Introdução aos Métodos Numéricos

Tamanho: px
Começar a partir da página:

Download "Introdução aos Métodos Numéricos"

Transcrição

1 Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho

2 Conteúdo específico Interpolação

3 Conteúdo temático Avaliação do erro na interpolação Custo computacional de avaliação de um valor de um polinômio Algoritmo de Horner

4 Definamos R n (x)=f (x) p n (x) o erro cometido por adotarmos o polinômio interpolador p n (x) no lugar da função interpolada f(x). Logo R n (x i )=f (x i ) p n (x i )=0 ; i onde x i são os pontos interpolantes. R n (x) se anula em n+1 pontos

5 Aparentemente isto não nos ajuda muito. Necessitamos de algo que nos dê informação quando w x i. Seja então S n (x)=f (x) p n (x)+k Q n+1 (x);q n+1 (x)=(x x 0 )(x x 1 )(x x 2 ) (x x n ) Observe que S n (x i )=f (x i ) p n (x i )+k Q n+1 (x i )=0 S n (x) se anula também em n+1 pontos

6 Aparentemente também isto não nos ajuda muito. Mas olhe com cuidado S n (x)=f (x) p n (x) k Q n+1 ( x) Temos uma fator livre, k, que nos dá liberdade de perguntar quanto vale S n (x) num ponto w x i

7 Vamos supor que exista este w x i tal que zere S n (x) S n (w)=f (w) p n (w)+k (w x 0 )(w x 1 )(w x 2 ) (w x n )=0

8 Vamos supor que exista este w x i tal que zere S n (x) S n (w)=f (w) p n (w)+k (w x 0 )(w x 1 )(w x 2 ) (w x n )=0 Existe um valor para k que possibilite isto?

9 Vamos supor que exista este w x i tal que zere S n (x) S n (w)=f (w) p n (w)+k (w x 0 )(w x 1 )(w x 2 ) (w x n )=0 Existe um valor para k que possibilite isto? De fato k existe se w x i para todo i f (w) p k= n (w) (w x 0 )(w x 1 )(w x 2 ) (w x n ) = f (w) p n(w) Q n+1 (w)

10 Com este valor para k, S n (x) se anula em n+2 pontos Temos agora um ponto extra, diferente dos pontos interpolantes, que pode ser qualquer um dentro do intervalo que contenha os pontos interpolantes

11 Com este valor para k, S n (x) se anula em n+2 pontos Temos agora um ponto extra, diferente dos pontos interpolantes, que pode ser qualquer um dentro do intervalo que contenha os pontos interpolantes Um gráfico esquemático de Sn (x) poderia ser

12 Conseguimos definir o problema Também incluimos um ponto que não é um dos pontos interpolantes

13 Conseguimos definir o problema Também incluimos um ponto que não é um dos pontos interpolantes Mas temos coisas demais para conseguir trabalhar. Solução?

14 Conseguimos definir o problema Também incluimos um ponto que não é um dos pontos interpolantes Mas temos coisas demais para conseguir trabalhar. Solução? Usar uma ferramenta matemática...

15 Teorema de Rolle Seja f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Seja ainda que f(a) = f(b) = 0. Então existe pelo menos um número c no interior de (a,b) tal que f ' (c)=0

16 Teorema de Rolle Seja f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Seja ainda que f(a) = f(b) = 0. Então existe pelo menos um número c no interior de (a,b) tal que f ' (c)=0 Repare nas figuras abaixo para entender um pouco...

17 Na primeira figura temos um valor onde a derivada se anula e na segunda temos três. Na terceira temos a situação em que a função não tem derivada no intervalo e, portanto, o teorema não é válido

18 Retornemos à função S n (x) que se anula em n+2 pontos aplicando o Teorema de Rolle em cada um dos intervalos onde S n (x) se anula nos extremos, podemos afirmar que S n '(x) se anula em pelo menos n+1 pontos

19 Se aplicarmos o teorema de Rolle à, poderemos afirmar que se anula em pelo menos n pontos. S n ' ' (x) S n ' (x)

20 Se aplicarmos o teorema de Rolle à, poderemos afirmar que se anula em pelo menos n pontos. S n ' ' (x) Continuando este procedimento, se aplicarmos o Teorema de Rolle n+1 vezes, poderemos afirmar que S (n+1) n (x) e anulará pelo menos uma vez. S n ' (x)

21 Se aplicarmos o teorema de Rolle à, poderemos afirmar que se anula em pelo menos n pontos. S n ' ' (x) Continuando este procedimento, se aplicarmos o Teorema de Rolle n+1 vezes, poderemos afirmar que S (n+1) n (x) e anulará pelo menos uma vez. O uso sucessivo do Teorema de Rolle reduz o número de coisas que não sabemos ao mínimo útil : 1 S n ' (x)

22 Se aplicarmos o teorema de Rolle à, poderemos afirmar que se anula em pelo menos n pontos. S n ' ' (x) Continuando este procedimento, se aplicarmos o Teorema de Rolle n+1 vezes, poderemos afirmar que S (n+1) n (x) e anulará pelo menos uma vez. O uso sucessivo do Teorema de Rolle reduz o número de coisas que não sabemos ao mínimo útil : 1 Chamaremos este número que anula de α. Claramente α está dentro do intervalo de interpolação S n ' (x) S n (n+1) (x)

23 Derivemos S n (x) n+1 vezes S (n+1)(x) n =f (n+1) ( x) p (n+1) n (x)+k Q (n+1) n+1 (x) Observe que a derivada n+1 ésima de um polinômio de grau n é zero. Q n+1 (x) Qual é a derivada de?

24 Exemplifiquemos com o caso Q 3 (x) Q 3 ( x)=(x x 0 )(x x 1 )(x x 2 )(x x 3 ) Derivando uma vez teremos Q' 3 ( x)=(x x 1 )( x x 2 )(x x 3 )+(x x 0 )(x x 2 )( x x 3 ) +(x x 0 )(x x 1 )(x x 3 )+( x x 0 )( x x 1 )( x x 2 )

25 Derivando mais uma vez teremos Q' ' 3 (x)=2(x x 2 )(x x 3 )+2(x x 1 )( x x 3 ) +2( x x 0 )(x x 3 )+2( x x 1 )( x x 2 ) +2( x x 0 )(x x 2 )+2(x x 0 )(x x 1 ) Mais uma derivada e obtemos Q ' ' ' 3 (x)=6(x x 3 )+6( x x 2 )+6(x x 1 )+6(x x 0 ) Logo Q iv =24.

26 Se você tivesse feito o mesmo processo com teria os resultados Q' ' ' 2 ( x)=6, Q' ' 1 (x)=2 Isto sugere, e pode ser provado, que Q 2 (x) e Q 1 (x) Q (n+1) n+1 (x)=(n+1)!

27 Vejamos a condição para que aquele ponto α (que anula a derivada n+1 de S n+1 (x) ) exista S (n+1) n (x)=f (n+1) (x) p (n+1) n (x)+k Q (n+1) n+1 (x)=f (n+1) (x)+k (n+1)!

28 que resulta em f (n+1) (α)+k(n+1)!=0 k= f (n+1) (α) (n+1)!

29 que resulta em f (n+1) (α)+k(n+1)!=0 k= f (n+1) (α) (n+1)! Aparentemente temos uma encrenca pois começamos todo este processo baseados que existia um ponto extra que anula e para isto é necessário que S n+1 (x) k= f (w) p n(w) Q n+1 (w)

30 A solução é simples, estas equações devem ser iguais

31 A solução é simples, estas equações devem ser iguais f (w) p n (w) Q n+1 (w) = f (n+1) (α) (n+1)! f (w) p n(w)= f (n+1) (α) (n+1)! Q n+1(w)

32 A solução é simples, estas equações devem ser iguais f (w) p n (w) Q n+1 (w) = f (n+1) (α) (n+1)! f (w) p n(w)= f (n+1) (α) (n+1)! Q n+1(w) Repare na equação acima: temos nela o que definimos como erro na interpolação.então escrevamos R n (w)= f (n+1) (α) (n+1)! Q n+1(w)

33 Mas w é qualquer ponto dentro do intervalo de interpolação e a fórmula de erro é válida para os pontos interpoladores. Assim escreveremos R n ( x)= f (n+1) (α) (n+1)! Q n+1(x)

34 Qual a utilidade deste resultado? R n ( x)= f (n+1) (α) (n+1)! Q n+1(x) Duas coisas são bem evidentes: Quanto maior o número de pontos, menor o erro Quanto mais suave a função f(x), menor o erro

35 mas tem uma mais sutil no termo Q n+1 (x): Se os pontos forem afastados entre si, ao calcularmos esta expressão em qualquer ponto, os produtos das diferenças terão elementos grandes. Se os pontos forem próximos entre si estes produtos serão menores. Assim teremos...

36 O que nos transmite este resultado? R n ( x)= f (n+1) (α) (n+1)! Q n+1(x) Quanto maior o número de pontos, menor o erro Quanto mais suave a função f(x), menor o erro Quanto mais próximos os pontos interpolantes, menor o erro

37 O que nos transmite este resultado? R n ( x)= f (n+1) (α) (n+1)! Q n+1(x) Esta fórmula nos diz que as observações que fizemos nas experiências numéricas foram confirmadas para qualquer função dada

38 O que nos transmite este resultado? R n ( x)= f (n+1) (α) (n+1)! Q n+1(x) Esta fórmula nos diz que as observações que fizemos nas experiências numéricas foram confirmadas para qualquer função dada Para isto serve a teoria, para não termos de ficar repetindo inutilmente experiências.

39 Numericamente esta fórmula tem utilidade direta reduzida mas ela observa que só raramente temos como reconstruir a função original e, neste casos, a interpolação perde sua função.

40 Interpolação Observações gerais sobre interpolação Feita a escolha das fi (x) a F(x) será única

41 Interpolação Observações gerais sobre interpolação Feita a escolha das fi (x) a F(x) será única A escolha de polinômios na forma canônica é útil mas tem seus problemas, como veremos

42 Interpolação Observações gerais sobre interpolação A figura mostra duas F(x) interpoladoras válidas com f i (x) diferentes Observem a conveniência da escolha das funções f i (x) com o que pretendemos

43 Usando a interpolação Se você necessitar fazer interpolação Quantos pontos usará? Quais pontos?

44 Usando a interpolação Se você necessitar fazer interpolação Quantos pontos usará? Muitos pontos dão maior precisão e mais custo computacional Quais pontos? A seleção afeta a precisão

45 Usando a interpolação Adiaremos a discussão para quando tivermos outras maneiras de interpolarmos usando outras técnicas

46 Eficiência em cálculos com polinômios Qual o custo computacional de calcularmos um ponto? p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n

47 Eficiência em cálculos com polinômios Qual o custo computacional de calcularmos um ponto? Lembre-se que um computador é uma máquina de quatro operações disfarçada p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n

48 Eficiência em cálculos com polinômios Qual o custo computacional de calcularmos um ponto? Lembre-se que um computador é uma máquina de quatro operações disfarçada Pensemos o cálculo de potências no polinômio como operações de multiplicação p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n

49 Eficiência em cálculos com polinômios p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n Observe na equação acima o número de multiplicações No termo com a0 não temos operações no termo a1 temos uma multiplicação no termo a2 temos duas multiplicações etc. no termo an teremos n multiplicações

50 Eficiência em cálculos com polinômios p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n Observe na equação acima o número de somas Serão n-1 somas Custo total: n multiplicações = n(n+1)/2 n-1 somas

51 Eficiência em cálculos com polinômios p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n Calcular um polinômio de grau n na forma canônica tem custo O(n 2 )

52 Eficiência em cálculos com polinômios p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n Calcular um polinômio de grau n na forma canônica tem custo O(n 2 ) É um custo alto se tivermos de calcular muitos pontos

53 Algoritmo de Horner Algoritmo de Horner Para facilitar o entendimento, seja o polinômio abaixo p 4 (x)=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +a 4 x 4 observe que podemos escrevê-lo como p 4 (x)=a 0 + x(a 1 +a 2 x+a 3 x 2 +a 4 x 3 )

54 Algoritmo de Horner Para facilitar o entendimento, seja o polinômio abaixo p 4 (x)=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +a 4 x 4 observe que podemos escrevê-lo como p 4 (x)=a 0 + x(a 1 +a 2 x+a 3 x 2 +a 4 x 3 )=a 0 + x(a 1 + x(a 2 +a 3 x+a 4 x 2 ))

55 Algoritmo de Horner Para facilitar o entendimento, seja o polinômio abaixo p 4 (x)=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +a 4 x 4 observe que podemos escrevê-lo como p 4 (x)=a 0 + x(a 1 +a 2 x+a 3 x 2 +a 4 x 3 )=a 0 + x(a 1 + x(a 2 +a 3 x+a 4 x 2 )) p 4 (x)=a 0 +x(a 1 +x(a 2 + x(a 3 +a 4 x)))

56 Algoritmo de Horner Conte as operações p 4 (x)=a 0 +a 1 x+a 2 x 2 +a 3 x 3 +a 4 x 4 p 4 (x)=a 0 + x(a 1 + x(a 2 + x(a 3 +a 4 x))) Canônico: 10 multiplicações + 4 somas Horner: 4 multiplicações + 4 somas

57 Algoritmo de Horner O Custo é O(n) Para o caso de um polinômio dado pelos coeficientes do polinômio canônico p n ( x)=a 0 +a 1 x+a 2 x 2 + +a n x n O algoritmo de Horner será p a n Para i n 1 até 0 p p x p p+a i

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Fórmula de Lagrange

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Regula-Falsi Exemplos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Conceitos básicos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Conteúdo específico Aspectos básicos Obtenção direta

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Métodos iterativos

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Instabilidade Numérica

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Interpolação polinomial

Interpolação polinomial Cálculo Numérico Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343 1970 94, 508583 1980

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Zeros de Função Conteúdo específico Aspectos básicos

Leia mais

Interpolação Polinomial. Ana Paula

Interpolação Polinomial. Ana Paula Interpolação Polinomial Sumário 1 Interpolação Polinomial 2 Forma de Lagrange 3 Revisão Interpolação Polinomial Interpolação Polinomial Interpolação Polinomial Interpolação Polinomial Suponha que se tenha

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Sistemas de Equações Lineares. Métodos Iterativos

Leia mais

Programação de Computadores

Programação de Computadores Programação de Computadores Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Alguns Conceitos sobre Linguagens Conceito de Algoritmo Pseudocódigo

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

de Interpolação Polinomial

de Interpolação Polinomial Capítulo 10 Aproximação de Funções: Métodos de Interpolação Polinomial 101 Introdução A aproximação de funções por polinômios é uma das idéias mais antigas da análise numérica, e ainda uma das mais usadas

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Lic Eng Biomédica e Bioengenharia-2009/2010 O problema geral da interpolação polinomial consiste em, dados n + 1 pontos (reais ou complexos) x

Leia mais

Introdução aos Métodos Numéricos. Instituto de Computação UFF

Introdução aos Métodos Numéricos. Instituto de Computação UFF Introdução aos Métodos Numéricos Instituto de Computação UFF Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares. Métodos diretos Interpolação Ajuste de Curvas Zeros de Função Sistemas

Leia mais

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.)

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.) Interpolação polinomial 1 Interpolação Polinomial Slide 1 Definição simples Definição 1 Dados os conjuntos de valores x 0, x 1,..., x n e y 0, y 1,..., y n, determinar uma função f tal que: Slide 2 f(x

Leia mais

Aula 3 11/12/2013. Integração Numérica

Aula 3 11/12/2013. Integração Numérica CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas

Leia mais

Programação de Computadores

Programação de Computadores Programação de Computadores Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Fluxograma e pseudocódigo Elementos de um fluxograma Pseudocódigo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 24. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Polinômios de Taylor Aula 24 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Os polinômios

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teieira da Silveira Filho Conteúdo específico Integração Numérica Conteúdo temático Integração Gaussiana

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Marina Andretta/Franklina Toledo ICMC-USP 13 de maio de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina Toledo (ICMC-USP) sme0301

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Introdução à Resolução de Equações Diferenciais Ordinárias

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Sistemas de Equações Lineares Métodos Iterativos

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura:

Leia mais

Aula 12. Interpolação Parte 1

Aula 12. Interpolação Parte 1 CÁLCULO NUMÉRICO Aula 12 Interpolação Parte 1 INTERPOLAÇÃO Cálculo Numérico 3/57 MOTIVAÇÃO A seguinte tabela relaciona densidade da água e temperatura: Temperatura ( o C) 20 25 30 35 40 Densidade (g/m

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Sistemas de Equações Lineares. Métodos diretos Conteúdo

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

Resolução do Exame Tipo

Resolução do Exame Tipo Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA RAIZES Necessidade de determinar um número E tal que f( )=0 Equações Algébricas de 1º,2º,algumas de 3º,4º graus e algumas transcendentes podem ter

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Erro de Integra c ao Num erica Ana Paula Ana Paula C alculo Num erico Erro de Integração Numérica Sumário 1 Revisão 2 Erro na Interpolação 3 Erro de Integração 4 Análise dos Erros das Fórmulas Repetidas Revisão Revisão Revisão Revisão Forma de Newton P n (x) =f[x 0 ] + (x

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s. Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia. diogo

Diogo Pinheiro Fernandes Pedrosa. Universidade Federal do Rio Grande do Norte Centro de Tecnologia.  diogo Interpolação Diogo Pinheiro Fernandes Pedrosa Universidade Federal do Rio Grande do Norte Centro de Tecnologia Departamento de Engenharia de Computação e Automação http://wwwdcaufrnbr/ diogo 1 Introdução

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário

Matemática Computacional Ficha 5 (Capítulo 5) 1. Revisão matéria/formulário Matemática Computacional Ficha 5 (Capítulo 5) Integração numérica 1. Revisão matéria/formulário A técnica de aproximar o integral de f pelo integral do seu polinómio interpolador passando num conjunto

Leia mais

Programação de Computadores

Programação de Computadores Programação de Computadores Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Alguns Conceitos sobre Linguagens Conceito de Algoritmo Pseudocódigo

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

Capı tulo 5: Integrac a o Nume rica

Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Capı tulo 5: Integrac a o Nume rica Sumário Quadratura de Fórmula para dois pontos Fórmula geral Mudança de intervalo Polinômios de Legendre Fórmula de Interpretação

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

Fundamentos IV. Clarimar J. Coelho. Departamento de Computação. November 20, 2014

Fundamentos IV. Clarimar J. Coelho. Departamento de Computação. November 20, 2014 Fundamentos IV Integração numérica Clarimar J. Coelho Departamento de Computação November 20, 2014 Clarimar, Departamento de Computação Aula 16, Integração numérica 1/28 Integração numérica Clarimar, Departamento

Leia mais

Spline cúbica. Clarimar J. Coelho. November 8, 2013

Spline cúbica. Clarimar J. Coelho. November 8, 2013 Interpolação polinomial Spline cúbica Clarimar J. Coelho November 8, 2013 1 Splines cúbicos 2 Cálculo dos coeficientes 3 Sistema linear subdeterminado 4 Splines cúbicos naturais 5 Splines cúbicos extrapolados

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno

étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

Interpolação de Newton

Interpolação de Newton Interpolação de Newton Laura Goulart UESB 21 de Março de 2019 Laura Goulart (UESB) Interpolação de Newton 21 de Março de 2019 1 / 16 Introdução As diferenças divididas são razões incrementais e constituem

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

O Teorema do Valor Médio

O Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 9 de maio de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Determinação de raízes de funções: Marina Andretta/Franklina Toledo ICMC-USP 18 de outubro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

Marina Andretta/Franklina Toledo. 25 de outubro de 2013

Marina Andretta/Franklina Toledo. 25 de outubro de 2013 Integração Numérica Marina Andretta/Franklina Toledo ICMC-USP 25 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires; e Cálculo Numérico, de Neide B. Franco. Marina

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Aula 19 06/2014. Integração Numérica

Aula 19 06/2014. Integração Numérica CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

2. Caso contrário esta exigência não é justificável, e podemos ter y i 6= f(x i ), o que poderá inclusive corrigir valores obtidos imprecisamente.

2. Caso contrário esta exigência não é justificável, e podemos ter y i 6= f(x i ), o que poderá inclusive corrigir valores obtidos imprecisamente. Capítulo 6 interpolação e Extrapolação 6.1 Introdução Suponhamos um conjunto de n + 1 pontos com duas coordenadas x e y, conhecidos por um processo qualquer (x 0,y 0 ), (x 1,y 1 ),...,(x n,y n ) onde x

Leia mais