, faça com seu ábaco as somas indicadas abaixo. a) (+3) + (-2) = f) (+2) + (+4) = b) (+4) + (+3) = g) (-10) + (-4) = c) (-5) + (-2) = h) (+9) + (+10) = d) (-2) + (+3) = i) (-8) + (-8) = e) (-6) + (-8) = j) (+2) + (+2) = Comparando as equações 11, 12, 13, 14, 15, 16, 17, 18, 19 e 20 com as equações a, b, c, d, e, f, g, h, i e j. O que você pode concluir? Aprendendo com o ÁBACO Parte 3 Nessa atividade, estudaremos as regras de outra operação no conjunto dos números inteiros, a multiplicação. Assim como no conjunto dos números naturais, no conjunto dos números inteiros os termos de uma multiplicação são chamados de fatores. Para realizarmos a multiplicação de números inteiros utilizando o ábaco, vamos considerar que o primeiro fator indica: se positivo, quantos grupos do segundo fator devem ser colocados no ábaco; se negativo, quantos grupos do segundo fator devem ser retirados do ábaco. Sabendo disso, faça as multiplicações abaixo. a) (+2).(+3) = f) (-2).(-4) = k) (-2).(+3) = b) (+3).(+4) = g) (-4).(-3) = l) (-6).(+2) = c) (+1).(+10) = h) (-5).(-2) = m) (-1).(+10) = d) (+5).(+2) = i) (-7).(-1) = n) (+3).(-5) = e) (+4).(+2) = j) (-3).(-5) = o) (+4).(-2) = Analisando os resultados obtidos, o que você pode concluir? 580

10 Considerações Finais Assim, esperamos com esse trabalho alcançar o objetivo inicial de apresentar uma alternativa de metodologia para o ensino de operações com números inteiros que seja mais prazerosa, participativa e agradável. Bem como, ao concluir esse mini-curso, almejamos melhorar e aperfeiçoar nossa pesquisa e nosso material. Referências Bibliográficas BIANCHINI, Edwaldo; MIANI, Marcos. Construindo conhecimentos em Matemática. 6ª série. 1 ed. São Paulo: Moderna, DUARTE, N. O ensino de matemática na educação de adultos. 8 ed. São Paulo: Cortez, NASCIMENTO, R. A. Um estudo Sobre Obstáculos em Adição e Subtração de Números Inteiros Relativos: explorando a reta numérica dinâmica. Dissertação (mestrado em Educação) Departamento de Educação, Universidade Federal de Pernambuco, Recife, TEIXEIRA, L. R. M. Aprendizagem operatória de números inteiros: obstáculos e dificuldades. In: Pro-posições. v. 4, n. 1. Campinas: UNICAMP e Cortez Editora, 1993, p

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

ANEXO PLANO DE AÇÃO PROFESSOR

ANEXO PLANO DE AÇÃO PROFESSOR ANEXO 5.2.2. PLANO DE AÇÃO PROFESSOR Rua Bruxelas, nº 169 São Paulo - SP CEP 01259-020 Tel: (11) 2506-6570 escravonempensar@reporterbrasil.org.br www.escravonempensar.org.br O que é o plano de ação? O

Leia mais

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO 1 SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO Ariana Oliveira Gomes - ariana_emanuelle@hotmail.com-uesb Christiano Santos Lima Dias - khristiano_dias@hotmail.com-uesb Evaneila

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar no Ensino de Conceitos Químicos

Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar no Ensino de Conceitos Químicos UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PIBID-PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA BOLSISTA: LIANE ALVES DA SILVA Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES)

PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES) PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES) TARLIZ LIAO e ROSANE MELLO 1 PALAVRAS-CHAVE: MODELOS DE FRAÇÕES USO DO COMPUTADOR

Leia mais

O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA

O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA GT 05 Educação Matemática: tecnologias informáticas e educação à distância Resumo Prof a. Dr a. Julhane A. Thomas

Leia mais

O uso de materiais manipuláveis e a construção de conceitos matemáticos

O uso de materiais manipuláveis e a construção de conceitos matemáticos Formação Continuada - Matemática O uso de materiais manipuláveis e a construção de conceitos matemáticos Professores - 3º ano 2º Encontro 24/05/2016 Coordenadora Pedagógica: Adriana da Silva Santi MATERIAL

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Capítulo V Sistemas Numéricos

Capítulo V Sistemas Numéricos Capítulo V Sistemas Numéricos Introdução Em capítulos anteriores estudamos diversas funções lógicas. No próximo capítulo veremos que operações aritméticas como soma e subtração de números binários podem

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

JOGOS MATEMÁTICOS 2º ANO

JOGOS MATEMÁTICOS 2º ANO JOGOS MATEMÁTICOS 2º ANO ENCONTRE 1 Objetivos: - Realizar operações de adição e/ou subtração. - Estimular o cálculo mental. - Compor o número 1 com duas parcelas. Número de jogadores: 2 ou 4. Materiais:

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

EXPERIÊNCIAS DE UM MINICURSO DE MATERIAIS DIDÁTICOS PARA O ENSINO DA ANOTOMIA HUMANA NO ENSINO MÉDIO

EXPERIÊNCIAS DE UM MINICURSO DE MATERIAIS DIDÁTICOS PARA O ENSINO DA ANOTOMIA HUMANA NO ENSINO MÉDIO EXPERIÊNCIAS DE UM MINICURSO DE MATERIAIS DIDÁTICOS PARA O ENSINO DA ANOTOMIA HUMANA NO ENSINO MÉDIO Rosângela Miranda de Lima 1, Josilene Maria de Almeida2, Wellington do Nascimento Pereira3, Prof. Dr.Paulo

Leia mais

O remédio certo na dose certa!

O remédio certo na dose certa! O remédio certo na dose certa! Programa DC-DinsmoreCompass de Avaliação e Desenvolvimento de Competências em Gestão de Projetos A DC-DinsmoreCompass, com base em padrões de referência publicados pelo PMI

Leia mais

Programa Institucional de Bolsa de Iniciação à Docência PIBID. Subprojeto Matemática Campus Itaqui. RELATÓRIO I Data: 29/04/2015.

Programa Institucional de Bolsa de Iniciação à Docência PIBID. Subprojeto Matemática Campus Itaqui. RELATÓRIO I Data: 29/04/2015. RELATÓRIO I Data: 29/04/2015 Objetivo(s) Ampliar noções de Estatística; Analisar e generalizar gráficos e tabelas. Desenvolvimento da práxis pedagógica Moda:O elemento com maior frequência, ou seja, o

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Deixando de odiar Matemática Parte 5

Deixando de odiar Matemática Parte 5 Deixando de odiar Matemática Parte Adição e Subtração de Frações Multiplicação de frações Divisão de Frações 7 1 Adição e Subtração de Frações Para somar (ou subtrair) duas ou mais frações de mesmo denominador,

Leia mais

USO DO AUDIO-IMAGEM COMO FERRAMENTA DIDÁTICO PEDAGÓGICA EM ATIVIDADES EM SALA DE AULA.

USO DO AUDIO-IMAGEM COMO FERRAMENTA DIDÁTICO PEDAGÓGICA EM ATIVIDADES EM SALA DE AULA. USO DO AUDIO-IMAGEM COMO FERRAMENTA DIDÁTICO PEDAGÓGICA EM ATIVIDADES EM SALA DE AULA. AREND, Michele Catherin 1 ; BASTOS, Maycon Fernando 2 1 Instituto Federal Catarinense IFC. Camboriú/SC. INTRODUÇÃO

Leia mais

Sala de Jogos da matemática à interdisciplinaridade

Sala de Jogos da matemática à interdisciplinaridade Sala de Jogos da matemática à interdisciplinaridade Orientadora: Eliane Lopes Werneck de Andrade Matrícula SIAPE: 1697146 Orientada: Vitória Mota Araújo Matrícula UFF: 000105/06 Palavras-chave: Interdisciplinaridade,

Leia mais

UNIVERSIDADE ESTADUAL DO CENTRO-OESTE - UNICENTRO CURSO DE PÓS GRADUAÇÃO EM MÍDIAS NA EDUCAÇÃO JULIANA LEME MOURÃO ORIENTADOR: PAULO GUILHERMETI

UNIVERSIDADE ESTADUAL DO CENTRO-OESTE - UNICENTRO CURSO DE PÓS GRADUAÇÃO EM MÍDIAS NA EDUCAÇÃO JULIANA LEME MOURÃO ORIENTADOR: PAULO GUILHERMETI UNIVERSIDADE ESTADUAL DO CENTRO-OESTE - UNICENTRO CURSO DE PÓS GRADUAÇÃO EM MÍDIAS NA EDUCAÇÃO JULIANA LEME MOURÃO ORIENTADOR: PAULO GUILHERMETI SIMULADORES VIRTUAIS ALIADOS AO ENSINO DE FÍSICA GOIOERÊ

Leia mais

3º Ano do Ensino Médio. Aula nº08

3º Ano do Ensino Médio. Aula nº08 Nome: Ano: º Ano do E.M. Escola: Data: / / 1. Conceitos básicos 3º Ano do Ensino Médio Aula nº08 Assunto: Funções, Equações e Inequações do 1º grau Introdução: Representação de uma equação com 2 variáveis

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

TRABALHO DE CONCLUSÃO DE CURSO EM ENGENHARIA FLORESTAL (TCC EF)

TRABALHO DE CONCLUSÃO DE CURSO EM ENGENHARIA FLORESTAL (TCC EF) TRABALHO DE CONCLUSÃO DE CURSO EM ENGENHARIA FLORESTAL (TCC EF) I. DEFINIÇÃO Em atendimento às Diretrizes Curriculares do Ministério da Educação, todo aluno do Curso de Engenharia Florestal deverá, obrigatoriamente,

Leia mais

Circuitos Série e a Associação Série de Resistores

Circuitos Série e a Associação Série de Resistores 1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis

Leia mais

Cronograma de Projeto

Cronograma de Projeto Cronograma de Projeto O que é um Cronograma Calendário de realização para um plano. - Definição de datas de início e fim para as atividades do projeto. - Não pode ser estabelecido antes que se tenha um

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS ª Série Cálculo Numérico Engenharia Civil A atividade prática supervisionada (ATPS) é um procedimento metodológico de ensino-aprendizagem desenvolvido por meio de um

Leia mais

Números e Operações. Nome: N.ª: Ano: Turma:

Números e Operações. Nome: N.ª: Ano: Turma: MATEMÁTICA 3º CICLO FICHA 1 Números e Operações Números Racionais Nome: N.ª: Ano: Turma: Data: / / 20 Os números 1, 2, 3, 4, 5, chamam-se números naturais. O conjunto dos números naturais representa-se

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo

Leia mais

Período ATIVIDADE OBJETIVO Responsabilidade Local

Período ATIVIDADE OBJETIVO Responsabilidade Local Período ATIVIDADE OBJETIVO Responsabilidade Local Durante todo Estágio (Teórica e prática) Março a junho 2013 Mês de março e abril de 2013 25 a 31 março Preparação para o ingresso no Estágio Leitura obrigatória

Leia mais

Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal

Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal Sistemas Digitais Circuitos Aritméticos e Representação de Números com Sinal João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Circuitos Aritméticos Circuitos aritméticos são

Leia mais

Meditação Laica Educacional uma experiência de transformação. Professor Marcelo Galvan Escola Municipal Presidente Antônio Carlos 9ª CRE

Meditação Laica Educacional uma experiência de transformação. Professor Marcelo Galvan Escola Municipal Presidente Antônio Carlos 9ª CRE Meditação Laica Educacional uma experiência de transformação Professor Marcelo Galvan Escola Municipal Presidente Antônio Carlos 9ª CRE RESUMO O presente trabalho apresenta os resultados da aplicação da

Leia mais

O que são custos de transformação?

O que são custos de transformação? O que são custos de transformação? A forma encontrada pelo método UEP para analisar os custos da empresa é através da simplificação do modelo de cálculo da produção do período determinando uma unidade

Leia mais

04 Fórmulas Matemáticas

04 Fórmulas Matemáticas HEWLETT-PACKARD 04 Fórmulas Matemáticas [Digite o subtítulo do documento] Prof. Rodrigo [Digite aqui o resumo do documento. Em geral, o resumo é uma breve descrição do conteúdo do documento. Digite aqui

Leia mais

O USO DO STOP MOTION COMO RECURSO PEDAGÓGICO PARA TORNAR MAIS LÚDICO O ENSINO DE BIOQUÍMICA NO ENSINO MÉDIO

O USO DO STOP MOTION COMO RECURSO PEDAGÓGICO PARA TORNAR MAIS LÚDICO O ENSINO DE BIOQUÍMICA NO ENSINO MÉDIO O USO DO STOP MOTION COMO RECURSO PEDAGÓGICO PARA TORNAR MAIS LÚDICO O ENSINO DE BIOQUÍMICA NO ENSINO MÉDIO Hadassa Carolinny Soares de Oliveira (UFPE/CAV) Gabriel Henrique de Lima (UFPE/CAV) Josely Alves

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

PROGRAMAÇÃO I. Introdução

PROGRAMAÇÃO I. Introdução PROGRAMAÇÃO I Introdução Introdução 2 Princípios da Solução de Problemas Problema 1 Fase de Resolução do Problema Solução na forma de Algoritmo Solução como um programa de computador 2 Fase de Implementação

Leia mais

MÓDULO 3 - CONTAR HISTÓRIAS COMO RECURSO PEDAGÓGICO E SENSIBILIZAÇÃO DE. Competências a serem Desenvolvidas:

MÓDULO 3 - CONTAR HISTÓRIAS COMO RECURSO PEDAGÓGICO E SENSIBILIZAÇÃO DE. Competências a serem Desenvolvidas: MÓDULO 3 - CONTAR HISTÓRIAS COMO RECURSO PEDAGÓGICO E SENSIBILIZAÇÃO DE EDUCADORES: INCLUSÃO DE PESSOAS COM DEFICIÊNCIAS Competências a serem Desenvolvidas: O participante desenvolve o recurso de contar

Leia mais

PROJETO PROLICEN INFORMÁTICA NA ESCOLA : A FORMAÇÃO DO PROFESSOR DE MATEMÁTICA E O ENSINO MÉDIO PÚBLICO

PROJETO PROLICEN INFORMÁTICA NA ESCOLA : A FORMAÇÃO DO PROFESSOR DE MATEMÁTICA E O ENSINO MÉDIO PÚBLICO PROJETO PROLICEN INFORMÁTICA NA ESCOLA : A FORMAÇÃO DO PROFESSOR DE MATEMÁTICA E O ENSINO MÉDIO PÚBLICO Formação de Professores e Educação Matemática (FPM) GT 08 RESUMO Melquisedec Anselmo da Costa AZEVEDO

Leia mais

As Novas Tecnologias no Processo Ensino-Aprendizagem da Matemática

As Novas Tecnologias no Processo Ensino-Aprendizagem da Matemática A UTILIZAÇÃO DE BLOGs COMO RECURSO PEDAGÓGICO NA EDUCAÇÃO MATEMÁTICA Maria Angela Oliveira Oliveira Universidade Estadual Paulista Julio de Mesquita Filho matematicangela2007@yahoo.com.br Resumo: O Mini-Curso

Leia mais

COMUNIDADE VIRTUAL DE APRENDIZAGEM

COMUNIDADE VIRTUAL DE APRENDIZAGEM COMUNIDADE VIRTUAL DE APRENDIZAGEM ATIVIDADES Atividade Extra - Fórum SIEPE (Compensação da carga horária do dia 08/09/2012) A atividade foi postada no módulo X Atividade Módulo X - Fórum Agenda O cursista

Leia mais

PRINCÍPIOS DA ENGENHARIA DE SOFTWARE- AULA 06. Prof.: Franklin M. Correia

PRINCÍPIOS DA ENGENHARIA DE SOFTWARE- AULA 06. Prof.: Franklin M. Correia 1 PRINCÍPIOS DA ENGENHARIA DE SOFTWARE- AULA 06 Prof.: Franklin M. Correia NOS CAPÍTULOS ANTERIORES... Atividades de Gerenciamento Planejamento de Projetos Programação de Projeto O QUE TEMOS PARA HOJE!!

Leia mais

RESOLUÇÃO DE PROBLEMAS E OPERAÇÕES

RESOLUÇÃO DE PROBLEMAS E OPERAÇÕES Formação Continuada - Matemática RESOLUÇÃO DE PROBLEMAS E OPERAÇÕES Professores - 5º ano 11/09/2015 Coordenadora Pedagógica: Adriana da Silva Santi Defasagens ou dificuldades em quais conteúdos você acha

Leia mais

Cálculo de Soma de Verificação do User Datagram Protocol

Cálculo de Soma de Verificação do User Datagram Protocol Resumo Cálculo de Soma de Verificação do User Datagram Protocol Othon Marcelo Nunes Batista Mestre em Informática othonb@yahoo.com Mesmo sendo um protocolo que nada garante, o UDP tem um campo no datagrama

Leia mais

MULTILETRAMENTOS EM ESCOLAS PÚBLICAS: UMA ALTERNATIVA PARA O ENSINO FUNDAMENTAL INTRODUÇÃO

MULTILETRAMENTOS EM ESCOLAS PÚBLICAS: UMA ALTERNATIVA PARA O ENSINO FUNDAMENTAL INTRODUÇÃO MULTILETRAMENTOS EM ESCOLAS PÚBLICAS: UMA ALTERNATIVA PARA O ENSINO FUNDAMENTAL Alex Junior Bilhoto Faria 1, Yuka Garcia Kinoshita 2, Winnie Mandela de Paula Raimundo 3 Karina Oliveira Silva 4 Marieli

Leia mais

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos

NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos 1 NÚMEROS E OPERAÇÕES Sistema de Numeração Decimal O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional Na base 10, dispomos de 10 algarismos

Leia mais

Manual Geral de Aplicação Universal Entrada 2008

Manual Geral de Aplicação Universal Entrada 2008 Universal Entrada 2008 Programa Programa - Manual do Aplicador Teste Universal - 2008 Teste Cognitivo Leitura/Escrita e Matemática Caro alfabetizador(a): Se você está recebendo este material, é porque

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

Foto Carga Horária: 15h presenciais. Facilitador: Sandro Barros. Objetivo:

Foto Carga Horária: 15h presenciais. Facilitador: Sandro Barros. Objetivo: Foto Calabor@tiva Carga Horária: 15h presenciais Facilitador: Sandro Barros Objetivo: O objetivo é estimular crianças e jovens a utilizar a linguagem fotográfica como elemento alternativo e visual, despertando

Leia mais

PROVA BRASIL: LEITURA E INTERPRETAÇÃO

PROVA BRASIL: LEITURA E INTERPRETAÇÃO PROVA BRASIL: LEITURA E INTERPRETAÇÃO Pamella Soares Rosa Resumo:A Prova Brasil é realizada no quinto ano e na oitava série do Ensino Fundamental e tem como objetivo medir o Índice de Desenvolvimento da

Leia mais

ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA SILVA PLANO DE AÇÃO 2014

ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA SILVA PLANO DE AÇÃO 2014 ESCOLA ESTADUAL IRMAN RIBEIRO DE ALMEIDA SILVA PLANO DE AÇÃO 2014 NOVA ANDRADINA MS DEZEMBRO/2013 ESCOLA IRMAN RIBEIRO DE ALMEIDA SILVA PLANO DE AÇÃO 2014 Plano de ações previstas a serem executadas no

Leia mais

ANALIZANDO A CONSTRUÇÃO DE GRÁFICOS DE ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL

ANALIZANDO A CONSTRUÇÃO DE GRÁFICOS DE ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL ANALIZANDO A CONSTRUÇÃO DE GRÁFICOS DE ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL Betânia Evangelista mbevangelista@hotmail.com Fabiola Santos M.de A. Oliveira fabiprestativa@hotmail.com Paulo Marcos Ribeiro

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO. Carga Horária: 54h Créditos: 3 Fase: 2ª

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO. Carga Horária: 54h Créditos: 3 Fase: 2ª UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO I IDENTIFICAÇÃO Curso: Pedagogia a Distância Departamento: Departamento de Pedagogia a Distância Disciplina:

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

FONTES E FORMAS DE ENERGIA

FONTES E FORMAS DE ENERGIA FORMAÇÃO CONTINUADA PARA PROFESSORES DE CIÊNCIAS BIOLÓGICAS FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROFESSOR/CURSISTA: Armanda Teixeira Ferreira Gonçalves COLÉGIO: Estadual Bairro Senhor Do Bonfim Turma:

Leia mais

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que

25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,

Leia mais

O USO DO JOGO CORRIDA DAS FUNÇÕES E A RELAÇÃO ENTRE A FUNÇÃO LOGARÍTMICA E FUNÇÃO EXPONENCIAL

O USO DO JOGO CORRIDA DAS FUNÇÕES E A RELAÇÃO ENTRE A FUNÇÃO LOGARÍTMICA E FUNÇÃO EXPONENCIAL O USO DO JOGO CORRIDA DAS FUNÇÕES E A RELAÇÃO ENTRE A FUNÇÃO LOGARÍTMICA E FUNÇÃO EXPONENCIAL Amanda Gonçalves Figueiredo Instituto Federal do Rio de Janeiro - IFRJ leona_shyla@hotmail.com 1. INTRODUÇÃO

Leia mais

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE ESTADO DA EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE ESTADO DA EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL 1 Título: Localizando-se... 2 Autora: Adriana Regina Perez Rech 3 Docente: Lisiane Cristina Amplatz 4 Aplicativo utilizado: Geogebra 5 Disciplina: Matemática 6 Objetivos / Expectativas de aprendizagem:

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

I Conferência Latino-Americana de GeoGebra

I Conferência Latino-Americana de GeoGebra I Conferência Latino-Americana de GeoGebra GeoGebra e Educação Matemática: pesquisa, experiências e perspectivas O GEOGEBRA NO ENSINO DE MATEMÁTICA UM RELATO SOBRE O USO DO GEOGEBRA NO ESTUDO DE ALGUNS

Leia mais

Mini-curso. Formação de professores e avaliação: instrumentos para avaliação processual em sala de aula

Mini-curso. Formação de professores e avaliação: instrumentos para avaliação processual em sala de aula Mini-curso Formação de professores e avaliação: instrumentos para avaliação processual em sala de aula Professor responsável Prof. Dr. Daniel Abud Seabra Matos (UFOP) Mariana 2014 2 Prezados/as professores/as,

Leia mais

O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID

O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID O jogo do Mico no ensino das Funções Orgânicas: o lúdico como estratégia no PIBID Danilo Augusto Matos 1, Vinícius Nunes dos Santos 1, Daniela Marques Alexandrino 2*, Maria Celeste Passos Silva Nascimento

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 8º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais

Implementação de um serviço de correio eletrônico na Intranet do Pólo de Touros utilizando o ambiente SQUIRELMAIL e POSTFIX em um Servidor Linux

Implementação de um serviço de correio eletrônico na Intranet do Pólo de Touros utilizando o ambiente SQUIRELMAIL e POSTFIX em um Servidor Linux UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA AGRÍCOLA DE JUNDIAÍ - EAJ CURSO TÉCNICO DE INFORMÁTICA Projeto das Disciplinas de Sistemas Operacionais de Redes e Projeto de Redes Implementação de um

Leia mais

A UTILIZAÇÃO DO SOFTWARE GEOGEBRA E SUAS CONTRIBUIÇÕES NO ENSINO E NA APRENDIZAGEM EM MATEMÁTICA

A UTILIZAÇÃO DO SOFTWARE GEOGEBRA E SUAS CONTRIBUIÇÕES NO ENSINO E NA APRENDIZAGEM EM MATEMÁTICA A formação docente em Ciência, Tecnologia, Sociedade e Educação Ambiental A UTILIZAÇÃO DO SOFTWARE GEOGEBRA E SUAS CONTRIBUIÇÕES NO ENSINO E NA APRENDIZAGEM EM MATEMÁTICA Rosimeyre Gomes da Silva Merib

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

Regularização de Estágios Obrigatórios 2011 LEI , DE 25 DE SETEMBRO DE 2008

Regularização de Estágios Obrigatórios 2011 LEI , DE 25 DE SETEMBRO DE 2008 LEI 11.788, DE 25 DE SETEMBRO DE 2008 Artigo 2º, parágrafo 1º, estágio obrigatório é aquele definido como tal no projeto do curso, cuja carga horária é requisito para aprovação e obtenção de diploma. Artigo

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

ESCOLA ESTADUAL DR. MARTINHO MARQUES VERA LUCIA DOS SANTOS GIVANILZA ALVES DOS SANTOS MARIA APARECIDA CRIVELI SIRLEI R. C. DO P.

ESCOLA ESTADUAL DR. MARTINHO MARQUES VERA LUCIA DOS SANTOS GIVANILZA ALVES DOS SANTOS MARIA APARECIDA CRIVELI SIRLEI R. C. DO P. ESCOLA ESTADUAL DR. MARTINHO MARQUES VERA LUCIA DOS SANTOS GIVANILZA ALVES DOS SANTOS MARIA APARECIDA CRIVELI SIRLEI R. C. DO P. VITORINO SÓLIDOS GEOMÉTRICOS E OS POLIEDROS DE PLATÃO TAQUARUSSU = MS AGOSTO

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Relatório de autoavaliação do Instituto Superior de Educação e Trabalho ISET

Relatório de autoavaliação do Instituto Superior de Educação e Trabalho ISET Relatório de autoavaliação do Instituto Superior de Educação e Trabalho ISET No âmbito do processo de autoavaliação procurámos captar as opiniões de alunos e estudantes. Foi assim solicitado a estudantes

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

Preparando um projeto de pesquisa - ideias apresentadas no texto de Raul Wazlawick Metodologia de Pesquisa para Ciência da Com

Preparando um projeto de pesquisa - ideias apresentadas no texto de Raul Wazlawick Metodologia de Pesquisa para Ciência da Com Preparando um projeto de pesquisa - ideias apresentadas no texto de Raul Wazlawick Metodologia de Pesquisa para Ciência da Computação Maria Angélica de Oliveira Camargo Brunetto Universidade Estadual de

Leia mais

A TECNOLOGIA DO ENSINO MÉDIO: UMA FERRAMENTA DIDÁTICO-PEDAGÓGICA Rosimeire Cabral Romeiro COSTA 1 Mário Augusto Andreta CARVALHO 2

A TECNOLOGIA DO ENSINO MÉDIO: UMA FERRAMENTA DIDÁTICO-PEDAGÓGICA Rosimeire Cabral Romeiro COSTA 1 Mário Augusto Andreta CARVALHO 2 A TECNOLOGIA DO ENSINO MÉDIO: UMA FERRAMENTA DIDÁTICO-PEDAGÓGICA Rosimeire Cabral Romeiro COSTA 1 Mário Augusto Andreta CARVALHO 2 RESUMO: Este artigo originou-se da minha participação no projeto Tecnologia

Leia mais

PLANO DE CARREIRA CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR (CONT.) CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR. Tripé: Sustentação conceitual;

PLANO DE CARREIRA CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR (CONT.) CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR. Tripé: Sustentação conceitual; CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR (CONT.) Consultoria Organizacional Prof. Ms. Carlos William de Carvalho CONSOLIDAÇÃO DO PROFISSIONAL COMO CONSULTOR 2.2 FORMA DE ATUAÇÃO PROFISSIONAL: EMPRESA

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

JUSPODIVM

JUSPODIVM MATERIAL ETRA COMENTÁRIOS DAS QUESTÕES DA PROVA AFRF - 2005 31 - Ana quer vender um apartamento por R$ 400.000,00 à vista ou financiado pelo sistema de juros compostos a taxa de 5% ao semestre. Paulo está

Leia mais

ESCOLA ESTADUAL TENENTE JOSÉ LUCIANO Projeto: JOGAR, DIVERTIR E APRENDER COM A DONA MATEMÁTICA

ESCOLA ESTADUAL TENENTE JOSÉ LUCIANO Projeto: JOGAR, DIVERTIR E APRENDER COM A DONA MATEMÁTICA ESCOLA ESTADUAL TENENTE JOSÉ LUCIANO Projeto: JOGAR, DIVERTIR E APRENDER COM A DONA MATEMÁTICA - 2015...o brinquedo desperta interesse e curiosidade... Rubem Alves Autora: Rita Siqueira Público alvo: alunos

Leia mais

Informatização de inscrições em treinamentos via Portal SAP

Informatização de inscrições em treinamentos via Portal SAP 1 2 Informatização de inscrições em treinamentos via Portal SAP Autores: Fabiano Zaché Nayara Teixeira Unidade: R-DDP Chefia: Renata Faco Oportunidade Percebida O desenvolvimento de uma ferramenta informatizada

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

DESAFIOS E PRÁTICAS PEDAGÓGICAS NO 1º ANO DO PROGRAMA BÁSICO DE

DESAFIOS E PRÁTICAS PEDAGÓGICAS NO 1º ANO DO PROGRAMA BÁSICO DE DESAFIOS E POSSIBILIDADES NAS PRÁTICAS PEDAGÓGICAS ATUANDO COM CRIANÇAS NO 1º ANO DO PROGRAMA BÁSICO DE ALFABETIZAÇÃO CILIANE C. FABRI NÃO É NO SILÊNCIO QUE OS HOMENS SE FAZEM, MAS NAS PALAVRAS, NO TRABALHO,

Leia mais

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5

Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 4 Circuitos retificadores 2 Objetivos Estudo e montagem de diferentes circuitos retificadores. 3 Fundamentos

Leia mais

Atividades práticas-pedagógicas desenvolvidas em espaços não formais como parte do currículo da escola formal

Atividades práticas-pedagógicas desenvolvidas em espaços não formais como parte do currículo da escola formal Atividades práticas-pedagógicas desenvolvidas em espaços não formais como parte do currículo da escola formal Linha de Pesquisa: LINHA DE PESQUISA E DE INTERVENÇÃO METODOLOGIAS DA APRENDIZAGEM E PRÁTICAS

Leia mais

Modelagem de Sistemas Web. Metodologias para o desenvolvimento de sistemas web

Modelagem de Sistemas Web. Metodologias para o desenvolvimento de sistemas web Modelagem de Sistemas Web Aula 5 Metodologias para o desenvolvimento de sistemas web Metodologias para o desenvolvimento de sistemas web WebML Fontes: Itana Gimenes e Bruno Souza Et Estrutura t do WebML

Leia mais

UNIVERSIDADE ESTADUAL DO CENTRO-OESTE UNICENTRO MÍDIAS NA EDUCAÇÃO CHRISTIANE MAIA DA SILVEIRA ORIENTADOR: PROFESSOR PAULO GUILHERMETI

UNIVERSIDADE ESTADUAL DO CENTRO-OESTE UNICENTRO MÍDIAS NA EDUCAÇÃO CHRISTIANE MAIA DA SILVEIRA ORIENTADOR: PROFESSOR PAULO GUILHERMETI UNIVERSIDADE ESTADUAL DO CENTRO-OESTE UNICENTRO MÍDIAS NA EDUCAÇÃO CHRISTIANE MAIA DA SILVEIRA ORIENTADOR: PROFESSOR PAULO GUILHERMETI O USO DAS MÍDIAS COMO FERRAMENTA DE ENSINO NO COTIDIANO ESCOLAR POLO

Leia mais

IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CONTEÚDO DIGITAL PARA O USO NA EDUCAÇÃO DE PESSOAS COM NECESSIDADES ESPECIAIS

IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CONTEÚDO DIGITAL PARA O USO NA EDUCAÇÃO DE PESSOAS COM NECESSIDADES ESPECIAIS IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CONTEÚDO DIGITAL PARA O USO NA EDUCAÇÃO DE PESSOAS COM NECESSIDADES ESPECIAIS Júlio César Neis 1 ; Rosangela Aguiar Adam 2 ; Tiago Lopes Gonçalves 3 ; Vera Regina Mazureck

Leia mais

Exemplo de Utilização das Classes Calendar e Date

Exemplo de Utilização das Classes Calendar e Date Exemplo de Utilização das Classes Calendar e Date Há algum tempo, na programação em Java, utilizava-se para manipular datas, única e exclusivamente, a classe Date. Porém, com a evolução da linguagem esta

Leia mais

Desenho Técnico. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010

Desenho Técnico. Prof. Aline Fernandes de Oliveira, Arquiteta Urbanista 2010 de Oliveira, Arquiteta Urbanista 2010 O QUE VIMOS AULA PASSADA?? Traçados das projeções - VF Traçados das projeções - VS Traçados das projeções - VS Traçados das projeções - VS Traçados das projeções VLE

Leia mais

Metodologias de PETI. Prof. Marlon Marcon

Metodologias de PETI. Prof. Marlon Marcon Metodologias de PETI Prof. Marlon Marcon PETI O PETI é composto de: Planejamento Estratégico da organização, que combina os objetivos e recursos da organização com seus mercados em processo de transformação

Leia mais

TRIANGONÓPOLIS: A CIDADE DA LEI DOS SENOS E LEI DOS COSSENOS

TRIANGONÓPOLIS: A CIDADE DA LEI DOS SENOS E LEI DOS COSSENOS TRIANGONÓPOLIS: A CIDADE DA LEI DOS SENOS E LEI DOS COSSENOS Selau, Suzana Scandolara 1 ; Cardoso, Marleide Coan 2 3 Instituto Federal Catarinense Campus Avançado Sombrio/SC INTRODUÇÃO Este trabalho é

Leia mais

TECNOLOGIA WEB. Formação: o Bacharel em Sistemas de Informações (SI); o MBA em Tecnologia da Informação e Comunicação (TIC).

TECNOLOGIA WEB. Formação: o Bacharel em Sistemas de Informações (SI); o MBA em Tecnologia da Informação e Comunicação (TIC). DOCENTE PROFESSOR CELSO CANDIDO Formação: o Bacharel em Sistemas de Informações (SI); o MBA em Tecnologia da Informação e Comunicação (TIC). Conhecimentos: o Web Designer; o Arquitetura de Máquina; o Implementação

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA III - NÚMEROS E OPERAÇÕES / ÁLGEBRA E FUNÇÕES Este é o tema de maior prioridade para a Matemática

Leia mais

PIC. Componentes da PIC 1. o bimestre. Produção Integrada ao Conteúdo

PIC. Componentes da PIC 1. o bimestre. Produção Integrada ao Conteúdo PIC Produção Integrada ao Conteúdo 6. o ano Ensino Fundamental Componentes da PIC 1. o bimestre Arte Ciências Geografia História A nota de PIC é a média entre a nota de tarefa (avaliação do conjunto de

Leia mais