Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Tamanho: px
Começar a partir da página:

Download "Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner"

Transcrição

1 Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

2 Cálculo do valor de um polinômio Em qualquer método iterativo para determinar raízes de um polinômio, é necessário calcular o valor do polinômio P em um dado ponto x e, possivelmente, de suas derivadas. Por isso, é necessário que este cálculo seja feito da maneira mais precisa e computacionalmente econômica possível. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

3 Cálculo do valor de um polinômio Para medir a eficiência de algoritmos para calcular o valor de um polinômio, denotaremos por µ o tempo computacional de se calcular uma multiplicação e por α o tempo computacional de se calcular uma adição. Se P(x) é calculado da maneira tradicional, usando a fórmula P(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0, devemos calcular as potências de x, fazendo x k = x(x k 1 ). O tempo computacional gasto com estas operações é (n 1)µ. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

4 Cálculo do valor de um polinômio O cálculo dos termos da forma a k x k requerem nµ. A soma dos termos requerem nα. Ou seja, o tempo computacional total gasto para calcular P(x) é (2n 1)µ + nα. Além disso, se for necessário calcular P (x), será necessária, aproximadamente, a mesma quantidade de tempo computacional. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

5 O Método de Briot-Ruffini-Horner consiste em calcular o valor de P(x) e P (x) (e, possivelmente, derivadas de ordens superiores) usando a seguinte representação de P(x): P(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 = (((...(a n x + a n 1 )x +...)x + a 2 )x + a 1 )x + a 0. Note que, usando esta maneira alternativa de descrever P(x), o tempo computacional necessário para o cálculo de P(x) (e P (x)) é, apenas, nµ + nα. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

6 Uma forma de descrever esta maneira de calcular o valor de P(x) é, dados os coeficientes a n, a n 1,..., a 2, a 1, a 0, calcular b n, b n 1,..., b 2, b 1, b 0 da seguinte forma: b n = a n, para k = 1, 2,..., n. b n k = xb n k+1 + a n k, Desta forma, para um dado x, P(x) = b 0. Ou seja, se x é uma raiz de P, temos que b 0 = P( x) = 0. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

7 Para calcular a derivada de P(x), podemos aplicar o mesmo procedimento, usando os valores b k no lugar de a k. Neste caso, temos c n = b n, para k = 1, 2,..., n 1. c n k = xc n k+1 + b n k, Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

8 Note que, b n = (a n ) = 0, para k = 1, 2,..., n. b n k = (xb n k+1 + a n k ) = xb n k+1 + b n k+1, Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

9 Além disso, b n 1 = xb n + b n = b n = c n, e assim por diante. b n 2 = xb n 1 + b n 1 = xc n + b n 1 = c n 1, Ou seja, c k = b k 1. Portanto, P (x) = (b 0 ) = c 1. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

10 Dado um polinômio P(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0, para calcular P(z), fazemos: a n a n 1 a n 2... a 2 a 1 a z zb n zb n 1... zb 3 zb 2 zb 1 b n b n 1 b n 2... b 2 b 1 b z zc n zc n 1... zc 3 zc 2 c n c n 1 c n 2... c 2 c 1 Ao final da construção desta tabela, temos P(z) = b 0 e P (z) = c 1. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

11 Quando calculamos apenas o valor de P(z) usando o esquema anterior, temos o Método de Briot-Ruffini. O Método de Briot-Ruffini-Horner fornece os valores de P (z) 1!, P (z) 2!, P (z) 3! e assim por diante. Se quisermos aplicar o Método de Newton para encontrar uma raiz de um polinômio P, podemos usar o Método de Briot-Ruffini-Horner para calcular P(x k ) e P (x k ) de maneira eficiente. Desta forma, a iteração que tem a forma x k+1 = x k P(x k) P (x k ), pode ser escrita como x k+1 = x k b 0(x k ) c 1 (x k ). Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

12 Se z for uma raiz de um polinômio P, os coeficientes b n, b n 1,..., b 1, b 0 obtidos pelo Método de Briot-Ruffini-Horner são tais que Q(x) = b n x n 1 + b n 1 x n b 3 x 2 + b 2 x + b 1 = P(x) x z. Para verificar esta expressão, note que (b n x n 1 + b n 1 x n b 3 x 2 + b 2 x + b 1 )(x z) = b n x n + (b n 1 zb n )x n (b 2 zb 3 )x 2 + (b 1 zb 2 )x + (b 0 zb 1 ) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 = P(x). Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

13 Portanto, qualquer raiz de Q é também raiz de P. Ou seja, ao utilizar um método para encontrar uma raiz z de P, podemos construir o polinômio Q, de grau n 1, e aplicar o mesmo método para encontrar uma raiz de Q. Seguindo este procedimento, podemos encontrar todas as raízes de P. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

14 Exemplo Considere o polinômio P(x) = x 3 + 2x x 1.7. Vamos utilizar o Método de Newton, com precisão 10 2 e ponto inicial x 0 = 0.9, para encontrar uma raiz de P. Usaremos o Método de Briot-Ruffini-Horner para calcular os valores de P(x k ) e P (x k ). Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

15 Exemplo O ponto x 1 é dado por O erro obtido é x 1 = x 0 b 0(x 0 ) c 1 (x 0 ) x 1 x 0 x > = = Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

16 Exemplo O ponto x 1 é dado por O erro obtido é x 2 = x 1 b 0(x 1 ) c 1 (x 1 ) x 2 x 1 x < = = Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

17 Exemplo Como a precisão pedida foi atingida, nossa raiz aproximada de P é Podemos construir o polinômio Q tal que Q(x) = (x 0.922)P(x) (lembrando que esta raiz é aproximada). Para isso, usamos o Método de Briot-Ruffini mais uma vez: Assim, Q(x) = x x Note que podemos obter as duas raízes restantes de P resolvendo a equação de segundo grau Q(x) = 0. Marina Andretta/Franklina Toledo (ICMC-USP) sme Cálculo Numérico I 29 de outubro de / 17

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Marina Andretta/Franklina Toledo ICMC-USP 13 de maio de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina Toledo (ICMC-USP) sme0301

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012

Método das Secantes. Marina Andretta/Franklina Toledo ICMC-USP. 4 de setembro de 2012 Determinação de raízes de funções: Método das Secantes Marina Andretta/Franklina Toledo ICMC-USP 4 de setembro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Marina Andretta/Franklina Toledo (ICMC-USP) sme0300 - Cálculo Numérico 3 de setembro

Leia mais

Métodos de Runge-Kutta

Métodos de Runge-Kutta Solução numérica de Equações Diferenciais Ordinárias: Métodos de Runge-Kutta Marina Andretta/Franklina Toledo ICMC-USP 31 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D.

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Marina Andretta/Franklina Toledo (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 9 de maio de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

Resolução de sistemas de equações não-lineares: Método de Newton

Resolução de sistemas de equações não-lineares: Método de Newton Resolução de sistemas de equações não-lineares: Método de Newton Marina Andretta/Franklina Toledo ICMC-USP 24 de setembro de 202 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 18 de setembro de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Métodos Previsor-Corretor

Métodos Previsor-Corretor Solução numérica de Equações Diferenciais Ordinárias: Métodos Previsor-Corretor Marina Andretta/Franklina Toledo ICMC-USP 7 de novembro de 2013 Baseado no livro Cálculo Numérico, de S. Arenales e A. Darezzo.

Leia mais

Sistemas Lineares. Marina Andretta/Franklina Toledo ICMC-USP. 4 de março de 2015

Sistemas Lineares. Marina Andretta/Franklina Toledo ICMC-USP. 4 de março de 2015 Sistemas Lineares Marina Andretta/Franklina Toledo ICMC-USP 4 de março de 2015 Marina Andretta/Franklina Toledo (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 4 de março de 2015 1 / 15 Introdução

Leia mais

Determinação numérica de autovalores e autovetores: Método de Jacobi

Determinação numérica de autovalores e autovetores: Método de Jacobi Determinação numérica de autovalores e autovetores: Método de Jacobi Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco. Marina Andretta/Franklina

Leia mais

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Marina Andretta/Franklina Toledo. 18 de outubro de Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Determinação de raízes de funções: Marina Andretta/Franklina Toledo ICMC-USP 18 de outubro de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

SME0300 Cálculo Numérico Aula 6

SME0300 Cálculo Numérico Aula 6 SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz

Leia mais

Marina Andretta/Franklina Toledo. 25 de outubro de 2013

Marina Andretta/Franklina Toledo. 25 de outubro de 2013 Integração Numérica Marina Andretta/Franklina Toledo ICMC-USP 25 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires; e Cálculo Numérico, de Neide B. Franco. Marina

Leia mais

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2

Zeros de Polinômios. 1 Resultados Básicos. Iguer Luis Domini dos Santos 1, Geraldo Nunes Silva 2 Zeros de Polinômios Iguer Luis Domini dos Santos, Geraldo Nunes Silva 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP, Brazil, iguerluis@hotmail.com 2 DCCE/IBILCE/UNESP, São José do Rio Preto, SP,Brazil,

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

Resolução de sistemas de equações lineares: Método do Gradiente

Resolução de sistemas de equações lineares: Método do Gradiente Resolução de sistemas de equações lineares: Método do Gradiente Marina Andretta ICMC-USP 24 de março de 2015 Marina Andretta (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 24 de março de 2015

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

Método do Ponto Fixo

Método do Ponto Fixo Determinação de raízes de funções: Método do Ponto Fixo Marina Andretta ICMC-USP 07 de março de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA RAIZES Necessidade de determinar um número E tal que f( )=0 Equações Algébricas de 1º,2º,algumas de 3º,4º graus e algumas transcendentes podem ter

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

Resolução de problemas com apenas restrições lineares de igualdade

Resolução de problemas com apenas restrições lineares de igualdade Resolução de problemas com apenas restrições lineares de igualdade Marina Andretta ICMC-USP 14 de outubro de 2014 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de outubro de 2014 1 / 22

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

Continuidade e Limite

Continuidade e Limite Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

Representação e erros numéricos

Representação e erros numéricos Representação e erros numéricos Marina Andretta/Franklina Toledo ICMC-USP 03 de Agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta/Franklina Toledo (ICMC-USP)

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Algoritmos para resolução de problemas de minimização irrestrita

Algoritmos para resolução de problemas de minimização irrestrita Algoritmos para resolução de problemas de minimização irrestrita Marina Andretta ICMC-USP 10 de agosto de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 10 de agosto de 2010 1 / 16 Algoritmos

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C.E.

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C.E. FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C.E. Cardeal Arcoverde PROFESSORA: Janete Maria Jesus de Sá MATRÍCULA: 0825192-8 SÉRIE: 3ª série do Ensino Médio

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k

Leia mais

Método de Quadrados Mínimos: Caso discreto

Método de Quadrados Mínimos: Caso discreto Método de Quadrados Mínimos: Caso discreto Marina Andretta ICMC-USP 23 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo numérico

Leia mais

Fundamentos IV. Clarimar J. Coelho. Departamento de Computação. November 26, 2014

Fundamentos IV. Clarimar J. Coelho. Departamento de Computação. November 26, 2014 Fundamentos IV Integração numérica Clarimar J. Coelho Departamento de Computação November 26, 2014 Clarimar, Departamento de Computação Aula 16, Integração numérica 1/21 Regra de Simpson 3/8 Clarimar,

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais

Método de Newton truncado

Método de Newton truncado Método de Newton truncado Marina Andretta ICMC-USP 8 de outubro de 2018 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Método dos gradientes (ou método de máxima descida)

Método dos gradientes (ou método de máxima descida) Método dos gradientes (ou método de máxima descida) Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 14 de setembro de 2010 1 / 16 Método dos gradientes

Leia mais

Apostila adaptada e editada da intenert pelo Professor Luiz

Apostila adaptada e editada da intenert pelo Professor Luiz Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n- +... + a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Método de restrições ativas para minimização com restrições lineares

Método de restrições ativas para minimização com restrições lineares Método de restrições ativas para minimização com restrições lineares Marina Andretta ICMC-USP 27 de outubro de 2018 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 27 de outubro de 2018 1 /

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Matemática A - 10 o Ano

Matemática A - 10 o Ano Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b

Leia mais

Marina Andretta. 02 de agosto de 2010

Marina Andretta. 02 de agosto de 2010 Introdução Marina Andretta ICMC-USP 02 de agosto de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 02 de agosto de 2010 1 / 19 Otimização Otimizar significa encontrar a melhor maneira

Leia mais

Aula 19 06/2014. Integração Numérica

Aula 19 06/2014. Integração Numérica CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas

Leia mais

RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha

RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha RACIOCÍNIO LÓGICO-QUANTITATIVO Prova comentada ANAC / ANALISTA / 2016 Professor Josimar Padilha 1. A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por: a. não choveu

Leia mais

Ilustraremos graficamente esses conceitos nos exemplos a seguir.

Ilustraremos graficamente esses conceitos nos exemplos a seguir. Capítulo 3 Equações não Lineares 3.1 Introdução Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f(x) = 0, onde f(x) pode ser um polinômio

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo específico Interpolação Conteúdo temático Avaliação do erro

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo temático Interpolação Conteúdo específico Instabilidade Numérica

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.

Marina Andretta. 10 de outubro de Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Solução básica viável inicial Marina Andretta ICMC-USP 10 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Resolução do exame de matemática computacional

Resolução do exame de matemática computacional Resolução do exame de matemática computacional 0 de Janeiro de 00 GRUPO I f x_ : x^ x 1 g1 x_ : x^ 1 x^ g x_ : x 1 g x_ x^ 1 1 1 x Plot f x, x,, - -1 1 - -4 Graphics 1 Método de Newton Quando se procura

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento

Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Resolução de sistemas de equações lineares: Método de eliminação de Gauss - estratégias de pivotamento Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Baseado no livro Análise Numérica,

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.)

Podem ser calculados num número finito de operações aritméticas, ao contrário de outras funções (ln x, sin x, cos x, etc.) Interpolação polinomial 1 Interpolação Polinomial Slide 1 Definição simples Definição 1 Dados os conjuntos de valores x 0, x 1,..., x n e y 0, y 1,..., y n, determinar uma função f tal que: Slide 2 f(x

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

Poliedros na forma padrão

Poliedros na forma padrão Poliedros na forma padrão Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira

Leia mais

O espião que me amava

O espião que me amava Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 16 Integração Numérica Integração Numérica Cálculo Numérico 3/41 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Interpolação Polinomial Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-32

Leia mais

Aula 10. Integração Numérica

Aula 10. Integração Numérica CÁLCULO NUMÉRICO Aula Integração Numérica Integração Numérica Cálculo Numérico 3/4 Integração Numérica Em determinadas situações, integrais são difíceis, ou mesmo impossíveis de se resolver analiticamente.

Leia mais

Representação e erros numéricos

Representação e erros numéricos Representação e erros numéricos Marina Andretta / Franklina Toledo ICMC-USP 25 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta / Franklina Toledo

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Programação I Aula 7 Resolução numérica de equações

Programação I Aula 7 Resolução numérica de equações Programação I Aula 7 Resolução numérica de equações Pedro Vasconcelos DCC/FCUP 2018 Pedro Vasconcelos (DCC/FCUP) Programação I Aula 7 Resolução numérica de equações 2018 1 / 20 Nesta aula 1 Resolução numérica

Leia mais

Matemática E Extensivo V. 4

Matemática E Extensivo V. 4 Etensivo V. Eercícios n 0) a) Por roriedade, 0. Logo 0. Ou ainda, 0 0 0 0! 0! 0! b) Por roriedade, n 0. Logo. Ou ainda, 0 0!! 0!!! c) Por roriedade, n n. Logo. Ou ainda,!!( )!!!!!! d) Por roriedade, n.

Leia mais

Regras para evitar ciclagem

Regras para evitar ciclagem Regras para evitar ciclagem Marina Andretta ICMC-USP 19 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 -

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os

Leia mais

Lucia Catabriga e Andréa Maria Pedrosa Valli

Lucia Catabriga e Andréa Maria Pedrosa Valli 1-35 Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-35

Leia mais

Raízes quadrada e cúbica de um polinômio

Raízes quadrada e cúbica de um polinômio Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).

Leia mais