Introdução aos Métodos Numéricos

Tamanho: px
Começar a partir da página:

Download "Introdução aos Métodos Numéricos"

Transcrição

1 Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho

2 Conteúdo temático Zeros de Função

3 Conteúdo específico Aspectos básicos sobre zeros de função Métodos de partição Método da bissecção Critério de parada

4 Zeros de função Suponha que, por algum motivo, necessitamos de determinar onde uma função se anula f (x)=0

5 Zeros de função Parece que a solução é simples: basta achar a função inversa da função e a calcular em zero x=f 1 (0)

6 Zeros de função Parece que a solução é simples: basta achar a função inversa da função e a calcular em zero x=f 1 (0) Pena que achar a inversa de uma função não seja uma coisa simples em geral

7 Zeros de função Parece que a solução é simples: basta achar a função inversa da função e a calcular em zero x=f 1 (0) Pena que achar a inversa de uma função não seja uma coisa simples em geral Sem contar que podemos ter a função anulando em mais de um ponto, como na figura que mostramos...

8 Zeros de função Mas em que situações necessitaríamos determinar os pontos uma função se anula? Determinação de máximos de funções

9 Zeros de função Mas em que situações necessitaríamos determinar os pontos uma função se anula? Determinação de máximos de funções Apresentação realística de contato entre objetos em computação gráfica (animações, etc.)

10 Zeros de função Mas em que situações necessitaríamos determinar os pontos uma função se anula? Determinação de máximos de funções Apresentação realística de contato entre objetos em computação gráfica (animações, etc.) Determinação de níveis de energia em simulações Etc.

11 Zeros de função Existe um conjunto de funções das quais sabemos algo sobre o ponto no qual elas se anulam como os polinômios.

12 Zeros de função Existe um conjunto de funções das quais sabemos algo sobre o ponto no qual elas se anulam como os polinômios. Se um polinômio de grau n sabemos que terá n pontos onde se anulará, seja no eixo real ou no plano complexo Mesmo aqui temos problemas

13 Zeros de função Sabemos fórmulas algébricas para polinômios de grau até 4.

14 Zeros de função Sabemos fórmulas algébricas para polinômios de grau até 4. Deste grau para cima é demonstrável que não existem fórmulas algébricas para o caso geral, apenas para casos particulares.

15 Zeros de função Sabemos fórmulas algébricas para polinômios de grau até 4. Deste grau para cima é demonstrável que não existem fórmulas algébricas para o caso geral, apenas para casos particulares. Usar o recurso de dividir polinômios é numericamente instável...

16 Zeros de função Mas o que fazer se as equações forem como estas? e x 3 cos x=0 ;cos x sen 2 x+ 3 x 2 =0 ; 0 Existem pontos onde se anulam? sent t dt x+1=0

17 Zeros de função Mas o que fazer se as equações forem como estas? e x 3 cos x=0 ;cos x sen 2 x+ 3 x 2 =0 ; 0 Existem pontos onde se anulam? Se tem, quantos? sent t dt x+1=0

18 Zeros de função Mas o que fazer se as equações forem como estas? e x 3 cos x=0 ;cos x sen 2 x+ 3 x 2 =0 ; 0 Existem pontos onde se anulam? Se tem, quantos? Como achar estes pontos? sent t dt x+1=0

19 Zeros de função Diremos que determinar onde funções se anulam está em determinarmos os zeros destas funções

20 Zeros de função Diremos que determinar onde funções se anulam está em determinarmos os zeros destas funções O termo raízes é mais adequado aos pontos onde polinômios se anulam

21 Zeros de função Mudaremos a visão do problema No lugar de termos um problema com n zeros, vamos transformar este problema em n problemas de um zero a determinar

22 Zeros de função Mudaremos a visão do problema No lugar de termos um problema com n zeros, vamos transformar este problema em n problemas de um zero a determinar Faremos isto isolando cada zero num determinado intervalo que o contém...

23 Zeros de função...como na figura abaixo

24 Zeros de função Escolhamos um zero

25 Zeros de função Escolhamos um zero Como sabemos que há um zero no intervalo (A,B)?

26 Zeros de função Escolhamos um zero Como sabemos que há um zero no intervalo (A,B)? Se a função f(x) for diferenciável no intervalo então f ( A)f (B)<0

27 Zeros de função Na grande maioria das vezes não temos o gráfico da função e nem nos interessa ter um gráfico! Queremos o zero da função Pergunta: O teste que fizemos anteriormente sempre funcionará?

28 Zeros de função Isolar raizes em geral não é simples, precisamos ter um estudo minimamente aprofundado da função

29 Zeros de função Isolar raizes em geral não é simples, precisamos ter um estudo minimamente aprofundado da função...e muitas vezes a função é tão complexa que temos dificuldade em isolar mas raizes, ou seja, podemos cometer erros.

30 Zeros de função Zeros múltiplos Observe a figura: Se escolhermos isolar o zero no intervalo [1/2,3/2] teremos um problema com nosso teste. Ele dirá que não há nenhum zero no intervalo. De fato há dois zeros!

31 Zeros de função Zeros múltiplos A função na figura é da função x 3 +4 x 2 5 x+2 que tem como zeros os valores 1 e 2, sendo 1 uma raiz dupla. Diremos que: x = 1 é zero de multiplicidade 2 x = 2 é zero de multiplicidade 1 ou um zero simples

32 Zeros de função Zeros múltiplos Observe agora a figura: Se escolhermos isolar o zero no intervalo [1/2,3/2] não teremos um problema com nosso teste. Mas aqui há três zeros!

33 Zeros de função Zeros múltiplos A função desta figura é da função x 3 +3 x 2 3 x+1 como zeros o valores 1 que é um zero triplo. Diremos que: x = 1 é zero de multiplicidade 3. que tem

34 Zeros de função Zeros múltiplos Podemos generalizar estes exemplo observando que: Se uma função tiver um zero de multiplicidade par o nosso teste falhará Se uma função tiver um zero de multiplicidade impar o nosso teste funcionará mas indicará menos zeros do que os existentes

35 Zeros de função Zeros múltiplos Generalizando mais ainda, temos que: Se uma função tiver um zero R de multiplicidade n então não só a função se anulará em R como também se anularão em R suas n-1 derivadas Experimente isto com as funções apresentadas

36 Zeros de função Partiremos agora do suposto que fizemos uma boa análise da função de nosso interesse e sabemos que isolamos um zero simples, ou seja, que o zero não é múltiplo. Assim nosso teste valerá e nos dará um método útil de determinarmos zeros de função

37 Zeros de função Apresentaremos um método da categoria de Métodos de Partição, ou seja, métodos que sucessivamente obtém subintervalos que contém a solução do problema

38 Método da bissecção Este método começa por acharmos o ponto médio do intervalo, ou seja, X= A+B 2

39 Método da bissecção Como o zero se encontra entre A e B, temos que este zero se encontra no intervalo (A,X] ou no intervalo [X,B). Usaremos o teste Se f ( A)f ( X )<0 ; R ( A, X )

40 Método da bissecção Como o zero se encontra entre A e B, temos que este zero se encontra no intervalo (A,X] ou no intervalo [X,B). Usaremos o teste Se Se f ( A)f ( X )<0 ; R ( A, X ) f ( A)f ( X )>0 ; R ( X, B)

41 Método da bissecção Feito isto faremos Se f ( A)f ( X )<0 ; R ( A, X ); B X Se f ( A)f ( X )>0 ; R ( X, B); A X Novamente calculamos X= A+B 2 para o novo A ou B. A figura ficará...

42 Método da bissecção Novamente faremos o teste com uma pequena modificação

43 Método da bissecção Se f ( A)f ( X )<0 ; R ( A, X ); B X f ( A)f ( X )>0 ; R ( X, B); A X f ( A)f ( X )=0; R=A ou R=X Isto é necessário pois não temos como prever o comportamento da função em X

44 Método da bissecção Calculando X= A+B 2

45 Método da bissecção Resumo do que fizemos

46 Método da bissecção Seja f(x) diferenciável em [A, B]. Tenhamos f(a) I) Calcule X= A+B e f ( X) 2 II) Se f ( A) f ( X )<0 ; R ( A, X ); B X f ( A) f ( X )>0 ; R ( X, B); A X f ( A)f ( X)=0 ; R=A ou R=X III) Se o critério de parada não for satisfeito, retorne a I

47 Método da bissecção No momento não abordaremos o critério de parada

48 Método da bissecção Um exemplo Determine aproximações para o ponto onde a função abaixo se anula no semi-eixo positivo. e x 3 cos x

49 Método da bissecção Um exemplo Determine aproximações para o ponto onde a função abaixo se anula no semi-eixo positivo. e x 3 cos x Isto significa que queremos resolver a equação abaixo e x 3 cos x=0

50 Zeros de função O primeiro obstáculo é localizar o zero dentro de um intervalo. Isto pode ser feito por Um estudo da natureza do problema

51 Zeros de função O primeiro obstáculo é localizar o zero dentro de um intervalo. Isto pode ser feito por Um estudo da natureza do problema Um estudo exploratório

52 Zeros de função O primeiro obstáculo é localizar o zero dentro de um intervalo. Isto pode ser feito por Um estudo da natureza do problema Um estudo exploratório O estudo da natureza do problema é o melhor e exige boa compreenção do que estamos fazendo

53 Zeros de função Aqui olharemos para o problema como a intersecção entre duas curvas, ou seja, e x 3 cos x=0

54 Zeros de função Aqui olharemos para o problema como a intersecção entre duas curvas, ou seja, e x 3 cos x=0 e x =3 cos x e conhecemos bem estas duas funções.

55 Zeros de função Aqui olharemos para o problema como a intersecção entre duas curvas, ou seja, e x 3 cos x=0 e x =3 cos x e conhecemos bem estas duas funções. Já que é assim, façamos um esboço destas duas funções no semi-eixo positivo, lembrando que cosseno atinge o primeiro valor zero em π/2

56 Zeros de função Esboço do ponto de intersecção e x =3 cos x

57 Zeros de função Esboço do ponto de intersecção e x =3 cos x É fácil de perceber que existe um ponto entre 0 e 1 na qual e x e 3cos(x) se intersectam, ou seja, a nossa função tem um zero em [0,1]

58 Zeros de função Verifiquemos... f (x)=e x 3 cos x f (0)=e 0 3 cos 0=1 3= 2 f (1)=e 1 3 cos1=2, ,540302=1,097374

59 Zeros de função Verifiquemos... f (x)=e x 3 cos x f (0)=e 0 3 cos 0=1 3= 2 f (1)=e 1 3 cos1=2, ,540302=1, Temos a confirmação que há um zero neste intervalo

60 Zeros de função Verifiquemos... f (x)=e x 3 cos x f (0)=e 0 3 cos 0=1 3= 2 f (1)=e 1 3 cos1=2, ,540302=1, Temos a confirmação que há um zero neste intervalo Apliquemos o Método da Bissecção fazendo A=0, B=1

61 Método da bissecção Um exemplo X= A+B 2 = = 1 2 f (X )=f ( 1 ) 2 =e1/2 3 cos 1 2 = 0, f ( A)f ( X )>0 ; A X f (x)=e x 3 cos x f ( A)= 2 Agora A= 1 2 e f ( A)= 0, continuando...

62 Método da bissecção Um exemplo X= A+B 2 =1/2+1 = f (X )=f ( 3 ) 4 =e3/ 4 3 cos 3 4 = 0, f ( A)f ( X )>0 ; A X f (x)=e x 3 cos x f ( A)= 0, Agora A= 3 4 e f ( A)= 0, continuando...

63 Método da bissecção Um exemplo X= A+B 2 = 3/ = 7 8 =0,875 f (X )=f ( 7 ) 8 =e7 /8 3 cos 7 8 =0, f ( A)f ( X )<0 ; B X f (x)=e x 3 cos x f ( A)= 0, Agora B= 7 8 e f (B)=0, continuando...

64 Método da bissecção Um exemplo X= A+B 2 = 3/ 4+7/8 2 = =0,8125 f (X )=f ( 13 ) 16 =e13/16 3 cos =0, f ( A)f ( X )<0 ; B X f (x)=e x 3 cos x f ( A)= 0, Agora B= 13 16

65 Método da bissecção Um exemplo X= A+B 2 = 3/ 4+7/8 2 = =0,8125 f (X )=f ( 13 ) 16 =e13/16 3 cos =0, f ( A)f ( X )<0 ; B X f (x)=e x 3 cos x f ( A)= 0, Agora B= paremos por aqui...

66 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ]

67 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ]

68 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ] R [ 3 4, 7 ] 8

69 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ] R [ 3 4, 7 ] 8 R [ 3 4, 13 ] 16 ou na última avaliação R [0,75;0,8125]

70 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ] R [ 3 4, 7 ] 8 R [ 3 4, 13 ] 16 ou na última avaliação R [0,75;0,8125] Temos uma progressão mas como ela se dá?

71 Método da bissecção Um exemplo Resumindo temos a seguinte progressão R [0,1] R [ 1 2,1 ] R [ 3 4, 1 ] R [ 3 4, 7 ] 8 R [ 3 4, 13 ] 16 ou na última avaliação R [0,75;0,8125] Temos uma progressão mas como ela se dá? Quando parar?

72 Método da bissecção Acredito que seja fácil de perceber que o intervalo que contém o zero decresce para metade de sua amplitude a cada passo, ou seja, L n = B A 2 n

73 Método da bissecção Acredito que seja fácil de perceber que o intervalo que contém o zero decresce para metade de sua amplitude a cada passo, ou seja, L n = B A 2 n onde B e A são os valores iniciais. Isto nos dá um critério de parada.

74 Método da bissecção Vamos supor que desejamos parar quando o intervalo que contém R for de tamanho tol. Assim, tol= B A 2 n = B A ( B A ) n=log 2 n tol 2 tol Com isto, sabemos quantos passos do método teremos que executar para obtermos o resultado que desejamos

75 Método da bissecção Se no nosso exemplo desejássemos que tol fosse um milésimo do intervalo original, teríamos n=log 2 ( B A ) tol =log ( 1 0 ) 2 0,001 =log 2(1000) 10 Este método não parece tão ruim assim.

76 Método da bissecção Se no nosso exemplo desejássemos que tol fosse um milésimo do intervalo original, teríamos n=log 2 ( B A ) tol =log ( 1 0 ) 2 0,001 =log 2(1000) 10 Este método não parece tão ruim assim. Mas é lento...

77 Método da bissecção O método da bissecção não leva em consideração o valor das funções, somente os sinais.

78 Método da bissecção O método da bissecção não leva em consideração o valor das funções, somente os sinais. Abaixo temos alguns valores numéricos calculados durante o uso do algoritmo f (0)= 2;f (1)=1, ; f ( 1 2 ) = 0, f ( 3 4 ) = 0, ; f ( 7 8 ) =0, ;f ( ) =0,190478

79 Método da bissecção O método da bissecção não leva em consideração o valor das funções, somente os sinais. Abaixo temos alguns valores numéricos calculados durante o uso do algoritmo f (0)= 2;f (1)=1, ; f ( 1 2 ) = 0, f ( 3 4 ) = 0, ; f ( 7 8 ) =0, ;f ( ) =0, o valor em ¾ parece próximo da solução...

80 Método da bissecção O método da bissecção não leva em consideração o valor das funções, somente os sinais. Abaixo temos alguns valores numéricos calculados durante o uso do algoritmo f (0)= 2;f (1)=1, ; f ( 1 2 ) = 0, f ( 3 4 ) = 0, ; f ( 7 8 ) =0, ;f ( ) =0, o valor em ¾ parece próximo da solução......e o método não viu...

81 Método da bissecção O método da bissecção parece eficaz mas não é eficiente, afinal despresa propriedades numéricas da função; Implementações em computadores podem fazer com que ele se torne instável, pois num computador não temos números Reais mais números de ponto flutuante; O fato dele desconsiderar propriedades da função pode ser útil se a função tem propriedades analíticas que dificultem determinarmos os zeros

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Regula-Falsi Exemplos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Métodos iterativos

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Temático Zeros de Função Conteúdo específico Exercícios Zeros

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim

Cálculo Numérico. Aula 4 Zeros de Funções /04/2014. Prof. Rafael mesquita Adpt. por Prof. Guilherme Amorim Cálculo Numérico Aula 4 Zeros de Funções 2014.1-09/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Últimas aulas... Aritmética de máquina Erros Sistema de

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Interpolação Conteúdo temático Avaliação do erro

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Introdução à Resolução de Equações Diferenciais Ordinárias

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Equações não lineares

Equações não lineares DMPA IM UFRGS Cálculo Numérico Índice 1 Método da bissecção 2 Método Newton-Raphson 3 Método da secante Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Resolução Numérica de Equações (Parte II)

Resolução Numérica de Equações (Parte II) Cálculo Numérico Módulo III Resolução Numérica de Equações (Parte II) Prof: Reinaldo Haas Cálculo Numérico Bissecção Métodos Iterativos para a Obtenção de Zeros Reais de Funções Bissecção Newton-Raphson

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Solução aproximada de equações de uma variável

Solução aproximada de equações de uma variável Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Determinação de raízes de funções: Marina Andretta/Franklina Toledo ICMC-USP 18 de outubro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Conteúdo específico Aspectos básicos Obtenção direta

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais

Cálculo Numérico. Zeros de funções reais

Cálculo Numérico. Zeros de funções reais Cálculo Numérico Zeros de funções reais Agenda Introdução Isolamento de raízes Refinamento Bissecção Posição Falsa Método do ponto fixo (MPF) Método de Newton-Raphson Método da secante Introdução Um número

Leia mais

Testes Formativos de Computação Numérica e Simbólica

Testes Formativos de Computação Numérica e Simbólica Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste

Leia mais

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função

Leia mais

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA RAIZES Necessidade de determinar um número E tal que f( )=0 Equações Algébricas de 1º,2º,algumas de 3º,4º graus e algumas transcendentes podem ter

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

O método da falsa posição

O método da falsa posição Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit O método da falsa posição

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Fórmula de Lagrange

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Integral. Queremos calcular a integral definida I = O valor de I será associado a uma área. Veremos dois métodos (por enquanto)

Integral. Queremos calcular a integral definida I = O valor de I será associado a uma área. Veremos dois métodos (por enquanto) Integral Queremos calcular a integral definida I = b a f(x)dx. O valor de I será associado a uma área. Veremos dois métodos (por enquanto) Método do Trapezóide Método de Simpson 1 Método do Trapezóide

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

Aula 19 06/2014. Integração Numérica

Aula 19 06/2014. Integração Numérica CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA 5 - Integração numérica (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda). Calcule as integrais a seguir pela regra

Leia mais

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função.

CÁLCULO I. 1 Construção de Grácos. Objetivo da Aula. Aula n o 20: Grácos. Utilizar o Cálculo Diferencial para esboçar o gráco de uma função. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o 0: Grácos. Objetivo da Aula Utilizar o Cálculo Diferencial para esboçar o gráco

Leia mais

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x Integral definida Cálculo de área Teorema Fundamental do cálculo A integral definida origina-se do problema para determinação de áreas. Historicamente, como descrito na anteriormente, constitui-se no método

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1 Raízes de uma função Laura Goulart UESB 16 de Março de 2016 Laura Goulart (UESB) Raízes de uma função 16 de Março de 2016 1 / 1 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c R

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V1) - 15 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2 o Teste (V) - 5 de Janeiro de 2 - hm Resolução Problema (2,5 val.) Determine uma primitiva de cada uma

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Instabilidade Numérica

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teieira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Integração Gaussiana

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Equações Não Lineares Análise Numérica Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 1 versão 20 de Setembro de 2017 Conteúdo 1 Introdução...................................

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

Resolução do Exame Tipo

Resolução do Exame Tipo Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares

Leia mais

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17 Raízes de uma função Laura Goulart UESB 14 de Março de 2019 Laura Goulart (UESB) Raízes de uma função 14 de Março de 2019 1 / 17 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012 Determinação de raízes de funções: Método das Secantes Marina Andretta/Franklina Toledo ICMC-USP 4 de setembro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais