Lista de Exercícios Glossário Básico

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios Glossário Básico"

Transcrição

1 Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8 Gabarito e Resolução nas últimas páginas. É bastante complicado numa única aula ou mesmo numa única lista de exercícios, apresentar todas as representações que você necessitará conhecer ao longo do curso. É um processo gradual. Se o seu aproveitamento nesta aula não for satisfatório, não desanime. Vários outros conceitos e notações serão melhor fixados ao longo do curso. Nota: Pular as aulas do curso, vê-las fora da ordem ou ir direto para as atividades sem ver os vídeos de teoria apenas irá prejudicar seu aprendizado. Não faça isso, você só tem a perder, estude com responsabilidade. Só avance para a aula seguinte quando dominar a anterior! RESPONDA OS EXERCÍCIOS ABAIXO SEM CONSULTAR!!! E1: Escreva, resumidamente, o que cada item significa. a) b) c) d) e) f) g) h) i) j) E2: Sabemos que a multiplicação pode ser representada pelo sinal de vezes ( ) pelo ponto mediano ( ) ou até mesmo a ausência de sinal, como em xy. Justifique o motivo pelo qual, no Ensino Médio, evitamos a representação ( ) para a multiplicação e em que casos é vantajosa a omissão do sinal. E3: Por qual motivo não podemos confundir o ponto mediano ( ) com o ponto final? E4: A divisão pode ser representada pelo símbolo ou mesmo por dois pontos ( : ) além da representação em fração. Justifique o fato de evitarmos as duas primeiras representações. Página 1 de 7

2 E5: Qual a utilidade dos parênteses em expressões simples? Justifique. E6: Escreva as letras gregas minúsculas alfa, beta, gama e delta. E7: Diferencie de. E8: O que significa o símbolo na equação? E9: Um professor deu ao aluno a seguinte questão: Resolva. Considere N. Ao resolvê-la, ele obteve o resultado e a colocou como resposta final da questão, errando-a. Explique qual foi o erro cometido pelo aluno. E10: Em relação à representação V = {x N/4 x< 11 x 7}: a) Explique sucintamente o que ela quer dizer. b) Represente todos os elementos nela citados. E11: Em!"#, o que representa o símbolo e qual a sua função? E12: Represente os símbolos: Existe, Não Existe, Qualquer que Seja e Portanto. E13: Escreva utilizando notação matemática: O número 2,99 é aproximadamente igual a 3. E14: Represente, através de símbolos matemáticos, os conjuntos: Reais, Naturais e Racionais. Represente também os Reais não negativos. Página 2 de 7

3 E15: Calcule o seguinte Somatório: 6 i= 3 2i Página 3 de 7

4 Gabarito e Resolução Nota: Novamente enfatizamos: não se apavore caso o seu desempenho nesta aula não tenha sido satisfatório. Ela é realmente complexa. Recomendamos que você reveja a aula para aprofundar um pouco mais seu conhecimento acerca das notações. No entanto, se o seu desempenho (SEM CONSULTAR a aula ou livros) foi acima de 70%, parabéns! De qualquer forma, você notará que este tipo de aprendizado será ampliado ao longo do curso. E1: a) a é igual a b b) a é maior que b c) a é maior ou igual a b d) a é menor que b e) a é menor ou igual a b f) a é diferente de b g) a é maior que b, que é maior que c h) c é menor que b, que é menor que a i) x ou y j) x e y E2: No Ensino Fundamental (nas séries iniciais) os problemas aritméticos são mais frequentes e a álgebra é bem simples. Assim sendo, o operador ( ) é mais simples de ser escrito e visto e não causa grandes problemas. No Ensino Fundamental II ou Médio, surge o x (xis) como incógnita e variável em diversas situações e o uso do operador (vezes) causaria confusão. Assim sendo, passa a ser preferível a utilização do ponto mediano ( ) para representar produtos, como em 2 3. Nos casos impossibilitados de haver confusão, podemos omitir o sinal de multiplicação (por exemplo, xy representa x vezes y). Note que o mesmo não pode ser feito com produtos numéricos como 2 3 (se escrevêssemos 23 isso representaria o número vinte e três e não 2 vezes 3). Página 4 de 7

5 E3: Simples: pelo fato de representarem coisas diferentes. O ponto no Brasil é utilizado para separação de milhares, como em (três mil e duzentos) e, incorretamente, como separador de casas decimais como 3.2 (essa notação é incorreta no Brasil, devemos utilizar vírgula, ou seja, a forma correta do caso apresentado é 3,2). Nos EUA e em diversos produtos de tecnologia americana (como a maioria das calculadoras de bolso) os separadores de casas decimais são pontos, daí a confusão. Se quisermos representar uma multiplicação com um ponto, este deverá ser o ponto mediano (como em 2 3) Assim, 2 3 representa dois vezes 3 cujo resultado é 6, enquanto 2,3 representa o número 2 seguido de uma casa decimal, o 3. E4: Imagine a seguinte representação: , ou mesmo Podemos interpretar de duas formas: a) b) Como você deve imaginar, isso é péssimo, pois quando apresentamos uma expressão matemática, queremos que ela seja interpretada de uma única forma, sem possibilidade de dupla interpretação. É como na frase Ele a matou em seu quarto. Ué, ele a matou no quarto DELE ou no quarto DELA? Ou no MEU? Para evitar conflitos como esse, frações são muito melhores. Poderíamos escrever:,- 4 (equivalente à solução apresentada no item a),- (equivalente à solução apresentada no item b) Página 5 de 7

6 E5: Ao contrário do caso mostrado em E4, a expressão! ". possui uma única interpretação: devemos fazer primeiro a multiplicação e depois a soma ou subtração. Fica então = 17. No entanto, há casos em que a adição ou subtração necessitam ser feitos antes da multiplicação. Para garantirmos isso (tomando o exemplo anterior) escrevemos /! "0.. Pronto! Como os parênteses devem ser resolvidos primeiro (quando possível) podemos escrever A própria expressão mostrada no exemplo 4 perderia a dupla interpretação com o uso de parênteses. Poderíamos escrever /3 0 para garantir a mesma resposta do item a, ou ainda 3 / 0 para garantir a mesma resposta do item b do exercício anterior. Assim, parênteses evitam as duplas interpretações e definem a ordem das operações. E6: As letras são 4 /560, 8 /9:0, ; /<= 0 9 >/?95: 0. Nota: não confunda o delta minúsculo (>) com o maiúsculo (A) (esse último mais conhecido devido às variações na Física e ao próprio símbolo bastante utilizado na fórmula de Bhaskara). E7: Em B temos um índice 2, já em B, temos um expoente 2. Índices são úteis na representação de termos de alguma forma relacionados (por exemplo, as quatro árvores de um mesmo pomar podem ser chamadas de,,, C 9. São muito usados em sequências, notadamente em progressões aritméticas e geométricas. Já os expoentes representam uma operação de Potenciação (por exemplo, ) que será melhor vista em uma aula específica de Potenciação. Claro que em outras ciências (como, por exemplo, na Química) tais representações podem ganhar novos significados. E8: Na fórmula de Bhaskara, o símbolo citado resume as duas representações possíveis: E ou Página 6 de 7

7 E9: O erro foi que a solução encontrada é incompatível com o conjunto universo determinado pelo professor ( N ). Explicitamente, apenas as soluções naturais deveriam ser aceitas. Logo, pelo fato de a solução encontrada (-2) não ser um natural, o problema não tem solução para as limitações apresentadas. E10: V = {x N/4 x< 11 x 7}: a) O conjunto Verdade é definido por: conjunto dos números naturais maiores ou iguais a 4 e também menores que 11, porém diferentes de 7 (numa interpretação mais livre). b) Devemos então representar todos os naturais entre 4 e 11 (incluindo o 4, mas excluindo o 11) sem incluir o 7: V = { 4, 5, 6, 8, 9, 10} E11: O símbolo significa equivale e nos mostra que existe uma equivalência lógica entre as passagens. No exemplo citado, temos que a equação x + 3 = 7 é equivalente à nova forma x = 4. O símbolo citado garante também uma exibição mais consistente do raciocínio ao mostrar a equivalência dos passos intermediários até a conclusão. E12: (existe), (não existe), (qualquer que seja), (portanto). E13: 2,99 3. E14: R (Reais), N (Naturais), Q (Racionais) e R + (Reais não negativos) E15: 6 i= 3 2i= = = 36 Página 7 de 7

CAPÍTULO 4 - OPERADORES E EXPRESSÕES

CAPÍTULO 4 - OPERADORES E EXPRESSÕES CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada

Leia mais

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS

EXPRESSÕES NUMÉRICAS FRACIONÁRIAS EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Exponencial: Equação e Função (Operações Básicas)

Exponencial: Equação e Função (Operações Básicas) Exponencial: Equação e Função (Operações Básicas) Profª: Helen Savi Mondo de Oliveira Setembro 2014 Um pouco sobre a história O primeiro indício do uso de equações está relacionado, aproximadamente, ao

Leia mais

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando

OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo

Leia mais

Bacharelado em Ciência e Tecnologia Processamento da Informação. Equivalência Portugol Java. Linguagem Java

Bacharelado em Ciência e Tecnologia Processamento da Informação. Equivalência Portugol Java. Linguagem Java Linguagem Java Objetivos Compreender como desenvolver algoritmos básicos em JAVA Aprender como escrever programas na Linguagem JAVA baseando-se na Linguagem Portugol aprender as sintaxes equivalentes entre

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1

Resumo de Aula: Notação científica kg. Potências positivas Potências negativas ,1 Resumo de Aula: Notação científica. 1- Introdução Este resumo não trata exatamente sobre física, é sobre uma das formas que expressamos os resultados numéricos em ciências em geral (e na física em particular).

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.:

PLANEJAMENTO Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: Disciplina: Matemática Série: 7º Ano Ensino: Fundamental Prof.: II ) Compreensão de fenômenos 1ª UNIDADE Números inteiros (Z) 1. Números positivos e números negativos 2. Representação geométrica 3. Relação

Leia mais

EXPRESSÕES ARITMÉTICAS PARTE 2

EXPRESSÕES ARITMÉTICAS PARTE 2 AULA 6 EXPRESSÕES ARITMÉTICAS PARTE 2 6.1 Operadores aritméticos sobre os reais Como vimos na aula anterior, os operadores aritméticos definem as operações aritméticas que podem ser realizadas sobre os

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer

Leia mais

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS

1.2. ELEMENTOS DE ÁLGEBRA EXPANSÃO DE PRODUTOS 1.2. ELEMENTOS DE ÁLGEBRA 1.2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion

2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR

Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Aula 7: Portas Lógicas: AND, OR, NOT, XOR, NAND e NOR Conforme discutido na última aula, cada operação lógica possui sua própria tabela verdade. A seguir será apresentado o conjunto básico de portas lógicas

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia

Leia mais

Sistemas de numeração e conversão de bases Decimal e binário

Sistemas de numeração e conversão de bases Decimal e binário Sistemas de numeração e conversão de bases Decimal e binário Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação

Leia mais

Escola Adventista Thiago White

Escola Adventista Thiago White Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o

Leia mais

Adição de números decimais

Adição de números decimais NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte

Leia mais

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.).

Os números foram criados para quantificar algo, seja pela proporção ou medida (comprimento, área, volume, tempo, peso, etc.). PEDREIRA, Sinvaldo Martins [1] [2] PEDREIRA, Sinvaldo Martins. O valor dos números. Revista Científica Multidisciplinar Núcleo do Conhecimento. Ano 1, Vol.8. pp.5-16, setembro de 2016. ISSN.2448-0959 RESUMO

Leia mais

Capítulo V Sistemas Numéricos

Capítulo V Sistemas Numéricos Capítulo V Sistemas Numéricos Introdução Em capítulos anteriores estudamos diversas funções lógicas. No próximo capítulo veremos que operações aritméticas como soma e subtração de números binários podem

Leia mais

Matéria: Matemática Assunto: Frações Prof. Dudan

Matéria: Matemática Assunto: Frações Prof. Dudan Matéria: Matemática Assunto: Frações Prof. Dudan Matemática FRAÇÕES Definição Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Prova Resolvida Raciocínio Lógico (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico (ANAC/2016) 71. (ANAC 2016/ESAF) Sabendo que os valores lógicos das proposições simples p e q são, respectivamente, a verdade e a falsidade, assinale o item que apresenta

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO SISTEMAS DE NUMERAÇÃO 1. INTRODUÇÃO Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo

Leia mais

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo)

Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Objeto de avaliação Itens/Parâmetros Instrumentos Ponderação Conteúdos da Testes

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

Variáveis, Tipos de Dados e Operadores

Variáveis, Tipos de Dados e Operadores ! Variáveis, Tipos de Dados e Operadores Engenharias Informática Aplicada 2.o sem/2013 Profa Suely (e-mail: smaoki@yahoo.com) VARIÁVEL VARIÁVEL É um local lógico, ligado a um endereço físico da memória

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências

Agrupamento de Escolas Eugénio de Castro 1º Ciclo Planificação Anual. Ano Letivo 2012/13 Área - Matemática 2º Ano. - Sequências Ver documento METAS CURRICULARES de MATEMÁTICA http://www.dgidc.min-edu.pt Números e Operações Números Naturais Operações com números naturais Regularidades - Relações numéricas composição e decomposição

Leia mais

04 Fórmulas Matemáticas

04 Fórmulas Matemáticas HEWLETT-PACKARD 04 Fórmulas Matemáticas [Digite o subtítulo do documento] Prof. Rodrigo [Digite aqui o resumo do documento. Em geral, o resumo é uma breve descrição do conteúdo do documento. Digite aqui

Leia mais

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor

Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números

Leia mais

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial

Álgebra de Boole. Nikolas Libert. Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Nikolas Libert Aula 4B Eletrônica Digital ET52C Tecnologia em Automação Industrial Álgebra de Boole Álgebra de Boole Augustus De Morgan (1806-1871) e George Boole (1815-1864). Desenvolvimento

Leia mais

OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2

OPERANDO NÚMEROS INTEIROS COM O ÁBACO. Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 OPERANDO NÚMEROS INTEIROS COM O ÁBACO Letícia Ramos Rodrigues 1 Tássia Oliveira de Oliveira 2 Resumo O aprendizado das operações fundamentais, sendo elas a adição, a subtração, a multiplicação e a divisão,

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Capítulo 2 Operadores. A função scanf()

Capítulo 2 Operadores. A função scanf() Capítulo 2 Operadores A função scanf() A função scanf() é outra das funções de E/S implementadas em todos os compiladores e nos permite ler dados formatados da entrada padrão (teclado). Sintaxe: scanf(

Leia mais

NÚMEROS RACIONAIS OPERAÇÕES

NÚMEROS RACIONAIS OPERAÇÕES UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2016.2 NÚMEROS RACIONAIS OPERAÇÕES Prof. Adriano Vargas Freitas Noção de número

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 1 Apresentação Olá, pessoal Tudo bem com vocês? Finalmente saiu o edital do TCM/RJ Para quem ainda não me conhece, meu nome

Leia mais

ALGORITMOS AULA 1. Profª Amanda Gondim

ALGORITMOS AULA 1. Profª Amanda Gondim ALGORITMOS AULA 1 Profª Amanda Gondim O que é lógica? NOÇÕES DE LÓGICA A lógica trata da correção do pensamento Ensina-nos a usar corretamente as leis do pensamento É a arte de pensar corretamente A forma

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa

PLANO DE ENSINO Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa PLANO DE ENSINO 2016 Disciplina: Matemática 8º ano Professor(a): Gracivane Pessoa Competências e Habilidades Gerais da Disciplina Desenvolver a responsabilidade e o gosto pelo trabalho em equipe; Relacionar

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Módulo 1 Unidade 10 Sistemas de equações lineares Para Início de conversa... Já falamos anteriormente em funções. Dissemos que são relações entre variáveis independentes e dependentes. Às vezes, precisamos

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

Agrupamento de Escolas do Fundão

Agrupamento de Escolas do Fundão Agrupamento de Escolas do Fundão MATEMÁTICA P GPI 13 12º Ano CURRÍCULO DA DISCIPLINA E Nº DE AULAS PREVISTAS Período PLANIFICAÇÃO ANUAL Módulos a leccionar + Conteúdos Programáticos Módulo A6- Taxa de

Leia mais

Matemática 3º Ciclo. Planificação Anual 7.º ano. N.º de aulas. Objectivos 1.º PERÍODO. Ano Lectivo 2009/2010. Apresentação 1. Teste Diagnóstico 2

Matemática 3º Ciclo. Planificação Anual 7.º ano. N.º de aulas. Objectivos 1.º PERÍODO. Ano Lectivo 2009/2010. Apresentação 1. Teste Diagnóstico 2 i Temas Sub-temas Objectivos 1.º PERÍODO Apresentação 1 Teste Diagnóstico 2 Múltiplos e divisores. Critérios de divisibilidade. Obter números, a partir de outros, por composição e decomposição; Números

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO

CURRÍCULO DAS ÁREAS DISCIPLINARES / CRITÉRIOS DE AVALIAÇÃO Domínios e subdomínios Metas/Objetivos Objetivos gerais 3º Ciclo Matemática 7º Ano Conteúdos Programáticos Critérios de Avaliação Instrumentos de Avaliação Números e Operações: Números racionais Álgebra:

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

Lista de Exercícios - Divisão

Lista de Exercícios - Divisão Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 7 - Divisão - (parte 1 de 1) Endereço: https://www.youtube.com/watch?v=qsw2cmlxzmu Gabaritos nas últimas páginas!

Leia mais

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR

UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou

Leia mais

Introdução a Programação

Introdução a Programação Introdução a Programação Prof. André Gustavo Duarte de Almeida andre.almeida@ifrn.edu.br docente.ifrn.edu.br/andrealmeida Aula 02 Primeiro Programa Roteiro Primeiros Passos Variáveis Expressões Comandos

Leia mais

Programa Institucional de Bolsa de Iniciação à Docência PIBID. Subprojeto Matemática Campus Itaqui. RELATÓRIO I Data: 29/04/2015.

Programa Institucional de Bolsa de Iniciação à Docência PIBID. Subprojeto Matemática Campus Itaqui. RELATÓRIO I Data: 29/04/2015. RELATÓRIO I Data: 29/04/2015 Objetivo(s) Ampliar noções de Estatística; Analisar e generalizar gráficos e tabelas. Desenvolvimento da práxis pedagógica Moda:O elemento com maior frequência, ou seja, o

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) +

MÓDULO XII. EP.02) Determine o valor numérico da expressão algébrica x 2 yz xy 2 z para x = 1, y = 1 e z = 2. c) y.(y x + 1) + MÓDULO XII EXPRESSÕES ALGÉBRICAS 1. Epressão algébrica Em álgebra, se empregam outros símbolos além dos algarismos. Damos o nome de epressão algébrica ao conjunto de letras e números ligados entre si por

Leia mais

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h

Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h 1 Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Matemática Elementar I 60h Matemática Aula Período Data Coordenador 3.1 1. a 06/06/2006 (terça feira) Tempo Estratégia Descrição (Arte)

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

FACULDADE PITÁGORAS PRONATEC

FACULDADE PITÁGORAS PRONATEC FACULDADE PITÁGORAS PRONATEC DISCIPLINA: ARQUITETURA DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos carlos@oficinadapesquisa.com.br www.oficinadapesquisa.com.br Objetivos Ao final desta apostila,

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Análise dos descritores da APR II 4ª série/5º ano Matemática

Análise dos descritores da APR II 4ª série/5º ano Matemática Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco.

ÁBACO VERTICAL. 1º. Passo: Explicar aos alunos o significado de cada pino do ábaco. ÁBACO VERTICAL É de extrema importância que os alunos construam os conceitos de número já nas séries iniciais, a fim de que estes evoluam do concreto aos estágios de abstração. Os Parâmetros Curriculares

Leia mais

Unidade 3: Linguagem de programação

Unidade 3: Linguagem de programação Unidade 3: Linguagem de programação 3.3. Primeiros passos Iniciaremos os primeiros passos no aplicativo Scilab abrindo a janela principal, ilustrada na Figura 3.1. Aprenderemos inicialmente a realizar

Leia mais

Programação Básica. Estrutura de um algoritmo

Programação Básica. Estrutura de um algoritmo Programação Básica Estrutura de um algoritmo Código-fonte Como vimos na aula anterior um algoritmo pode ser representado usando um fluxograma Um algoritmo pode também ser representado usando texto Esse

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Números e operações Números racionais não negativos Noção e representação de número racional Comparação e ordenação de números racionais Operações com números racionais Valores aproximados Percentagens

Leia mais

Estrutura de um Algoritmo, Variáveis, Comandos de Entrada e Saída e Expressões Aritméticas

Estrutura de um Algoritmo, Variáveis, Comandos de Entrada e Saída e Expressões Aritméticas Estrutura de um Algoritmo, Variáveis, Comandos de Entrada e Saída e Expressões Aritméticas Estrutura de um Programa em Linguagem Algorítmica Nesse curso nós vamos utilizar a linguagem algorítmica para

Leia mais

2013 COTAÇÕES. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Chamada. Braille, Entrelinha 1,5, sem figuras nem imagens

2013 COTAÇÕES. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Chamada. Braille, Entrelinha 1,5, sem figuras nem imagens PROVA FINAL DO 2.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/2012, de 5 de julho Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Chamada Braille, Entrelinha 1,5, sem figuras nem imagens

Leia mais

Elementos de Lógica Digital Aula 1: Introdução 04/08/2011

Elementos de Lógica Digital Aula 1: Introdução 04/08/2011 Elementos de Lógica Digital Aula 1: Introdução 04/08/2011 Website http://www.inf.ufes.br/~pdcosta/ensino/2010-2-elementos-de-logica-digital/ Prof a. Patrícia Dockhorn Costa Objetivos O objetivo desta disciplina

Leia mais

TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB)

TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB) TÓPICOS DA MATRIZ DE REFERÊNCIA DE LÍNGUA PORTUGUESA ENSINO FUNDAMENTAL ( DE ACORDO COM SAEB) I. PROCEDIMENTOS DE LEITURA Localizar informações explícitas em um texto. Inferir o sentido de uma palavra

Leia mais

FUNÇÃO SE. = SE ([condição]; [valor se verdadeiro]; [valor se falso]). A condição pode ser efetuada usando sinais matemáticos comparativos:

FUNÇÃO SE. = SE ([condição]; [valor se verdadeiro]; [valor se falso]). A condição pode ser efetuada usando sinais matemáticos comparativos: FUNÇÃO SE A função SE() é uma função especial que determina o valor da célula de acordo com um teste-lógico. Ela sempre contém uma condição, que definirá o valor da célula. Se a condição for verdadeira

Leia mais

Figura 1 - Display de 7 segmentos

Figura 1 - Display de 7 segmentos Lista de exercicio para revisão Um display de 7 segmentos é um dispositivo eletrônico composto por sete led s com formato de segmento, posicionados de modo a possibilitar a formação de um algarismo decimal

Leia mais

ESCOLA SECUNDÁRIA DE LOUSADA

ESCOLA SECUNDÁRIA DE LOUSADA ESCOLA SECUNDÁRIA DE LOUSADA 2012 2013 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Curso Profissional de Técnico de Multimédia ELENCO MODULAR A7 Probabilidades 28 A6 Taxa de variação 36 A9 Funções de crescimento

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 09 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 2.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/2012, de 5 de julho Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/2.ª Chamada Critérios de Classificação 9 Páginas 2013 COTAÇÕES

Leia mais

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações

Curso de Licenciatura em Física Grupo de Apoio. Mar/ Frações 5. Frações Há 5000 anos, os geômetras dos faraós do Egito realizavam a marcação das terras que ficavam às margens do rio Nilo, para a sua população. No período de junho a setembro, o rio inundava essas

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II 1 Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 03 Página 1 2 ÁLGEBRA - é o ramo que estuda as generalizações dos conceitos e operações aritméticas. Hoje em dia o termo Álgebra é bastante

Leia mais

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9 Bases Matemáticas Aula 4 Conjuntos Numéricos Rodrigo Hausen v. 2016-6-10 1/9 Números Naturais, Inteiros e Racionais naturais: inteiros: racionais: N = {0, 1, 2,...} Z = {... 2, 1, 0, 1, 2,...} { } p Q

Leia mais

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h

Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 2h/60h Mapas de Karnaugh Prof. Rômulo Calado Pantaleão Camara Carga Horária: 2h/60h Mapas de Karnaugh O mapa de Veitch-Karnaugh, ou simplesmente mapa de Karnaugh, é uma tabela montada de forma a facilitar o processo

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade

ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade ÁLGEBRA BOOLEANA E LÓGICA DIGITAL AULA 04 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização de Computadores

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Lógica de Programação: aula 2. Dariel Mazzoni Maranhão. Uninove: Universidade Nove de Julho. 22 de agosto de 2010

Lógica de Programação: aula 2. Dariel Mazzoni Maranhão. Uninove: Universidade Nove de Julho. 22 de agosto de 2010 Uninove: Universidade Nove de Julho 22 de agosto de 2010 Tipos de Dados Primitivos São informações manipuladas pelos usuários. Classificam-se em quatro tipos: Inteiro; Tipos de Dados Primitivos São informações

Leia mais

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos?

Recordarido O sistema de numeração. De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? De quantas maneiras podemos pagar um bombom de 65 centavos, usando apenas moedas de 1 centavo e 10 centavos? Meça a página do seu livro com uma régua. Como você representa, em centímetros, a medida encontrada?

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO

PLANO DE ESTUDOS DE MATEMÁTICA - 5.º ANO PERFIL DO ALUNO DE MATEMÁTICA - 5.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números

Leia mais

1 Completando Quadrados

1 Completando Quadrados UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.

Leia mais

9. Comando de repetição com variável de controle (para.. de.. até.. faça)

9. Comando de repetição com variável de controle (para.. de.. até.. faça) 9. Comando de repetição com variável de controle (para.. de.. até.. faça) Com o uso das estruturas enquanto e repita é possível elaborar rotinas que efetuam a execução de um looping um determinado número

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais