OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2"

Transcrição

1 OPERANDO NÚMEROS INTEIROS COM O ÁBACO Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 Resumo O aprendizado das operações fundamentais, sendo elas a adição, a subtração, a multiplicação e a divisão, no conjunto dos números inteiros é extremamente importante para o estudo de Matemática. E é um conteúdo em que os estudantes costumam apresentar muitas dificuldades e dúvidas. Visando a facilitar o processo ensino-aprendizagem dessas operações no conjunto dos números inteiros, idealizamos o trabalho com material concreto como uma alternativa para atingir esse objetivo. Um instrumento de cálculo milenar muito utilizado, principalmente na cultura oriental, como ferramenta no estudo de Matemática é o ábaco. Em geral, é utilizado para estudar o sistema de numeração decimal e realizar operações entre números naturais, mas também pode servir como ferramenta no estudo das operações no conjunto dos números inteiros. O ábaco é composto por uma base e suas hastes, e ainda inúmeras argolas, para serem colocadas nas hastes, geralmente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar entre outras posições referentes ao sistema de numeração decimal. Nesse estudo, utilizaremos um ábaco formado por uma base e duas hastes, onde uma representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas. Fazendo uso de um roteiro de atividades, primeiramente faremos diversas representações de números inteiros nesse ábaco, salientando que um mesmo número possui infinitas formas de representação. Depois, ainda utilizando esse roteiro como material de apoio, serão apresentadas atividades onde faremos adição de números inteiros relacionando o acréscimo de argolas com a idéia de soma que todos possuem. A partir da reflexão e discussão sobre os resultados obtidos será deduzida a regra de sinais para essa operação. Relacionando a retirada de argolas do ábaco com a subtração e o acréscimo de grupos de argolas 1 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 2 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 572

2 no ábaco com a multiplicação, serão feitas as deduções para as regras de sinais das operações de subtração e multiplicação de números inteiros. Em todas as etapas acima indicadas o grupo será orientado para a percepção de que as regras de sinais dessas operações podem ser deduzidas a partir da análise dos resultados obtidos no estudo realizado com o ábaco. A utilização de material concreto para a construção do conhecimento envolvido nesse estudo permitirá uma maior participação do estudante no processo ensino-aprendizagem do que costuma ser no processo de ensino tradicional desse conteúdo. Acreditamos que a relação entre conteúdo, material e estudante quando também é física torna-se mais perceptível para os estudantes e, portanto mais eficaz. Assim, esperamos que este trabalho mostre uma forma alternativa de aprender Matemática, especialmente o tema proposto, que seja ao mesmo tempo prazerosa, agradável e participativa. Palavras-chave: ábaco; operações com números inteiros; ensino-aprendizagem. Introdução Nosso objetivo nesse mini-curso é propor uma metodologia de ensino para o processo ensino-aprendizagem das operações de adição, subtração e multiplicação de números inteiros. Esse conteúdo foi escolhido devido às dificuldades apresentadas pelos alunos para entender essas operações. Como alunas do Curso de Licenciatura em Matemática da PUCRS, realizamos, na disciplina de estágio, trabalho semelhante com alunos do Ensino Fundamental e pensamos, neste evento, socializar nossa experiência com outros professores e futuros professores. Segundo Teixeira (1993) a aprendizagem das operações com números inteiros precisa de ações e linguagens para ser assimilada. E de acordo com Nascimento (2002) é na 6ª série do Ensino Fundamental, quando os alunos iniciam o estudo dos números inteiros, onde os professores percebem que muitos não realizam adição e subtração corretamente. Visando a auxiliar no processo ensino-aprendizagem desse conteúdo, optamos por desenvolver uma metodologia a partir da idéia de Bianchini (2004) que sugere a utilização de um ábaco em sala de aula para trabalhar as operações no conjunto dos números inteiros. Duarte (2001, p.48) também diz que [...] o ábaco, uma criação do pensamento humano, surgido de uma necessidade colocada pela prática, traz implícitos em si alguns princípios e propriedades. A exploração desses princípios e propriedades contidos no ábaco traz a possibilidade de criação de novos instrumentos[...]. 573

3 O ábaco é um instrumento milenar utilizado para realizar cálculos, inicialmente criado e utilizado no oriente, hoje é mundialmente conhecido e frequentemente utilizado no processo ensino-aprendizagem do sistema de numeração decimal. O ábaco geralmente é composto por uma base, argolas e quatro hastes, comumente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar do sistema de numeração decimal. Esperamos que com nosso estudo possamos auxiliar outros professores de Matemática em sua atuação profissional. Metodologia Primeiramente, serão apresentados slides para discutir com os participantes o que é ábaco, para que ele serve e mostrar seus diferentes formatos. Depois, emprestaremos os materiais necessários para que os participantes, em duplas, montem um ábaco com uma base e duas hastes. Uma haste representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas Após a montagem desse ábaco, entregaremos a cada participante a primeira folha do roteiro de atividades que será utilizado durante o mini-curso, onde constarão as propostas da atividade e poderão ser registrados os resultados obtidos. O trabalho das duplas será acompanhado e orientado da seguinte forma: leitura das páginas do roteiro para todo o grupo, auxílio conforme as necessidades que surgirem durante a realização das atividades e exposição, comparação e debate dos resultados com todo o grupo. Após a primeira, cada página do roteiro será entregue à dupla somente quando a anterior tiver sido concluída. E ao final das atividades referentes a um mesmo objetivo, é o momento onde faremos uma reflexão sobre o trabalho com o grupo. No roteiro, inicialmente trabalharemos com a representação de números inteiros no ábaco. Assim como no ábaco convencional, o valor de uma argola depende de sua posição no ábaco, isto é, uma argola colocada na haste das unidades positivas representa uma unidade positiva ao passo que uma argola colocada na haste das unidades negativas representa uma unidade negativa. A representação de um único número inteiro pode ser feita de infinitas formas diferentes. Identificar essas formas é indispensável para realizar as operações e para tanto, consideraremos que uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas, ou seja, juntas elas somam zero. Concluída a etapa de representação dos números inteiros, iniciaremos com a operação de adição, onde com o acréscimo de argolas será realizada a operação. Depois da adição, trabalharemos associando a idéia de tirar argolas do ábaco com a operação subtração. Após, trabalharemos associando as idéias de acréscimo e grupo à operação multiplicação. Nas 574

4 etapas acima descritas através da análise e discussão dos resultados, os participantes deduzirão as regras de sinais utilizadas nessas operações no conjunto dos números inteiros. Ao término das atividades propostas pelo roteiro, serão exibidos em slides, alguns registros de um grupo da 6ª série do Ensino Fundamental que utilizou o ábaco na aprendizagem das operações com números inteiros. Esboço do roteiro de atividades que será utilizado Aprendendo com o ÁBACO Parte 1 Nessa atividade, nós iremos estudar novos números, e para isso utilizaremos um ábaco como o da figura abaixo. Nesse ábaco temos apenas duas hastes, uma para representar unidades positivas e outra para representar unidades negativas. Com ele, poderemos representar vários números diferentes. Para fazer isso corretamente precisamos prestar atenção a três regras: 1- uma argola na haste das unidades positivas representa uma unidade positiva; 2- uma argola na haste das unidades negativas representa uma unidade negativa; 3- uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas. Conhecendo as regras, vamos fazer algumas representações no ábaco. a) Se colocarmos 2 argolas na haste positiva, como ficaria o ábaco? Você pode escrever essa representação utilizando números conhecidos? Se sim, escreva. b) E se colocarmos 5 argolas na haste positiva e 2 argolas na haste negativa? 575

5 Você pode escrever, utilizando números conhecidos? Que número você usaria? c) E se não colocarmos argolas no ábaco? Que número poderíamos utilizar para representar o ábaco sem argolas? d) E se colocarmos 7 argolas na haste positiva e 7 argolas na haste negativa? Que número poderíamos utilizar para representar o ábaco? e) O número utilizado no item d) mudaria se acrescentássemos mais argolas na haste positiva e a mesma quantia de argolas na haste negativa? Por quê? f) Mas, se colocarmos 2 argolas na haste negativa, como ficaria o ábaco? Utilizando números, escreva essa representação. g) Coloque no ábaco agora, 4 argolas na haste positiva e 8 argolas na haste negativa, como ficou? Utilizando números, escreva essa representação. h) Agora que já sabemos representar vários números diferentes, que tal exercitar esse conhecimento! 1- Represente em seu ábaco, o número zero de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 576

6 2- Represente em seu ábaco, o número 4 de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 3- Represente em seu ábaco, o número -3 de cinco maneiras diferentes, e registre-as nas ilustrações abaixo. Muito bem! Agora, você já sabe representar números positivos e negativos no ábaco!!! Aprendendo com o ÁBACO Parte 2 Nessa atividade, nós utilizaremos as representações de números inteiros no ábaco para estudar algumas operações no conjunto dos números inteiros. 1- Represente em seu ábaco o número 3, depois acrescente duas argolas na haste positiva de seu 2- Represente em seu ábaco o número 4, depois acrescente três argolas na haste negativa de seu 3- Represente em seu ábaco o número -5, depois acrescente duas argolas na haste positiva de seu 4- Represente em seu ábaco o número -2, depois acrescente três argolas na haste negativa de seu 577

7 5- Represente em seu ábaco o número -6, depois acrescente oito argolas na haste positiva de seu 6- Represente em seu ábaco o número 2, depois acrescente quatro argolas na haste negativa de seu 7- Represente em seu ábaco o número -10, depois acrescente quatro argolas na haste positiva de seu 8- Represente em seu ábaco o número 12, depois acrescente catorze argolas na haste negativa de seu 9- Represente em seu ábaco o número -8, depois acrescente oito argolas na haste positiva de seu 10- Represente em seu ábaco o número 2, depois acrescente duas argolas na haste negativa de seu O que você fez nos itens de 1 a 6 pode ser representado através de símbolos conhecidos e muito utilizados em Matemática. Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior Que operação você acaba de descobrir no conjunto dos inteiros? Agora, faça com seu ábaco as somas indicadas abaixo. a) (+8) + (+4) = g) (-3) + (-7) = m) (+3) + (-7) = b) (+6) + (+2) = h) (-8) + (-5) = n) (+9) + (-6) = c) (+9) + (+3) = i) (-6) + (-4) = o) (+6) + (-8) = d) (+17) + (+11) = j) (-13) + (-8) = p) (+10) + (-6) = e) (+14) + (+13) = k) (-9) + (-14) = q) (-15) + (+8) = f) (+9) + (+12) = l) (-12) + (-3) = r) (-17) + (+11) = Analisando os resultados encontrados, o que você pode concluir? 578

8 Até agora, nós representávamos um número no ábaco e acrescentávamos mais algumas argolas, nesse momento nós faremos um pouco diferente. Lembre-se que um mesmo número pode ser representado de várias maneiras diferentes. 11- Represente em seu ábaco o número 3, depois retire duas argolas da haste positiva de seu 12- Represente em seu ábaco o número 4, depois retire três argolas da haste negativa de seu 13- Represente em seu ábaco o número -5, depois retire duas argolas da haste positiva de seu 14- Represente em seu ábaco o número -2, depois retire três argolas da haste negativa de seu 15- Represente em seu ábaco o número -6, depois retire oito argolas da haste positiva de seu 16- Represente em seu ábaco o número 2, depois retire quatro argolas da haste negativa de seu 17- Represente em seu ábaco o número -10, depois retire quatro argolas da haste positiva de seu 18- Represente em seu ábaco o número 9, depois retire 10 argolas da haste negativa de seu ábaco. Analisando o ábaco que número você obteve? 19- Represente em seu ábaco o número -8, depois retire oito argolas da haste positiva de seu 20- Represente em seu ábaco o número 2, depois retire duas argolas da haste negativa de seu Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior

9 Agora, faça com seu ábaco as somas indicadas abaixo. a) (+3) + (-2) = f) (+2) + (+4) = b) (+4) + (+3) = g) (-10) + (-4) = c) (-5) + (-2) = h) (+9) + (+10) = d) (-2) + (+3) = i) (-8) + (-8) = e) (-6) + (-8) = j) (+2) + (+2) = Comparando as equações 11, 12, 13, 14, 15, 16, 17, 18, 19 e 20 com as equações a, b, c, d, e, f, g, h, i e j. O que você pode concluir? Aprendendo com o ÁBACO Parte 3 Nessa atividade, estudaremos as regras de outra operação no conjunto dos números inteiros, a multiplicação. Assim como no conjunto dos números naturais, no conjunto dos números inteiros os termos de uma multiplicação são chamados de fatores. Para realizarmos a multiplicação de números inteiros utilizando o ábaco, vamos considerar que o primeiro fator indica: se positivo, quantos grupos do segundo fator devem ser colocados no ábaco; se negativo, quantos grupos do segundo fator devem ser retirados do ábaco. Sabendo disso, faça as multiplicações abaixo. a) (+2).(+3) = f) (-2).(-4) = k) (-2).(+3) = b) (+3).(+4) = g) (-4).(-3) = l) (-6).(+2) = c) (+1).(+10) = h) (-5).(-2) = m) (-1).(+10) = d) (+5).(+2) = i) (-7).(-1) = n) (+3).(-5) = e) (+4).(+2) = j) (-3).(-5) = o) (+4).(-2) = Analisando os resultados obtidos, o que você pode concluir? 580

10 Considerações Finais Assim, esperamos com esse trabalho alcançar o objetivo inicial de apresentar uma alternativa de metodologia para o ensino de operações com números inteiros que seja mais prazerosa, participativa e agradável. Bem como, ao concluir esse mini-curso, almejamos melhorar e aperfeiçoar nossa pesquisa e nosso material. Referências Bibliográficas BIANCHINI, Edwaldo; MIANI, Marcos. Construindo conhecimentos em Matemática. 6ª série. 1 ed. São Paulo: Moderna, DUARTE, N. O ensino de matemática na educação de adultos. 8 ed. São Paulo: Cortez, NASCIMENTO, R. A. Um estudo Sobre Obstáculos em Adição e Subtração de Números Inteiros Relativos: explorando a reta numérica dinâmica. Dissertação (mestrado em Educação) Departamento de Educação, Universidade Federal de Pernambuco, Recife, TEIXEIRA, L. R. M. Aprendizagem operatória de números inteiros: obstáculos e dificuldades. In: Pro-posições. v. 4, n. 1. Campinas: UNICAMP e Cortez Editora, 1993, p

RESUMO. Palavras-chave: Adição e subtração com números inteiros, Material concreto, Ábaco.

RESUMO. Palavras-chave: Adição e subtração com números inteiros, Material concreto, Ábaco. A UTILIZAÇÃO DO ÁBACO PARA SE ENSINAR ADIÇÃO E SUBTRAÇÃO NO CONJUNTO DOS INTEIROS Educação Matemática nos Anos Finais do Ensino Fundamental e Ensino Médio (EMAIEFEM) GT 10 RESUMO O aprendizado das quatro

Leia mais

Departamento de Matemática. Didáctica de Matemática III

Departamento de Matemática. Didáctica de Matemática III Departamento de Matemática Didáctica de Matemática III Elementos do Grupo de Estudantes: Alson José Muiambo, António Bejamim Maússe, Carlos Zacarias Chihuho, Euclides Julião Zunguze, Eufrásia Genifa Bila

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

UNIVERSIDADE ESTADUAL DO CEARÁ UECE UNIVERSIDADE ABERTA DO BRASIL UAB LICENCIATURA EM COMPUTAÇÃO PCC- Ambiente Virtuais de Aprendizagem

UNIVERSIDADE ESTADUAL DO CEARÁ UECE UNIVERSIDADE ABERTA DO BRASIL UAB LICENCIATURA EM COMPUTAÇÃO PCC- Ambiente Virtuais de Aprendizagem UNIVERSIDADE ESTADUAL DO CEARÁ UECE UNIVERSIDADE ABERTA DO BRASIL UAB LICENCIATURA EM COMPUTAÇÃO PCC- Ambiente Virtuais de Aprendizagem ATIVIDADE PRÁTICA DIA 30 DE SETEMBRO DE 2017 EDUCANDOS JHONSON DOUGLAS

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

-Roteiro do professor-

-Roteiro do professor- NÚMEROS INTEIROS -Roteiro do professor- Introdução teórica: As regras de sinais nas operações com números inteiros, em geral, causam dificuldades de aprendizagem aos alunos, ocasionando seqüelas no desenvolvimento

Leia mais

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total Cursos Técnicos Habilitações Plenas Eletrônica Digital Professor Arnaldo Sistemas de Numeração Bases Numéricas - Conversões Op. Sistema de Numeração Decimal Composto pela Base 10 e pelos Símbolos ( Algarismos

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL

Leia mais

O USO DO SOROBAN COMO FERRAMENTA AUXILIAR AO PROCESSO DE ENSINO E APRENDIZAGEM DE NÚMEROS DECIMAIS

O USO DO SOROBAN COMO FERRAMENTA AUXILIAR AO PROCESSO DE ENSINO E APRENDIZAGEM DE NÚMEROS DECIMAIS ciedade Brasileira Educação na Contemporaneidade: desafios e possibilidades O USO DO SOROBAN COMO FERRAMENTA AUXILIAR AO PROCESSO DE ENSINO E APRENDIZAGEM DE NÚMEROS DECIMAIS Eliel Constantino da Silva

Leia mais

Oficina Material Dourado. Grupo 4 Componentes: Fernanda Onofre, Taís Brito e Edvânia Menezes.

Oficina Material Dourado. Grupo 4 Componentes: Fernanda Onofre, Taís Brito e Edvânia Menezes. Oficina Material Dourado Grupo 4 Componentes: Fernanda Onofre, Taís Brito e Edvânia Menezes. O USO DO MATERIAL DOURADO COMO RECURSO DIDÁTICO PARA A COMPREENSÃO DO SISTEMA NUMÉRICO DECIMAL Grupo 4 Componentes:

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Centro Acadêmico Paulo Freire - CAPed Maceió - Alagoas - Brasil ISSN:

Centro Acadêmico Paulo Freire - CAPed Maceió - Alagoas - Brasil ISSN: O MATERIAL DOURADO NA COMPREENSÃO DAS OPERAÇÕES BÁSICAS NO CONJUNTO DOS NÚMEROS INTEIROS. Lenilson Oliveira do Nascimento - IFAL 1 lenils_on@hotmail.com Douglas Lopes do Nascimento- IFAL 2 wicham_douglas@hotmail.com

Leia mais

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA Soma Subtração 1 Introdução Sistemas Numéricos Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Adição; Subtração. 2 SOMA

Leia mais

NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA. -Roteiro do aluno-

NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA. -Roteiro do aluno- Frações NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA -Roteiro do aluno- Introdução: A classe deverá, inicialmente, ser dividida em grupos de 3 ou 4 alunos. Importante: O retângulo do estojo representa 1 inteiro.

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

ORIENTAÇÃO TÉCNICA MATEMÁTICA

ORIENTAÇÃO TÉCNICA MATEMÁTICA ORIENTAÇÃO TÉCNICA DE MATEMÁTICA 28-03-2017 Objetivos do encontro; Plataforma Foco Aprendizagem; Mapa de Habilidades; Números Racionais; PCN Matemática; Oficina; Exercícios; Plano de Ação e Sequência

Leia mais

Multiplicação Divisão

Multiplicação Divisão Multiplicação Divisão 1 Introdução Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Multiplicação; Divisão. 2 MULTIPLICAÇÃO

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /2012 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

FUNDAMENTOS DA INFORMÁTICA. Sistemas de Numeração

FUNDAMENTOS DA INFORMÁTICA. Sistemas de Numeração FUNDAMENTOS DA INFORMÁTICA Sistemas de Numeração OBJETIVOS DA AULA Conhecer os sistemas de numeração antigos; Entender, compreender e usar um Sistema de Numeração; Relacionar os Sistemas de Numeração com

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

Arquitetura de Computadores

Arquitetura de Computadores Engenharia da Computação Universidade Católica de Petrópolis Arquitetura de Computadores Sistema de Numeração v. 0.1 Luís Rodrigo de O. Gonçalves luisrodrigoog@gmail.com Petrópolis, 1 de Março de 2016

Leia mais

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof.

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof. Conversão de Bases Introdução à Organização de Computadores 5ª Edição/2007 Página 54 1 NOTAÇÃO POSICIONAL - BASE DECIMAL O SISTEMA DE NUMERAÇÃO É FORMADO POR UM CONJUNTO DE SÍMBOLOS UTILIZADOS PARA REPRESENTAR

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /01 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 12 bolas e acertou 7; Mário arremessou 15 bolas e acertou 8.

Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 12 bolas e acertou 7; Mário arremessou 15 bolas e acertou 8. Dois amigos resolveram apostar qual deles acertava mais bolas ao cesto. João arremessou 1 bolas e acertou 7; Mário arremessou 1 bolas e acertou 8. Escreva as frações que representam Qual deles ganhou a

Leia mais

7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33

7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33 Sumário CAPÍTULO 1 Os números inteiros 1. A necessidade de outros números 11 2. Representação dos números inteiros na reta numérica 14 3. Valor absoluto ou módulo de um número inteiro 15 4. Números inteiros

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

DOS REAIS AOS DECIMAIS

DOS REAIS AOS DECIMAIS DOS REAIS AOS DECIMAIS Número é a sua representação Na sua origem, número é resultado dos processos de contagem ou de medida. Tais números precisam ter algum tipo de representação, para possibilitar as

Leia mais

Operações com números binários

Operações com números binários Operações com números binários Operações com sistemas de numeração Da mesma forma que se opera com os números decimais (somar, subtrair, multiplicar e dividir) é possível fazer essas mesmas operações com

Leia mais

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo.

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo. Aritmética Binária Aqui tudo nasce do cálculo. Todo o hardware computacional está sustentado sobre cálculos de adição e subtração de elementos binários (bits), portanto o estudo da aritmética binária é

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos

Leia mais

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos *as idades são referências, podem variar conforme o contexto Curso Construção de jogos, materiais e atividades de Matemática

Leia mais

-Roteiro do professor-

-Roteiro do professor- Frações -Roteiro do professor- Introdução teórica: Os principais objetivos deste kit são: trabalhar com o inteiro formado por partes, construir classes de equivalência através da comparação e introduzir

Leia mais

O uso de materiais manipuláveis e a construção de conceitos matemáticos

O uso de materiais manipuláveis e a construção de conceitos matemáticos Formação Continuada - Matemática O uso de materiais manipuláveis e a construção de conceitos matemáticos Professores - 3º ano 2º Encontro 24/05/2016 Coordenadora Pedagógica: Adriana da Silva Santi MATERIAL

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Anderson, Chico. Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre

Leia mais

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.

DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios. DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

Sistemas Numéricos Soma e Subtração SOMA. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos Soma e Subtração SOMA. Prof. Celso Candido ADS / REDES / ENGENHARIA SOMA 1 Adição Binária Sistemas Numéricos Soma e Subtração Na adição decimal, se dois números decimais (56719) 10 e (31863) 10, forem somados, teremos uma resultante de (88582) 10. Podemos analisar os detalhes

Leia mais

O USO DO CINEMA COMO RECURSO DIDÁTICO NA EDUCAÇÃO INFANTIL

O USO DO CINEMA COMO RECURSO DIDÁTICO NA EDUCAÇÃO INFANTIL O USO DO CINEMA COMO RECURSO DIDÁTICO NA EDUCAÇÃO INFANTIL Emanuela Suassuna de Araújo (1); Vanessa da Silva Santos (1) Universidade Federal da Paraíba, suassuna.emanuela@gmail.com (1); Universidade Federal

Leia mais

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula

Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila

Leia mais

CONCEITOS DE ALGORITMOS

CONCEITOS DE ALGORITMOS CONCEITOS DE ALGORITMOS Fundamentos da Programação de Computadores - 3ª Ed. 2012 Editora Prentice Hall ISBN 9788564574168 Ana Fernanda Gomes Ascênsio Edilene Aparecida Veneruchi de Campos Algoritmos são

Leia mais

Jogo interativo para o ensino de operações com polinômios. Sistemas Multimídia

Jogo interativo para o ensino de operações com polinômios. Sistemas Multimídia Jogo interativo para o ensino de operações com polinômios Sistemas Multimídia Alunos André Alex Sestari Jean Pereira Jenifer Kreuch Lucas Dalcol Marco Antônio Pauleti Tamires Lays Tomio Objetivo Incentivar

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES MATRIZES E DETERMINANTES Matrizes Para representar matrizes, utilizamos a disposição de uma tabela. Chamamos de matriz toda a tabela m x n ( lê-se m por n ) em que números estão dispostos em linhas (m)

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar o que é uma base de numeração Apresentar o conceito de notação posicional

Leia mais

SISTEMA ANGLO DE ENSINO G A B A R I T O

SISTEMA ANGLO DE ENSINO G A B A R I T O SISTEMA ANGLO DE ENSINO Prova Anglo P-02 Tipo D4-08/2010 G A B A R I T O 01. B 07. B 13. D 19. D 02. D 08. D 14. C 20. D 03. A 09. C 15. D 21. D 04. C 10. A 16. B 22. B 05. C 11. C 17. C 00 06. D 12. A

Leia mais

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO 1 SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO Ariana Oliveira Gomes - ariana_emanuelle@hotmail.com-uesb Christiano Santos Lima Dias - khristiano_dias@hotmail.com-uesb Evaneila

Leia mais

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS na Contemporaneidade: desafios e possibilidades O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS José Márcio da Silva Ramos Diniz Universidade Estadual

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO Prof. Dr. Daniel Caetano 2011-2 Visão Geral 1 2 3 4 Representações Numéricas Notação Posicional Notação Binária Conversões

Leia mais

ESTUDO DA OPERAÇÃO DE SUBTRAÇÃO: DA INTERPRETAÇÃO TEXTUAL À APLICAÇÃO DO ALGORITMO POR ESTUDANTES SURDOS

ESTUDO DA OPERAÇÃO DE SUBTRAÇÃO: DA INTERPRETAÇÃO TEXTUAL À APLICAÇÃO DO ALGORITMO POR ESTUDANTES SURDOS ESTUDO DA OPERAÇÃO DE SUBTRAÇÃO: DA INTERPRETAÇÃO TEXTUAL À APLICAÇÃO DO ALGORITMO POR ESTUDANTES SURDOS Marcel de Almeida Barbosa Marisa Rosani Abreu da Silveira Evelyn da Silva Soares aprendizagem. Palavras-chave:

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS

UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS UMA PROPOSTA PARA O ESTUDO DOS PRODUTOS NOTÁVEIS NO ENSINO FUNDAMENTAL, 7ª SÉRIE (8º ANO) ASSOCIADOS AOS CÁLCULOS DE ÁREAS DE FIGURAS Elvys Wagner Ferreira da Silva Universidade Estadual do Maranhão elvys.wagner@ibest.com.br

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

6 Matrizes. Matrizes. Aluno Matemática Eletricidade Básica Desenho Técnico A B C D 3 7 4

6 Matrizes. Matrizes. Aluno Matemática Eletricidade Básica Desenho Técnico A B C D 3 7 4 6 Definição: Chama-se matriz do tipo m x n toda tabela A formada por números reais distribuídos em m linhas e n colunas. Para exemplificar o uso de uma matriz, podemos visualizar a seguir uma tabela representando

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 5º Teste de avaliação versão2. Grupo I Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A 5º Teste de avaliação versão Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. 1º período Os números naturais: Sistema de Numeração Decimal. (SND). Pág.30 a 32. Um pouco de história: sistema de numeração dos romanos. Pág. 33 a 35 Os números naturais. Pág. 36 e 37 Sistema de Numeração

Leia mais

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor

Leia mais

PROPOSTA DE ENSINO. Apresentação e justificativa da escolha do assunto:

PROPOSTA DE ENSINO. Apresentação e justificativa da escolha do assunto: PROPOSTA DE ENSINO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL - CAMPUS CAXIAS DO SUL INTEGRANTES: Gustavo Gonçalves; Emerson Corrêa Jacques, Danilo Soares Pereira CURSO: ENSINO

Leia mais

PROPOSTA DIDÁTICA. 1) João tem R$ 84,30. Pedro tem R$ 31,50 a mais que João, e José tem R$ 54,25 a mais que Pedro. Quanto tem os três juntos?

PROPOSTA DIDÁTICA. 1) João tem R$ 84,30. Pedro tem R$ 31,50 a mais que João, e José tem R$ 54,25 a mais que Pedro. Quanto tem os três juntos? PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º anos 1.3 Tempo da aula: 2,5 horas 1.4 Conteúdo desenvolvido: Operações Fundamentais com

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Figura 1 Compras do supermercado Fonte: Microsoft Office

Figura 1 Compras do supermercado Fonte: Microsoft Office CONJUNTOS NUMÉRICOS CONTEÚDOS Número naturais Números inteiros Números racionais Números irracionais Números reais AMPLIANDO SEUS CONHECIMENTOS Os números estão presentes nas mais diversas situações do

Leia mais

Provão. Matemática 4 o ano

Provão. Matemática 4 o ano Provão Matemática 4 o ano 21 Com base em seus estudos sobre sistema de numeração decimal, marque a alternativa correta para escrevermos por extenso, os números: 1.423 94 195 a) Mil quatrocentos e vinte

Leia mais

PARTE I I: ARITMÉTICA COMPUTACIONAL ARQUITETURA DE COMPUTADORES ANTONIO RAMOS DE CARVALHO JÚNIOR

PARTE I I: ARITMÉTICA COMPUTACIONAL ARQUITETURA DE COMPUTADORES ANTONIO RAMOS DE CARVALHO JÚNIOR PARTE I I: ARITMÉTICA COMPUTACIONAL ARQUITETURA DE COMPUTADORES ANTONIO RAMOS DE CARVALHO JÚNIOR Introdução Como representar números em memória? Como representar números negativos e de ponto flutuante?

Leia mais

unidade de milhar Centena dezena unidade ordem

unidade de milhar Centena dezena unidade ordem 1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

POTÊNCIA DE BASE 10, REGRAS DE ARREDONDAMENTO E NOTAÇÃO CIENTÍFICA

POTÊNCIA DE BASE 10, REGRAS DE ARREDONDAMENTO E NOTAÇÃO CIENTÍFICA PET FÍSICA POTÊNCIA DE BASE 10, REGRAS DE ARREDONDAMENTO E NOTAÇÃO CIENTÍFICA Aula 1 TATIANA MIRANDA DE SOUZA NAYTON CLAUDINEI VICENTINI ANA CAROLINA DOS SANTOS LUCENA LÉO RODRIGUES MACENA DOS SANTOS WANESSA

Leia mais

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano

COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA : MATEMÁTICA PROFESSOR (A): ALUNO (A) 4º ano DATA PARA ENTREGA: / /2017 1. Determine os números correspondentes as decomposições

Leia mais

Introdução aos processos de operação aritmética - Subtração

Introdução aos processos de operação aritmética - Subtração Introdução aos processos de operação aritmética - Subtração Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS

MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares.

MATEMÁTICA PARA VENCER. Apostilas complementares. MATEMÁTICA PARA VENCER Apostilas complementares www.laercio.com.br APOSTILA 01 Colégio Militar 6º ano PROVA INICIAL Apostila de complemento do livro MATEMÁTICA PARA VENCER OBJETIVO: O objetivo desta apostila

Leia mais

CONEXÕES E REGULARIDADES NO ENSINO DA MATEMÁTICA. Rudinei José Miola

CONEXÕES E REGULARIDADES NO ENSINO DA MATEMÁTICA. Rudinei José Miola CONEXÕES E REGULARIDADES NO ENSINO DA MATEMÁTICA Rudinei José Miola rmiola@positivo.com.br PARA INÍCIO DE CONVERSA ATIVIDADE MATEMÁTICA Por atividade matemática deve entender-se uma mescla entre tarefa,

Leia mais

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio. ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia

Leia mais

Capacidades de leitura e aprendizagem nas diversas disciplinas

Capacidades de leitura e aprendizagem nas diversas disciplinas Capacidades de leitura e aprendizagem nas diversas disciplinas A leitura, como comentamos em outro artigo, é instrumento indispensável para toda e qualquer aprendizagem. Ao usar esse instrumento, é preciso

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno

Matemática Instrumental Prof.: Luiz Gonzaga Damasceno 1 Matemática Instrumental 2008.1 Aula 1 Introdução Hoje em dia temos a educação presencial, semi-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontram

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: MATEMÁTICA Série/Ano: 7º ANO Professores: Tammy, Marcelo L., Rafael, Lots, Tiago Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

Eletrônica Digital. Conversão de base e operações aritméticas com números binários. Professor: Francisco Ary

Eletrônica Digital. Conversão de base e operações aritméticas com números binários. Professor: Francisco Ary Eletrônica Digital Conversão de base e operações aritméticas com números binários Professor: Francisco Ary Introdução Como vimos na aula anterior Circuitos digitais são dispositivos eletrônicos que utilizam

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Binários: Operações matemáticas

Binários: Operações matemáticas Soma Subtração Multiplicação Divisão Eng. da Computação Eng. de Controle e Automação Binários: awmascarenhas@gmail.com https://sites.google.com/site/awmascarenhas Conteúdo : 1 Adição 1.1 Regras básicas

Leia mais

Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança

Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança Sugestões de materiais e atividades para promover a construção do Sistema de Numeração Decimal pela criança Curso Construção de jogos, materiais e atividades de Matemática para as séries iniciais Querido(a)

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

2 a SÉRIE. Habilidades

2 a SÉRIE. Habilidades 1 2 1. Comparar os números de elementos de duas coleções dadas e indicar a que tem maior (ou menor) quantidade de elementos. 2. Produzir escritas numéricas, demonstrando compreender regras do sistema de

Leia mais

PROBLEMATECA GEOMÉTRICOS NUMERAÇÃO

PROBLEMATECA GEOMÉTRICOS NUMERAÇÃO COLEÇÃO MATHEMOTECA ORGANIZADORAS Kátia Katia Stocco Smole Maria Ignez Diniz Anos iniciais do ensino fundamental Resolução Materiais manipulativos de problemas nas para aulas o ensino de matemática de

Leia mais

O USO DO SOROBAN COMO FERRAMENTA E INSTRUMENTO DE APRENDIZAGEM NO PROCESSO DE INCLUSÃO

O USO DO SOROBAN COMO FERRAMENTA E INSTRUMENTO DE APRENDIZAGEM NO PROCESSO DE INCLUSÃO Sociedade Brasileira de na Contemporaneidade: desafios e possibilidades O USO DO SOROBAN COMO FERRAMENTA E INSTRUMENTO DE APRENDIZAGEM NO PROCESSO DE INCLUSÃO Fábio Garcia Bernardo 1 IBC Brasil fabiobernardo@ibc.gov.br

Leia mais

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações.

4º. ano 1º. VOLUME. Projeto Pedagógico de Matemática 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE. Números e operações. 4º. ano 1º. VOLUME 1. AS OPERAÇÕES E AS HABILIDADES DE CALCULAR MENTALMENTE Realização de compreendendo seus significados: adição e subtração (com e sem reagrupamento) Multiplicação (como adição de parcelas

Leia mais

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno)

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno) ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: Missão do Colégio: Promover o desenvolvimento do cidadão e, na sua ação educativa,

Leia mais

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25

Números. Leitura e escrita de um número no sistema de numeração indo-arábico Os números naturais 24 Comparando números naturais 25 Sumário CAPÍTULO 1 Números 1. Os números registram o mundo em que vivemos 11 2. Sistemas de numeração 12 3. O sistema de numeração indo-arábico 16 Leitura e escrita de um número no sistema de numeração

Leia mais

Revendo as operações

Revendo as operações A UA UL LA 61 Revendo as operações Introdução Nossa aula Assim como já vimos em muitas de nossas aulas, a Matemática é uma ciência que está sempre presente em nosso dia-adia. Na aula de hoje, recordaremos

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais