OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2

Tamanho: px
Começar a partir da página:

Download "OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2"

Transcrição

1 OPERANDO NÚMEROS INTEIROS COM O ÁBACO Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 Resumo O aprendizado das operações fundamentais, sendo elas a adição, a subtração, a multiplicação e a divisão, no conjunto dos números inteiros é extremamente importante para o estudo de Matemática. E é um conteúdo em que os estudantes costumam apresentar muitas dificuldades e dúvidas. Visando a facilitar o processo ensino-aprendizagem dessas operações no conjunto dos números inteiros, idealizamos o trabalho com material concreto como uma alternativa para atingir esse objetivo. Um instrumento de cálculo milenar muito utilizado, principalmente na cultura oriental, como ferramenta no estudo de Matemática é o ábaco. Em geral, é utilizado para estudar o sistema de numeração decimal e realizar operações entre números naturais, mas também pode servir como ferramenta no estudo das operações no conjunto dos números inteiros. O ábaco é composto por uma base e suas hastes, e ainda inúmeras argolas, para serem colocadas nas hastes, geralmente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar entre outras posições referentes ao sistema de numeração decimal. Nesse estudo, utilizaremos um ábaco formado por uma base e duas hastes, onde uma representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas. Fazendo uso de um roteiro de atividades, primeiramente faremos diversas representações de números inteiros nesse ábaco, salientando que um mesmo número possui infinitas formas de representação. Depois, ainda utilizando esse roteiro como material de apoio, serão apresentadas atividades onde faremos adição de números inteiros relacionando o acréscimo de argolas com a idéia de soma que todos possuem. A partir da reflexão e discussão sobre os resultados obtidos será deduzida a regra de sinais para essa operação. Relacionando a retirada de argolas do ábaco com a subtração e o acréscimo de grupos de argolas 1 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 2 Licencianda de Matemática na Pontifícia Universidade Católica do Rio Grande do Sul. 572

2 no ábaco com a multiplicação, serão feitas as deduções para as regras de sinais das operações de subtração e multiplicação de números inteiros. Em todas as etapas acima indicadas o grupo será orientado para a percepção de que as regras de sinais dessas operações podem ser deduzidas a partir da análise dos resultados obtidos no estudo realizado com o ábaco. A utilização de material concreto para a construção do conhecimento envolvido nesse estudo permitirá uma maior participação do estudante no processo ensino-aprendizagem do que costuma ser no processo de ensino tradicional desse conteúdo. Acreditamos que a relação entre conteúdo, material e estudante quando também é física torna-se mais perceptível para os estudantes e, portanto mais eficaz. Assim, esperamos que este trabalho mostre uma forma alternativa de aprender Matemática, especialmente o tema proposto, que seja ao mesmo tempo prazerosa, agradável e participativa. Palavras-chave: ábaco; operações com números inteiros; ensino-aprendizagem. Introdução Nosso objetivo nesse mini-curso é propor uma metodologia de ensino para o processo ensino-aprendizagem das operações de adição, subtração e multiplicação de números inteiros. Esse conteúdo foi escolhido devido às dificuldades apresentadas pelos alunos para entender essas operações. Como alunas do Curso de Licenciatura em Matemática da PUCRS, realizamos, na disciplina de estágio, trabalho semelhante com alunos do Ensino Fundamental e pensamos, neste evento, socializar nossa experiência com outros professores e futuros professores. Segundo Teixeira (1993) a aprendizagem das operações com números inteiros precisa de ações e linguagens para ser assimilada. E de acordo com Nascimento (2002) é na 6ª série do Ensino Fundamental, quando os alunos iniciam o estudo dos números inteiros, onde os professores percebem que muitos não realizam adição e subtração corretamente. Visando a auxiliar no processo ensino-aprendizagem desse conteúdo, optamos por desenvolver uma metodologia a partir da idéia de Bianchini (2004) que sugere a utilização de um ábaco em sala de aula para trabalhar as operações no conjunto dos números inteiros. Duarte (2001, p.48) também diz que [...] o ábaco, uma criação do pensamento humano, surgido de uma necessidade colocada pela prática, traz implícitos em si alguns princípios e propriedades. A exploração desses princípios e propriedades contidos no ábaco traz a possibilidade de criação de novos instrumentos[...]. 573

3 O ábaco é um instrumento milenar utilizado para realizar cálculos, inicialmente criado e utilizado no oriente, hoje é mundialmente conhecido e frequentemente utilizado no processo ensino-aprendizagem do sistema de numeração decimal. O ábaco geralmente é composto por uma base, argolas e quatro hastes, comumente utilizadas para representar as unidades, dezenas, centenas e unidades de milhar do sistema de numeração decimal. Esperamos que com nosso estudo possamos auxiliar outros professores de Matemática em sua atuação profissional. Metodologia Primeiramente, serão apresentados slides para discutir com os participantes o que é ábaco, para que ele serve e mostrar seus diferentes formatos. Depois, emprestaremos os materiais necessários para que os participantes, em duplas, montem um ábaco com uma base e duas hastes. Uma haste representará as unidades inteiras positivas e a outra representará as unidades inteiras negativas Após a montagem desse ábaco, entregaremos a cada participante a primeira folha do roteiro de atividades que será utilizado durante o mini-curso, onde constarão as propostas da atividade e poderão ser registrados os resultados obtidos. O trabalho das duplas será acompanhado e orientado da seguinte forma: leitura das páginas do roteiro para todo o grupo, auxílio conforme as necessidades que surgirem durante a realização das atividades e exposição, comparação e debate dos resultados com todo o grupo. Após a primeira, cada página do roteiro será entregue à dupla somente quando a anterior tiver sido concluída. E ao final das atividades referentes a um mesmo objetivo, é o momento onde faremos uma reflexão sobre o trabalho com o grupo. No roteiro, inicialmente trabalharemos com a representação de números inteiros no ábaco. Assim como no ábaco convencional, o valor de uma argola depende de sua posição no ábaco, isto é, uma argola colocada na haste das unidades positivas representa uma unidade positiva ao passo que uma argola colocada na haste das unidades negativas representa uma unidade negativa. A representação de um único número inteiro pode ser feita de infinitas formas diferentes. Identificar essas formas é indispensável para realizar as operações e para tanto, consideraremos que uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas, ou seja, juntas elas somam zero. Concluída a etapa de representação dos números inteiros, iniciaremos com a operação de adição, onde com o acréscimo de argolas será realizada a operação. Depois da adição, trabalharemos associando a idéia de tirar argolas do ábaco com a operação subtração. Após, trabalharemos associando as idéias de acréscimo e grupo à operação multiplicação. Nas 574

4 etapas acima descritas através da análise e discussão dos resultados, os participantes deduzirão as regras de sinais utilizadas nessas operações no conjunto dos números inteiros. Ao término das atividades propostas pelo roteiro, serão exibidos em slides, alguns registros de um grupo da 6ª série do Ensino Fundamental que utilizou o ábaco na aprendizagem das operações com números inteiros. Esboço do roteiro de atividades que será utilizado Aprendendo com o ÁBACO Parte 1 Nessa atividade, nós iremos estudar novos números, e para isso utilizaremos um ábaco como o da figura abaixo. Nesse ábaco temos apenas duas hastes, uma para representar unidades positivas e outra para representar unidades negativas. Com ele, poderemos representar vários números diferentes. Para fazer isso corretamente precisamos prestar atenção a três regras: 1- uma argola na haste das unidades positivas representa uma unidade positiva; 2- uma argola na haste das unidades negativas representa uma unidade negativa; 3- uma argola na haste das unidades positivas anula uma argola na haste das unidades negativas. Conhecendo as regras, vamos fazer algumas representações no ábaco. a) Se colocarmos 2 argolas na haste positiva, como ficaria o ábaco? Você pode escrever essa representação utilizando números conhecidos? Se sim, escreva. b) E se colocarmos 5 argolas na haste positiva e 2 argolas na haste negativa? 575

5 Você pode escrever, utilizando números conhecidos? Que número você usaria? c) E se não colocarmos argolas no ábaco? Que número poderíamos utilizar para representar o ábaco sem argolas? d) E se colocarmos 7 argolas na haste positiva e 7 argolas na haste negativa? Que número poderíamos utilizar para representar o ábaco? e) O número utilizado no item d) mudaria se acrescentássemos mais argolas na haste positiva e a mesma quantia de argolas na haste negativa? Por quê? f) Mas, se colocarmos 2 argolas na haste negativa, como ficaria o ábaco? Utilizando números, escreva essa representação. g) Coloque no ábaco agora, 4 argolas na haste positiva e 8 argolas na haste negativa, como ficou? Utilizando números, escreva essa representação. h) Agora que já sabemos representar vários números diferentes, que tal exercitar esse conhecimento! 1- Represente em seu ábaco, o número zero de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 576

6 2- Represente em seu ábaco, o número 4 de 5 maneiras diferentes, e registre-as nas ilustrações abaixo. 3- Represente em seu ábaco, o número -3 de cinco maneiras diferentes, e registre-as nas ilustrações abaixo. Muito bem! Agora, você já sabe representar números positivos e negativos no ábaco!!! Aprendendo com o ÁBACO Parte 2 Nessa atividade, nós utilizaremos as representações de números inteiros no ábaco para estudar algumas operações no conjunto dos números inteiros. 1- Represente em seu ábaco o número 3, depois acrescente duas argolas na haste positiva de seu 2- Represente em seu ábaco o número 4, depois acrescente três argolas na haste negativa de seu 3- Represente em seu ábaco o número -5, depois acrescente duas argolas na haste positiva de seu 4- Represente em seu ábaco o número -2, depois acrescente três argolas na haste negativa de seu 577

7 5- Represente em seu ábaco o número -6, depois acrescente oito argolas na haste positiva de seu 6- Represente em seu ábaco o número 2, depois acrescente quatro argolas na haste negativa de seu 7- Represente em seu ábaco o número -10, depois acrescente quatro argolas na haste positiva de seu 8- Represente em seu ábaco o número 12, depois acrescente catorze argolas na haste negativa de seu 9- Represente em seu ábaco o número -8, depois acrescente oito argolas na haste positiva de seu 10- Represente em seu ábaco o número 2, depois acrescente duas argolas na haste negativa de seu O que você fez nos itens de 1 a 6 pode ser representado através de símbolos conhecidos e muito utilizados em Matemática. Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior Que operação você acaba de descobrir no conjunto dos inteiros? Agora, faça com seu ábaco as somas indicadas abaixo. a) (+8) + (+4) = g) (-3) + (-7) = m) (+3) + (-7) = b) (+6) + (+2) = h) (-8) + (-5) = n) (+9) + (-6) = c) (+9) + (+3) = i) (-6) + (-4) = o) (+6) + (-8) = d) (+17) + (+11) = j) (-13) + (-8) = p) (+10) + (-6) = e) (+14) + (+13) = k) (-9) + (-14) = q) (-15) + (+8) = f) (+9) + (+12) = l) (-12) + (-3) = r) (-17) + (+11) = Analisando os resultados encontrados, o que você pode concluir? 578

8 Até agora, nós representávamos um número no ábaco e acrescentávamos mais algumas argolas, nesse momento nós faremos um pouco diferente. Lembre-se que um mesmo número pode ser representado de várias maneiras diferentes. 11- Represente em seu ábaco o número 3, depois retire duas argolas da haste positiva de seu 12- Represente em seu ábaco o número 4, depois retire três argolas da haste negativa de seu 13- Represente em seu ábaco o número -5, depois retire duas argolas da haste positiva de seu 14- Represente em seu ábaco o número -2, depois retire três argolas da haste negativa de seu 15- Represente em seu ábaco o número -6, depois retire oito argolas da haste positiva de seu 16- Represente em seu ábaco o número 2, depois retire quatro argolas da haste negativa de seu 17- Represente em seu ábaco o número -10, depois retire quatro argolas da haste positiva de seu 18- Represente em seu ábaco o número 9, depois retire 10 argolas da haste negativa de seu ábaco. Analisando o ábaco que número você obteve? 19- Represente em seu ábaco o número -8, depois retire oito argolas da haste positiva de seu 20- Represente em seu ábaco o número 2, depois retire duas argolas da haste negativa de seu Escreva nos espaços indicados abaixo, como você escreveria utilizando linguagem simbólica o que foi feito em cada item anterior

9 Agora, faça com seu ábaco as somas indicadas abaixo. a) (+3) + (-2) = f) (+2) + (+4) = b) (+4) + (+3) = g) (-10) + (-4) = c) (-5) + (-2) = h) (+9) + (+10) = d) (-2) + (+3) = i) (-8) + (-8) = e) (-6) + (-8) = j) (+2) + (+2) = Comparando as equações 11, 12, 13, 14, 15, 16, 17, 18, 19 e 20 com as equações a, b, c, d, e, f, g, h, i e j. O que você pode concluir? Aprendendo com o ÁBACO Parte 3 Nessa atividade, estudaremos as regras de outra operação no conjunto dos números inteiros, a multiplicação. Assim como no conjunto dos números naturais, no conjunto dos números inteiros os termos de uma multiplicação são chamados de fatores. Para realizarmos a multiplicação de números inteiros utilizando o ábaco, vamos considerar que o primeiro fator indica: se positivo, quantos grupos do segundo fator devem ser colocados no ábaco; se negativo, quantos grupos do segundo fator devem ser retirados do ábaco. Sabendo disso, faça as multiplicações abaixo. a) (+2).(+3) = f) (-2).(-4) = k) (-2).(+3) = b) (+3).(+4) = g) (-4).(-3) = l) (-6).(+2) = c) (+1).(+10) = h) (-5).(-2) = m) (-1).(+10) = d) (+5).(+2) = i) (-7).(-1) = n) (+3).(-5) = e) (+4).(+2) = j) (-3).(-5) = o) (+4).(-2) = Analisando os resultados obtidos, o que você pode concluir? 580

10 Considerações Finais Assim, esperamos com esse trabalho alcançar o objetivo inicial de apresentar uma alternativa de metodologia para o ensino de operações com números inteiros que seja mais prazerosa, participativa e agradável. Bem como, ao concluir esse mini-curso, almejamos melhorar e aperfeiçoar nossa pesquisa e nosso material. Referências Bibliográficas BIANCHINI, Edwaldo; MIANI, Marcos. Construindo conhecimentos em Matemática. 6ª série. 1 ed. São Paulo: Moderna, DUARTE, N. O ensino de matemática na educação de adultos. 8 ed. São Paulo: Cortez, NASCIMENTO, R. A. Um estudo Sobre Obstáculos em Adição e Subtração de Números Inteiros Relativos: explorando a reta numérica dinâmica. Dissertação (mestrado em Educação) Departamento de Educação, Universidade Federal de Pernambuco, Recife, TEIXEIRA, L. R. M. Aprendizagem operatória de números inteiros: obstáculos e dificuldades. In: Pro-posições. v. 4, n. 1. Campinas: UNICAMP e Cortez Editora, 1993, p

Departamento de Matemática. Didáctica de Matemática III

Departamento de Matemática. Didáctica de Matemática III Departamento de Matemática Didáctica de Matemática III Elementos do Grupo de Estudantes: Alson José Muiambo, António Bejamim Maússe, Carlos Zacarias Chihuho, Euclides Julião Zunguze, Eufrásia Genifa Bila

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática

Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática Edital Pibid n 11 /01 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:

Leia mais

Centro Acadêmico Paulo Freire - CAPed Maceió - Alagoas - Brasil ISSN:

Centro Acadêmico Paulo Freire - CAPed Maceió - Alagoas - Brasil ISSN: O MATERIAL DOURADO NA COMPREENSÃO DAS OPERAÇÕES BÁSICAS NO CONJUNTO DOS NÚMEROS INTEIROS. Lenilson Oliveira do Nascimento - IFAL 1 lenils_on@hotmail.com Douglas Lopes do Nascimento- IFAL 2 wicham_douglas@hotmail.com

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

PROJETO: CONTANDO CENTAVOS

PROJETO: CONTANDO CENTAVOS PIBID - Programa Institucional de Bolsa de Iniciação à Docência Escola Municipal Hermann Gmeiner Disciplina: Matemática Docentes: João Batista de Oliveira Neto Damião Xavier de Medeiros PROJETO: CONTANDO

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos

A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos A construção do Sistema de Numeração Decimal SND e Testagem com criança de 6 a 9 anos *as idades são referências, podem variar conforme o contexto Curso Construção de jogos, materiais e atividades de Matemática

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número. Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo.

Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo. Aritmética Binária Aqui tudo nasce do cálculo. Todo o hardware computacional está sustentado sobre cálculos de adição e subtração de elementos binários (bits), portanto o estudo da aritmética binária é

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS

O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS na Contemporaneidade: desafios e possibilidades O USO DE JOGOS NAS AULAS DE MATEMÁTICA: TRABALHANDO COM AS OPERAÇÕES COM NÚMEROS NATURAIS E INTEIROS José Márcio da Silva Ramos Diniz Universidade Estadual

Leia mais

O uso de materiais manipuláveis e a construção de conceitos matemáticos

O uso de materiais manipuláveis e a construção de conceitos matemáticos Formação Continuada - Matemática O uso de materiais manipuláveis e a construção de conceitos matemáticos Professores - 3º ano 2º Encontro 24/05/2016 Coordenadora Pedagógica: Adriana da Silva Santi MATERIAL

Leia mais

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS

PRÓ-LETRAMENTO MATEMÁTICA ESTADO DE MINAS GERAIS SUGESTÕES DE ESTUDO PARA FRAÇÕES o ENCONTRO Neste momento de trabalho, vamos explorar algumas das diversas maneiras de se compreender as frações, todas importantes para nosso cotidiano. O texto complementar

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS.

MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS. MÉTODO CUCA LEGAL PARA CALCULAR RAÍZES QUADRADAS. Autor: Andreilson Oliveira da Silva; Coautores: Edson de Souza Soares Neto; Jonaldo Oliveira de Medeiros; Elionardo Rochelly Melo de Almeida Instituto

Leia mais

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES INTRODUÇÃO AOS SISTEMAS DE NUMERAÇÃO Prof. Dr. Daniel Caetano 2011-2 Visão Geral 1 2 3 4 Representações Numéricas Notação Posicional Notação Binária Conversões

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2012/2013 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Taxa Interna de Retorno (TIR)

Taxa Interna de Retorno (TIR) Problemas com o Método da TIR (Taxa Interna de Retorno) Hoje vamos falar do método da TIR (Taxa Interna de Retorno) e de alguns problemas que podem ocorrer quando utilizamos essa técnica na análise de

Leia mais

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE

UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL COUSINIERE Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades UMA PROPOSTA CONSTRUTIVISTA PARA O ENSINO DE NÚMEROS RACIONAIS POSITIVOS E SUAS OPERAÇÕES UTILIZANDO O MATERIAL

Leia mais

APLICAÇÃO DE EQUAÇÃO DO SEGUNDO GRAU COM MATERIAIS MANIPULÁVEIS: JOGO TRILHA DAS EQUAÇÕES

APLICAÇÃO DE EQUAÇÃO DO SEGUNDO GRAU COM MATERIAIS MANIPULÁVEIS: JOGO TRILHA DAS EQUAÇÕES APLICAÇÃO DE EQUAÇÃO DO SEGUNDO GRAU COM MATERIAIS MANIPULÁVEIS: JOGO TRILHA DAS EQUAÇÕES Rafael Pereira da Silva Universidade Estadual da Paraíba rafaelpereira.jt@hotmail.com Jailson Lourenço de Pontes

Leia mais

Aula 1: Reconhecendo Matrizes

Aula 1: Reconhecendo Matrizes Aula 1: Reconhecendo Matrizes Caro aluno, nesta aula você aprenderá a reconhecer matrizes, posteriormente vamos identificar os tipos de matrizes existentes e como realizar algumas operações entre elas.

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA Soma Subtração 1 Introdução Sistemas Numéricos Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Adição; Subtração. 2 SOMA

Leia mais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais

ROLETRANDO DOS INTEIROS. GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais ROLETRANDO DOS INTEIROS GT 01 Educação matemática no ensino fundamental: anos iniciais e anos finais Cláudio Cristiano Liell Univates, cristianoliell@hotmail.com Gládis Bortoli Univates, gladisbortoli@gmail.com

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Módulo 1 Unidade 10 Sistemas de equações lineares Para Início de conversa... Já falamos anteriormente em funções. Dissemos que são relações entre variáveis independentes e dependentes. Às vezes, precisamos

Leia mais

Introdução à Computação

Introdução à Computação Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação

Leia mais

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.).

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.). PEDREIRA, Sinvaldo Martins [1] [2] PEDREIRA, Sinvaldo Martins. O valor dos números. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 1, Vol.8. pp.5-16, setembro de 2016. ISSN.2448-0959 RESUMO

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

DEPARTAMENTO DE CONSELHO DE DOCENTES. Mat._2º ANO_B. Ano Letivo: 2012/ Introdução / Finalidades. 2. Metas de aprendizagem

DEPARTAMENTO DE CONSELHO DE DOCENTES. Mat._2º ANO_B. Ano Letivo: 2012/ Introdução / Finalidades. 2. Metas de aprendizagem DEPARTAMENTO DE CONSELHO DE DOCENTES Mat._2º ANO_B Ano Letivo: 2012/2013 1. Introdução / Finalidades A Matemática é uma linguagem que nos permite elaborar uma compreensão e representação do mundo, é um

Leia mais

META Propiciar aos estudantes a possibilidade de discussão de temas científi cos, pedagógicos e sociais.

META Propiciar aos estudantes a possibilidade de discussão de temas científi cos, pedagógicos e sociais. CICLO DE PALESTRAS META Propiciar aos estudantes a possibilidade de discussão de temas científi cos, pedagógicos e sociais. OBJETIVOS Ao final desta aula, o aluno deverá: Neste evento serão ministradas

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 ATIVIDADES COM O SISTEMA BABILÔNIO DE BASE 60 A representação

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

TRIGONOMETRIA CONTEXTUALIZADA: MEDINDO A ALTURA DO MORRO BOM JESUS EM CARUARU - PE

TRIGONOMETRIA CONTEXTUALIZADA: MEDINDO A ALTURA DO MORRO BOM JESUS EM CARUARU - PE TRIGONOMETRIA CONTEXTUALIZADA: MEDINDO A ALTURA DO MORRO BOM JESUS EM CARUARU - PE Davi Severino de Araújo; Diego Jonata de Medeiros; Ithallo Rosemberg Praxedes de Pontes dos Santos; Joicy Lariça Gonçalves

Leia mais

SEDUC SECRETARIA DE ESTADO DE EDUCAÇÃO DE MATO GROSSO ESCOLA ESTADUAL DOMINGOS BRIANTE ELIANE CALHEIROS

SEDUC SECRETARIA DE ESTADO DE EDUCAÇÃO DE MATO GROSSO ESCOLA ESTADUAL DOMINGOS BRIANTE ELIANE CALHEIROS SEDUC SECRETARIA DE ESTADO DE EDUCAÇÃO DE MATO GROSSO ESCOLA ESTADUAL DOMINGOS BRIANTE ELIANE CALHEIROS OLIVIA EVANGELISTA BENEVIDES THIANE ARAUJO COSTA TRABALHANDO A MATEMÁTICA DE FORMA DIFERENCIADA A

Leia mais

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração Sistemas de Numeração Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Um sistema de numeração

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO

SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO 1 SISTEMA DE NUMERAÇÃO NA FORMAÇÃO DO ALUNO UTILIZANDO MATERIAL CONCRETO Ariana Oliveira Gomes - ariana_emanuelle@hotmail.com-uesb Christiano Santos Lima Dias - khristiano_dias@hotmail.com-uesb Evaneila

Leia mais

DESVENDANDO O INTERESSANTE MUDO DA LÓGICA RESUMO

DESVENDANDO O INTERESSANTE MUDO DA LÓGICA RESUMO DESVENDANDO O INTERESSANTE MUDO DA LÓGICA Daniela Batista Santos - UNEB Laion Augusto Correa Silva UESB Rafael Souza Barros UESB RESUMO A busca constante pela melhora do ensino de matemática tem que a

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Competência Objeto de aprendizagem Habilidade

Competência Objeto de aprendizagem Habilidade 3ª Matemática 4º Ano E.F. Competência Objeto de aprendizagem Habilidade BLOCO: ESPAÇO E FORMA C2. Compreender os conceitos relacionados às características, classificações e propriedades das figuras geométricas,

Leia mais

O CONCEITO DE ÁREA E PERÍMETRO DE FIGURAS PLANAS PARA OS ALUNOS DO 9º ANO DO ENSINO FUNDAMENTAL

O CONCEITO DE ÁREA E PERÍMETRO DE FIGURAS PLANAS PARA OS ALUNOS DO 9º ANO DO ENSINO FUNDAMENTAL O CONCEITO DE ÁREA E PERÍMETRO DE FIGURAS PLANAS PARA OS ALUNOS DO 9º ANO DO ENSINO FUNDAMENTAL Educação Matemática nos Anos Finais do Ensino Fundamental e Ensino Médio (EMAIEFEM) GT10 Erivaldo Gumercindo

Leia mais

Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar no Ensino de Conceitos Químicos

Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar no Ensino de Conceitos Químicos UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PIBID-PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA BOLSISTA: LIANE ALVES DA SILVA Avaliação dos Estudantes sobre o Uso de Imagens como Recurso Auxiliar

Leia mais

QUERIDO(A) ALUNO(A):

QUERIDO(A) ALUNO(A): 1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO

Leia mais

AULA 4 O ensino da Matemática na Educação Infantil. CURSO Alfabetização Linguística e Matemática na Educação Infantil

AULA 4 O ensino da Matemática na Educação Infantil. CURSO Alfabetização Linguística e Matemática na Educação Infantil AULA 4 O ensino da Matemática na Educação Infantil A Educação Infantil é considerada, como a primeira etapa da educação básica, no Brasil, a partir de 1996. Os eixos de trabalho orientados à construção

Leia mais

Introdução aos processos de operação aritmética - Subtração

Introdução aos processos de operação aritmética - Subtração Introdução aos processos de operação aritmética - Subtração Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA

O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA O SOFTWARE WINPLOT COMO FERRAMENTA PARA O ENSINO DE SISTEMAS LINEARES NA EDUCAÇÃO BÁSICA GT 05 Educação Matemática: tecnologias informáticas e educação à distância Resumo Prof a. Dr a. Julhane A. Thomas

Leia mais

Sistemas de numeração e conversão de bases Decimal e binário

Sistemas de numeração e conversão de bases Decimal e binário Sistemas de numeração e conversão de bases Decimal e binário Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 3º ANO

AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 3º ANO AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 3º ANO ESCOLA ANO LETIVO PROFESSOR(A) DATA: / / ESPAÇO E FORMA Identificar posição de pessoa e/ou objeto presentes em representações utilizando um ponto

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno)

5. Objetivo geral (prever a contribuição da disciplina em termos de conhecimento, habilidades e atitudes para a formação do aluno) ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: Missão do Colégio: Promover o desenvolvimento do cidadão e, na sua ação educativa,

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas Curriculares de Matemática 1º CICLO MATEMÁTICA 4º ANO TEMAS/DOMÍNIOS

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

FUNÇÃO SE. = SE ([condição]; [valor se verdadeiro]; [valor se falso]). A condição pode ser efetuada usando sinais matemáticos comparativos:

FUNÇÃO SE. = SE ([condição]; [valor se verdadeiro]; [valor se falso]). A condição pode ser efetuada usando sinais matemáticos comparativos: FUNÇÃO SE A função SE() é uma função especial que determina o valor da célula de acordo com um teste-lógico. Ela sempre contém uma condição, que definirá o valor da célula. Se a condição for verdadeira

Leia mais

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14?

Unidade III ORGANIZAÇÃO DE COMPUTADORES. O que quer dizer 14? Unidade III 6 CIRCUITOS DIGITAIS 6.1 Sistemas de numeração O que quer dizer 14? Sabemos, por força de educação e hábito, que os algarismos 1 e 4 colocados desta forma representam a quantidade catorze.

Leia mais

CONSTRUINDO UMA SEQUÊNCIA DIDÁTICA SOBRE NÚMEROS COMPLEXOS POR MEIO DE PLANILHAS ELETRÔNICAS

CONSTRUINDO UMA SEQUÊNCIA DIDÁTICA SOBRE NÚMEROS COMPLEXOS POR MEIO DE PLANILHAS ELETRÔNICAS CONSTRUINDO UMA SEQUÊNCIA DIDÁTICA SOBRE NÚMEROS COMPLEXOS POR MEIO DE PLANILHAS ELETRÔNICAS Fernando Valério Ferreira de Brito fernandobrito500@gmail.com Ewerton Roosewelt Bernardo da Silva e.roosewelt@hotmail.com

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Programa de Matemática 1.º ano

Programa de Matemática 1.º ano Programa de Matemática 1.º ano Introdução A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO. Carga Horária: 54h Créditos: 3 Fase: 2ª

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO. Carga Horária: 54h Créditos: 3 Fase: 2ª UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE EDUCAÇÃO A DISTÂNCIA CEAD PLANO DE ENSINO I IDENTIFICAÇÃO Curso: Pedagogia a Distância Departamento: Departamento de Pedagogia a Distância Disciplina:

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

GUIA PEDAGÓGICO PARA OS PAIS Jardim I

GUIA PEDAGÓGICO PARA OS PAIS Jardim I Maceió, 18 de março de 2016. GUIA PEDAGÓGICO PARA OS PAIS Jardim I Senhores pais ou responsáveis Já iniciamos os projetos pedagógicos do 1 trimestre letivo. As turmas de Jardim I estão desenvolvendo os

Leia mais

ÁREA DO CONHECIMENTO: RACIOCÍNIO LÓGICO-MATEMÁTICO 3º ANO EF

ÁREA DO CONHECIMENTO: RACIOCÍNIO LÓGICO-MATEMÁTICO 3º ANO EF Compras com Real Aula Multimídia MT - Interface 1 - Pág. 43 Naturais e Sistema de Numeração Decimal OB001 OB002 OB003 OB004 OB005 Reconhecer e aplicar os números em diversos contextos e situaçõesproblema.

Leia mais

PLANIFICAÇÃO-2016/2017

PLANIFICAÇÃO-2016/2017 PLANIFICAÇÃO-2016/2017 ENSINO BÁSICO - PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA - 1ºPERÍODO 8º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS UNIDADE 1 Conjunto dos números reais -Dízimas finitas e infinitas

Leia mais

AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 4º ANO ESCOLA ANO LETIVO PROFESSOR(A) DATA: / /

AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 4º ANO ESCOLA ANO LETIVO PROFESSOR(A) DATA: / / AVALIAÇÃO DA APRENDIZAGEM DO ALUNO EM MATEMÁTICA 4º ANO ESCOLA ANO LETIVO PROFESSOR(A) DATA: / / ESPAÇO E FORMA: Identificar posição de pessoa e/ou objeto presentes em representações utilizando um pontos

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Introdução Se você procurar pela Internet, irá encontrar dezenas de sites que falam sobre este assunto, alguns muito bons por sinal, mas a grande maioria deles embora apresentem

Leia mais

PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES)

PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES) PROPOSTA DE MINI-CURSO AS OPERAÇÕES EM FRAÇÕES CONCEITUADAS ATRAVÉS DO OPERA- FRAÇÕES E O LOCALIZA NA RETA (SOFTWARES LIVRES) TARLIZ LIAO e ROSANE MELLO 1 PALAVRAS-CHAVE: MODELOS DE FRAÇÕES USO DO COMPUTADOR

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

Computação I: Representações de Algoritmos

Computação I: Representações de Algoritmos Computação I: Representações de Algoritmos reginaldo.re@utfpr.edu.br * Parte da apresentação foi gentilmente cedida pelo prof. Igor Steinmacher Agenda Objetivos Relembrando... Algoritmos para desenvolver

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB)

TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB) TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB) I. PROCEDIMENTOS DE LEITURA Localizar informações explícitas em um texto. Inferir o sentido de uma palavra

Leia mais

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Conforme discutido na última aula, cada operação lógica possui sua própria tabela verdade. A seguir será apresentado o conjunto básico de portas lógicas

Leia mais

3 latas de 3 litros do sorvete BOM 2 latas de 3 litros sorvete BOM R$ 12,00 R$ 7,00

3 latas de 3 litros do sorvete BOM 2 latas de 3 litros sorvete BOM R$ 12,00 R$ 7,00 Caro aluno! No desenvolvimento da oficina 1 você teve algumas situações de aprendizagem que proporcionaram-lhe o desenvolvimento de estratégias de resolução. Para enriquecer cada vez mais a sua aprendizagem,

Leia mais

Uma história muito antiga. Uma história muito antiga. Uma história muito antiga 05/03/2016

Uma história muito antiga. Uma história muito antiga. Uma história muito antiga 05/03/2016 Uma história muito antiga Há muito, muito tempo... Para saber quantas ovelhas tinha, um pastor separava uma pedrinha para cada ovelha, quando as soltava para pastar. Uma história muito antiga Uma história

Leia mais

CAPÍTULO 4 - OPERADORES E EXPRESSÕES

CAPÍTULO 4 - OPERADORES E EXPRESSÕES CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada

Leia mais

Ana Maria de Jesus Ferreira DINÂMICA GRUPAL. No processo ensino-aprendizagem

Ana Maria de Jesus Ferreira DINÂMICA GRUPAL. No processo ensino-aprendizagem Ana Maria de Jesus Ferreira DINÂMICA GRUPAL No processo ensino-aprendizagem Rio de Janeiro 2005 UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU PROJETO VEZ DO MESTRE DINÂMICA GRUPAL OBJETIVOS: Estudar

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática

Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática Uma perspectiva de ensino para as áreas de conhecimento escolar - Matemática A proposta Para a elaboração do Material Didático de Matemática, da Primeira Fase do Ensino Fundamental, partimos do pressuposto

Leia mais

Cursos Profissionais de Nível Secundário

Cursos Profissionais de Nível Secundário Cursos Profissionais de Nível Secundário Técnico de Apoio à infância e Técnico de Turismo Ano Letivo: 2014/2015 Matemática (100 horas) 10º Ano PLANIFICAÇÃO A LONGO PRAZO A1 Geometria Resolução de problemas

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

OFICINA. Construindo com tangram. Letícia Fonseca Reis F. Castro Matemática e Livro das Formas 13/08/2011

OFICINA. Construindo com tangram. Letícia Fonseca Reis F. Castro Matemática e Livro das Formas 13/08/2011 OFICINA Construindo com tangram Letícia Fonseca Reis F. Castro Matemática e Livro das Formas 13/08/2011 Matemática Uma das finalidades de estudar matemática é aprender como se resolvem problemas, indo

Leia mais

ESTUDO DA GEOMETRIA EUCLIDIANA PLANA NO AMBIENTE DE MATEMÁTICA DINÂMICA - GEOGEBRA

ESTUDO DA GEOMETRIA EUCLIDIANA PLANA NO AMBIENTE DE MATEMÁTICA DINÂMICA - GEOGEBRA ESTUDO DA GEOMETRIA EUCLIDIANA PLANA NO AMBIENTE DE MATEMÁTICA DINÂMICA - GEOGEBRA Marcelo Pirôpo da Silva 1 Universidade Estadual de Santa Cruz marcelopiropo@hotmail.com Resumo: O presente trabalho tem

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS

AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS AGRUPAMENTO VERTICAL DE ESCOLAS DE PEDROUÇOS ESCOLA E.B. /3 DE PEDROUÇOS DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS GRUPO DISCIPLINAR DE MATEMÁTICA º CICLO PLANIFICAÇÃO DE MATEMÁTICA 6º ANO Ano

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências Ver documento METAS CURRICULARES de MATEMÁTICA http://www.dgidc.min-edu.pt Números e Operações Números Naturais Operações com números naturais Regularidades - Relações numéricas composição e decomposição

Leia mais

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo)

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Objeto de avaliação Itens/Parâmetros Instrumentos Ponderação Conteúdos da Testes

Leia mais