Distribuições de Probabilidade

Tamanho: px
Começar a partir da página:

Download "Distribuições de Probabilidade"

Transcrição

1 robabiliae e Estatística I Antonio Roque Aula 0 Distribuições e robabiliae Consiere a seguinte situação: O Departamento e sicologia a Universiae YZ resolveu azer um eperimento para eterminar a eistência o enômeno a percepção etra-sensorial O eperimento consiste em colocar uma pessoa que alega ter poeres etra-sensoriais atrás e um biombo e o eperimentaor (um proessor o epartamento o outro lao o biombo com um baralho conteno apenas 5 cartas Caa carta contém um símbolo ierente: uma cruz, uma estrela, um círculo, um triângulo e um quarao A caa roaa, o eperimentaor embaralha as cartas e tira uma o bolo aleatoriamente, eiano-a viraa para baio sem olhar para ela A pessoa atrás o biombo tem então que izer qual é o sinal contio na carta que oi retiraa Depois isso, o eperimentaor vira a carta para cima e anota se a pessoa acertou ou não o símbolo Vamos eiar e lao a questão sobre a eistência ou não a ES e pensar no eperimento acima como uma instância e um eperimento binomial Se a pessoa que está atrás o biombo estiver chutano as respostas, a caa repetição o eperimento a chance e ela acertar o símbolo correto é e 1/5 (temos cinco símbolos igualmente prováveis ortanto, se o eperimentaor repetir o eperimento vezes, a chance e que a pessoa investigaa acerte K vezes, por puro acaso, é aa pela probabiliae binomial: ( K, 0,0! K!( K! K K = (0,0 (0,80 Usano a órmula a probabiliae binomial, poemos calcular a probabiliae e que a pessoa atrás o biombo acerte qualquer número e 1

2 robabiliae e Estatística I Antonio Roque Aula 0 vezes, e 0 até, em repetições o eperimento, se estiver chutano a caa repetição or eemplo, vamos supor que = 30 Os valores as probabiliaes poem ser colocaos em uma tabela ou, o que permite uma visualização mais imeiata, em um gráico em que os números e acertos são colocaos no eio- e os valores as respectivas probabiliaes são colocaos no eioy Este gráico está ao abaio Distribuição e robabiliaes robabiliae 0,0 0,15 0,10 0,05 0, úmero e Acertos ote que o número mais provável e acertos, com base em chutes, é K = 7 úmeros e acertos acima e K = 13 têm probabiliaes praticamente nulas Isto inicaria que, se a pessoa atrás o biombo acertar algum número grane e vezes, como 16 ou mais, por eemplo, este seria um evento muito pouco provável para ser obra o acaso Este gráico com as probabiliaes os iversos números possíveis e acertos é um eemplo e uma istribuição e probabiliaes Uma istribuição e probabiliaes á as probabiliaes e que uma aa variável aleatória possa assumir eterminaos valores

3 robabiliae e Estatística I Antonio Roque Aula 0 A variável é chamaa e aleatória porque, a caa repetição o eperimento, ela poe assumir um ao valor ao acaso, isto é, não temos como prever eatamente o valor que ela vai assumir oemos apenas calcular a probabiliae e que ela assuma um ao valor or convenção, variáveis aleatórias são esignaas por letras maiúsculas, Y, Z enquanto que os valores realmente meios essas variáveis são esignaos por letras minúsculas, y, z Se o eperimento que estivermos azeno or o tipo binomial, como o eemplo ao, então as probabiliaes serão calculaas seguno a órmula a istribuição binomial e teremos um gráico como o a transparência anterior Se o eperimento or escrito por outro tipo e probabiliae, então teremos um gráico e istribuição e probabiliaes ierente Há ois tipos e variáveis aleatórias: iscretas ou contínuas Variáveis aleatórias iscretas: Uma variável iscreta poe assumir apenas um número inito ou uma quantiae enumerável (que se poe numerar por números inteiros e valores Eemplos: número e ilhos e um casal; número e bactérias em uma lâmina; número e ias sem emprego; gasto mensal em rerigerantes por omicílio ote que os valores as variáveis não precisam ser números inteiros, como no último eemplo ao, em que os valores estão limitaos a até uas casas ecimais (os centavos Variáveis aleatórias contínuas: Uma variável contínua poe assumir um número ininito e valores Dao um intervalo, ela poe ter qualquer valor entro ele, com a precisão que se queira Eemplos: alturas as pessoas; tempo e resposta a um estímulo; 3

4 robabiliae e Estatística I Antonio Roque Aula 0 istâncias percorrias por caminhões e transporte e mercaoria em um ano; valor a pressão arterial Tanto para variáveis iscretas como contínuas, poemos ter istribuições e probabiliae ara o caso iscreto, já vimos um eemplo a istribuição binomial A istribuição e probabiliaes e uma variável iscreta é representaa matematicamente por ( e, graicamente, por um gráico o tipo abaio A altura a barra á a probabiliae o evento i : ( i ara que uma istribuição iscreta como a o gráico anterior seja uma istribuição e probabiliaes, ela tem que satisazer as seguintes conições: 1 ( i = 1, one é o número máimo e valores possíveis; i= 1 0 ( i 1 para too i Uma unção importante associaa a uma istribuição e probabiliaes iscreta ( é a chamaa unção e istribuição acumulaa F ( Ela á a probabiliae e que assuma qualquer valor menor que um ao : F = ʹ ( ʹ 4

5 robabiliae e Estatística I Antonio Roque Aula 0 Um eemplo e ( e a sua corresponente F ( é ao abaio A istribuição ( usaa é a binomial ote que o retângulo mais à ireita a unção e istribuição acumulaa F ( tem altura 1 É comum que istribuições e probabiliae epenam e parâmetros or eemplo, seja a istribuição e probabiliaes = λ, = 1,,3, 4 λ + λ + λ ( 6 one λ é algum número real ierente e zero Ele é chamao e parâmetro a istribuição ote que qualquer que seja o valor e λ, ( > 0 para = 1,, 3, e (1 + ( + (3 = 1 Embora o valor o parâmetro λ seja esconhecio, a unção einia acima satisaz as conições para que seja uma istribuição e probabiliaes ara caa valor possível e λ teremos um gráico ierente e ( ara variáveis contínuas, como temos ininitos valores entro e um intervalo não tem sentio einirmos a probabiliae e um valor especíico, mas apenas a probabiliae e obtermos um valor e entro e um intervalo especiicao, (a b 5

6 robabiliae e Estatística I Antonio Roque Aula 0 Daa uma variável aleatória contínua assumino valores entro e um intervalo I eine-se uma unção ensiae e probabiliae (, que é positiva e einia para too no intervalo I, e maneira que a probabiliae e que a variável aleatória assuma um valor entro e um intervalo que vai e a a b é aa pela integral Esta einição implica que, ( a < < b = ( a < < b = ( a < b = ( a < b = ( a b b a Graicamente, temos: A probabiliae e que ocorra um evento com valor entre ois números, a e b, é aa pela área sob a curva ( entre a e b ote que no eemplo o gráico assumiu-se que o intervalo I vai e 0 a Uma unção ensiae e probabiliae eve satisazer à seguinte proprieae: 6

7 robabiliae e Estatística I Antonio Roque Aula 0 I = 1, ou seja, a área total abaio a curva ( por too o seu intervalo e einição I eve ser igual a 1 Usano o Teorema Funamental o Cálculo, a einição a probabiliae e que a variável esteja entre e + h nos á, lim h 0 ( < < + h o que implica que para h pequeno poemos escrever, h =, ( < + h ( h < A unção e istribuição acumulaa F ( associaa à ensiae ( é einia por F ( 0 = 0 Esta einição implica que 0 F ( 1, que F ( é uma unção não ecrescente o seu argumento e pelo Teorema Funamental o Cálculo que ( 0 F = = Valor Esperao e Variância e uma Distribuição e robabiliaes 0 Vamos consierar uma istribuição e probabiliaes para uma variável iscreta, por eemplo, o número e ilhos por amília Vamos supor que oram escolhias amílias aleatoriamente e que a seguinte istribuição e probabiliaes oi montaa: 7

8 robabiliae e Estatística I Antonio Roque Aula 0 o e ilhos robabiliae 0,1 0, 0,3 0, 0,1 0,1 O que é caa valor e probabiliae (i ao? É o valor a reqüência relativa o número e ilhos i entro a amostra escolhia or eemplo, o valor e ( = 0,3 inica que, 30% as amílias a amostra têm ois ilhos Como se calcula a méia e ilhos para esta amostra? Chamano e i a reqüência absoluta o número e ilhos i na amostra, a méia é: = ou = , (00 + (11+ ( + (33 + (44 + (55 ara o caso em questão: =,3 ilhos por amília Deine-se o valor esperao e uma istribuição e probabiliaes iscreta, esignao por E( ou, como: E( = = i ( i, n i= 1 one n é o número e valores possíveis que a variável aleatória poe assumir Aplicano a einição e valor esperao à variável aleatória número e ilhos por casal e consierano que (0 = 0,1, (1 = 0,, ( = 0,3, (3 = 0,, (4 = 0,1, (5 = 0,1 e ( 6 = 0, temos que i= 0 E ( = i ( i =,3 8

9 robabiliae e Estatística I Antonio Roque Aula 0 umericamente, o valor esperao coincie com a méia e ilhos por casal para a amostra e casais ote, porém, a ierença conceitual entre méia e valor esperao: A méia e uma amostra e elementos baseia-se eplicitamente nos resultaos eperimentais a amostra e é calculaa como, 1 = sem que se precise conhecer as probabiliaes e ocorrência e caa possível valor a variável aleatória; O valor esperao E( ou e uma variável aleatória é uma graneza teórica que epene a istribuição e probabiliaes (, einia para toos os possíveis valores a variável aleatória, cujos valores, em geral, não são conhecios ortanto, é um parâmetro característico a variável aleatória i= 1 i, O conceito e valor esperao e uma variável iscreta poe ser generalizao para o e valor esperao e qualquer unção g( A unção g( é, por si só, uma variável aleatória que poemos chamar e Y, assumino valores y = g( ortanto, E Y = y Y ( y y ( ote que poemos reescrever este valor esperao como E g( = g( (, que é uma maneira mais conveniente e se calcular o valor esperao e Y = g( na prática, pois não necessita que se conheça a istribuição e probabiliaes e Y 9

10 robabiliae e Estatística I Antonio Roque Aula 0 Como eemplo, vamos consierar a istribuição e probabiliaes e número ilhos por casal aa acima e calcular o valor esperao e g( = : E( 5 = i= 0 ( i = 0,10 + 0,1 + 0,3 + 0,3 + 0,14 + 0,15 = 6,3 Da einição e valor esperao e g( ecorre a seguinte proprieae e lineariae: Se α e β orem constantes, então a variável aleatória α + β tem o valor esperao, E ( α + β = ( α + β = α + β ( = α + βe( Voltano ao eemplo a amostra e amílias, a variância o número e ilhos por amília é calculaa como: 0 s = (0 ou s = (0(0 1 + (1 + (1(1 + ( + (( 3 + (3 + (3(3 4 + (4 + (4(4 5 + (5, + (5(5 ara o caso em questão, temos s =,0 Deine-se a variância e uma istribuição e probabiliaes iscreta por: n ( E( Var( = σ = p( i= 1 i i O esvio parão a variável aleatória iscreta é einio como a raiz quaraa positiva a sua variância: σ = + σ 10

11 robabiliae e Estatística I Antonio Roque Aula 0 ote que a einição acima é, assim como a einição o valor esperao, uma einição teórica Isto implica que a variância σ e uma variável aleatória é, em geral, um parâmetro esconhecio orém, assim como a méia, ela poe ser estimaa tomano-se amostras e elementos a variável aleatória Algumas proprieaes a variância que ecorrem a sua einição são (tente mostrar como eercício: Se or uma variável aleatória com variância σ e α e β orem constantes, então a variável aleatória α + β tem a variância, Var ( α + β = β Var( = β σ A variância e uma variável aleatória poe ser escrita na seguinte orma mais conveniente, e one se obtém que ( ( E( σ = = E, ( = σ E ara istribuições e probabiliaes contínuas, o valor esperao e a variância são einios por órmulas análogas às o caso as istribuições iscretas Apenas se substituem as somatórias por integrais: Valor esperao: + E( = = 11

12 robabiliae e Estatística I Antonio Roque Aula 0 + Variância: Var( = ( E( = σ Temos também que o valor esperao e uma unção g( a variável contínua é ao por: + ( g( E = g( As mesmas proprieaes o valor esperao e a variância para o caso e uma variável iscreta se aplicam agora para o caso e uma variável contínua As einições e valor esperao e e variância e uma variável aleatória, iscreta ou contínua, nos permitem provar uma esigualae matemática e grane importância em teoria as probabiliaes e estatística, conhecia como esigualae e Tchebyshev Seja uma variável aleatória, iscreta ou contínua, com valor esperao e variância σ Então, a esigualae e Tchebyshev nos iz que para qualquer constante positiva, σ ( Vamos provar a esigualae e Tchebyshev aqui para o caso e uma variável aleatória contínua no intervalo (, + ; a prova para uma variável aleatória iscreta é essencialmente iêntica ela einição e σ, 1

13 robabiliae e Estatística I Antonio Roque Aula 0 13 ( ( ( ( ( ( ( ( ( = + + = σ Deste resultao ecorre a esigualae e Tchebyshev: ( σ

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

s: damasceno.info.

s:  damasceno.info. Matemática II 9. Pro.: Luiz Gonzaga Damasceno E-mails: amasceno@yahoo.com.br amasceno@uol.com.br amasceno@hotmail.com http://www.amasceno.ino www.amasceno.ino amasceno.ino - Derivação implícita. Consiere

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i

Receptor Ótimo. Implementação do receptor ótimo baseada em Filtro Casado. s 1 (t M t) a M. b 1. s M (t M t) Selecionar Maior. (t) + w(t) r(t) = s i Receptor Ótimo Implementação o receptor ótimo baseaa em Filtro Casao s (t M t) t t M b r(t) s i (t) + w(t) a Selecionar m ˆ m i Maior s M (t M t) t t M a M b M Receptor Ótimo Implementação o receptor ótimo

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

Módulo 2 As Leis do Movimento

Módulo 2 As Leis do Movimento Móulo As Leis o Movimento Objetivo: Meir a aceleração a graviae g Aristóteles (séc. IV a.c.): Quatro Elementos (Água, Ar, Terra e Fogo), caa um com seu lugar natural. Corpos mais pesaos everiam cair mais

Leia mais

LISTA3 - PROCESSOS ESTOCÁSTICOS (CE 211) Prof. Benito Olivares Aguilera 2 o Sem./ 2009

LISTA3 - PROCESSOS ESTOCÁSTICOS (CE 211) Prof. Benito Olivares Aguilera 2 o Sem./ 2009 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA3 - PROCESSOS ESTOCÁSTICOS (CE ) Prof. Benito Olivares Aguilera o Sem./ 9. Suponha que o último censo inica que as pessoas

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Controle Estatístico de Qualidade. Capítulo 14 (montgomery)

Controle Estatístico de Qualidade. Capítulo 14 (montgomery) Controle Estatístico e Qualiae Capítulo 4 (montgomery) Amostragem e Aceitação Lote a Lote para Atributos Introução A Amostragem poe ser efinia como a técnica estatística usaa para o cálculo e estimativas

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA EETROMAGNETSMO 105 1 SOENÓDE E NDUTÂNCA 1.1 - O SOENÓDE Campos magnéticos prouzios por simples conutores ou por uma única espira são bastante fracos para efeitos práticos. Assim, uma forma e se conseguir

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

Instituto de Física da USP Física Experimental B Difração e Interferência - Guia de Trabalho

Instituto de Física da USP Física Experimental B Difração e Interferência - Guia de Trabalho I F USP Instituto e Física a USP 4330 Física Experimental B Difração e Interferência - Guia e Trabalho Nota Professor Equipe 1)... N o USP...Turma:... )... N o USP...Data:... 3)... N o USP... Objetivos:

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao

Leia mais

UNIFEI-Campus Itabira Eletromagnetismo Lista de Exercicios #1

UNIFEI-Campus Itabira Eletromagnetismo Lista de Exercicios #1 UNIFEICampus Itabira Eletromagnetismo Lista e Eercicios #1 ** rof. Dr. Miguel Tafur ** Livro e referencia: Física III: Eletromagnetismo. R. Resnick e D. Halliay 1 Carga Elétrica e Lei e Coulomb Questão

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2.

Por efeito da interação gravitacional, a partícula 2 exerce uma força F sobre a partícula 1 e a partícula 1 exerce uma força F sobre a partícula 2. Interação Gravitacional Vimos que a mola é esticaa quano um corpo é suspenso na sua extremiae livre. A força que estica a mola é e origem eletromagnética e tem móulo igual ao móulo o peso o corpo. O peso

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 - Eletriciae I 3 a Lista e eercícios 1. Duas granes placas conutoras, paralelas entre si e separaas por uma istância e 12 cm, têm cargas iguais e e sinais opostos nas faces ue se efrontam. Um elétron

Leia mais

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2008 VERSÃO ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2008 VERSÃO ano de Escolaridade Prova 635/1.ª Fase. Grupo I EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 74/004, e 6 e Março Prova Escrita e Matemática A. ano e Escolariae Prova 6/.ª Fase Duração a Prova: 0 minutos. Tolerância: 0 minutos 008 VERSÃO Para responer

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

31 a Aula AMIV LEAN, LEC Apontamentos

31 a Aula AMIV LEAN, LEC Apontamentos 31 a Aula 20041126 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 311 Métoo os coeficientes ineterminaos 3111 Funamentação Vamos agora aborar a EDO e coeficientes constantes, mas não homogénea:

Leia mais

Professora: Engª Civil Silvia Romfim

Professora: Engª Civil Silvia Romfim Proessora: Engª Civil Silvia Romim LIGAÇÕES EM ESTRUTURAS DE MADEIRA Generaliaes Ligações com pinos metálicos Ligações com cavilhas Ligações com pregos Ligações com parausos LIGAÇÕES GENERALIDADES Devio

Leia mais

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella A Forma Geométrica os Cabos Suspensos Prof. Lúcio Fassarella - 008 - Problema: Determinar a forma eométrica e um cabo e comprimento L suspenso em suas extremiaes por postes e mesma altura H separaos por

Leia mais

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2 Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA 81 1 SOLENÓDE E NDUTÂNCA 1.1 - O SOLENÓDE Campos magnéticos prouzios por simples conutores, ou por uma única espira são, para efeitos práticos, bastante fracos. Uma forma e se prouzir campos magnéticos

Leia mais

Universidade de São Paulo

Universidade de São Paulo Universiae e São Paulo Instituto e Física NOTA PROFESSOR 4323202 Física Experimental B Equipe 1)... função... Turma:... 2)... função... Data:... 3)... função... Mesa n o :... EXP 5- Difração e Interferência

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s UFRJ Equipe UFRJ Olimpíaa Brasileira e Física Lista Aula 3C Física Jorão 1 É aa a seguinte função horária a velociae escalar e uma partícula em movimento uniformemente variao: v = 15 + t (SI) Determine:

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Valor: Nº: SÉRIE:2ª TURMA: 5,0 UNIDADE: VV JC JP PC DATA: / /2015 Obs.: Esta lista eve ser entregue apenas ao professor no ia a aula

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

III Corpos rígidos e sistemas equivalentes de forças

III Corpos rígidos e sistemas equivalentes de forças III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.

Leia mais

Modulo 5 Lei de Stevin

Modulo 5 Lei de Stevin Moulo 5 Lei e Stevin Simon Stevin foi um físico e matemático belga que concentrou suas pesquisas nos campos a estática e a hirostática, no final o século 16, e esenvolveu estuos também no campo a geometria

Leia mais

Capítulo 4 Análises de Resultados Numéricos das Simulações

Capítulo 4 Análises de Resultados Numéricos das Simulações Análises e Resultaos Numéricos as Simulações 56 Análises e Resultaos Numéricos as Simulações 4.1 Introução Um moelo e simulação foi utilizao para caracterizar o comportamento o canal e propagação e sistemas

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

3) Por razões históricas e talvez práticas, o conceito do item 2 é colocado de maneira diferente. A d.d.p. é dividida em duas componentes ficando:

3) Por razões históricas e talvez práticas, o conceito do item 2 é colocado de maneira diferente. A d.d.p. é dividida em duas componentes ficando: Artigo Por Sérgio Toleo Sobral e Patrício Munho Rojas* Anexo A Lei e Faraay aplicaa a uma espira conutora aberta ) O conteúo essencial a lei e Faraay-Maxwell é que o campo elétrico tem uma componente conservativa

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES

Leia mais

DIFERENÇA DE POTENCIAL. d figura 1

DIFERENÇA DE POTENCIAL. d figura 1 DIFERENÇ DE POTENCIL 1. Trabalho realizao por uma força. Consieremos uma força ue atua sobre um objeto em repouso sobre uma superfície horizontal como mostrao na figura 1. kx Esta força esloca o objeto

Leia mais

Equações Diofantinas Lineares

Equações Diofantinas Lineares Equações Diofantinas Lineares Equações, com uma ou mais incógnitas, e que se procuram soluções inteiras esignam-se habitualmente por Equações iofantinas. Vamos apenas consierar as equações iofantinas lineares,

Leia mais

EQUILÍBRIO DA ALAVANCA

EQUILÍBRIO DA ALAVANCA EQUILÍBRIO DA ALAVANCA INTRODUÇÃO A Alavanca é uma as máquinas mais simples estuaas na Grécia antiga. Ela consiste e uma barra rígia que gira em torno e um ponto fixo enominao fulcro. A balança e ois braços

Leia mais

"Introdução à Mecânica do Dano e Fraturamento" Parte I. São Carlos, outubro de 2000

Introdução à Mecânica do Dano e Fraturamento Parte I. São Carlos, outubro de 2000 "Introução à Mecânica o Dano e Fraturamento" Texto n.3 : FUNDAMENTOS DA TERMODINÂMICA DOS SÓLIDOS Parte I São Carlos, outubro e 2000 Sergio Persival Baroncini Proença - Funamentos a termoinámica os sólios

Leia mais

INTRODUÇÃO AOS RESSEGUROS. Adrian Hinojosa e Aniura Milanés. Departamento de Estatística ICEx. UFMG.

INTRODUÇÃO AOS RESSEGUROS. Adrian Hinojosa e Aniura Milanés. Departamento de Estatística ICEx. UFMG. INTRODUÇÃO AOS RESSEGUROS Arian Hinojosa e Aniura Milanés Departamento e Estatística ICEx. UFMG. Sumário Capítulo 1. As probabiliaes e a teoria o risco 1 1. Por que as probabiliaes? 1 2. Probabiliaes

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada.

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada. ANEXO A: Critérios para determinar o comportamento de uma unção através do estudo da derivada. Vamos relembrar critérios que permitem determinar o comportamento de uma unção nas proimidades de um ponto

Leia mais

26 a Aula AMIV LEAN, LEC Apontamentos

26 a Aula AMIV LEAN, LEC Apontamentos 26 a Aula 2004..5 AMIV LEAN, LEC Apontamentos (Ricaro.Coutinho@math.ist.utl.pt) 26. Sistemas e equações iferenciais 26.. Definição Consiere-se f : D R R n R n,contínuanoconjuntoabertod Vamos consierar

Leia mais

Física II. Lei de Gauss

Física II. Lei de Gauss Física II 1) Três cargas Q 1 =5µC, Q 2 =-80µC e Q 3 = 10 µc estão ispostas em triângulo. Q 1 está a 50cm e Q 2 (seguno o eixo os xx ) e Q 3 está a 30cm e Q 1 e a 40cm e Q 2 no sentio positivo o eixo yy.

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1 Universiae Feeral o Espírito Santo Seguna Prova e Cálculo I Data 4//22 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno Matrícula Nota. (3 pontos) Calcule os ites (i) (ii) (iii) x! 2 x x + 22 = cos (x) x!

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno grupamento e Escolas João a Silva Correia DEPTMENTO DE CÊNCS NTS E EXPEMENTS Curso Científico-Humanístico e Ciências e Tecnologias Disciplina e Física e Química 0ºno FCH DE TBLHO Energia e fenómenos elétricos.

Leia mais

= 1 d. = -36 π Pa

= 1 d. = -36 π Pa EO -1-7/5/16 Grupo I R. 1-a) A capaciae e um conensaor plano e área S e separação, cheio e um ielétrico e permitiviae ε é C = ε S. Assim a situação apresentaa equivale a ois conensaores em paralelo, cuja

Leia mais

Professor Mauricio Lutz AMOSTRAGEM

Professor Mauricio Lutz AMOSTRAGEM 1 AMOSTRAGEM 1)Conceitos em amostragem Inferência estatística é o processo e obter informação sobre uma população a partir e resultaos observaos na amostra. Amostragem é o processo e retiraa os n elementos

Leia mais

2 FUNDEF e FUNDEB no contexto do financiamento educacional.

2 FUNDEF e FUNDEB no contexto do financiamento educacional. 17 2 FUNDEF e FUNDEB no contexto o inanciamento eucacional. No Brasil, municípios, estaos e o governo eeral iviem entre si as responsabiliaes prioritárias no que iz respeito ao investimento em eucação.

Leia mais

Cap. 8 Distribuições contínuas e modelo normal

Cap. 8 Distribuições contínuas e modelo normal Estatística Aplicada às Ciências Sociais Seta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 8 Distribuições contínuas e modelo normal Variável aleatória discreta variável aleatória

Leia mais

Redes Neurais. O ADALINE e o algoritmo LMS. Prof. Paulo Martins Engel O ADALINE

Redes Neurais. O ADALINE e o algoritmo LMS. Prof. Paulo Martins Engel O ADALINE Rees Neurais O ADALINE e o algoritmo LMS O ADALINE No contexto e classificação, o ADALINE [B. Wirow 1960] poe ser visto como um perceptron com algoritmo e treinamento baseao em minimização e um ínice e

Leia mais

Módulo V Força e Campo Elétrico

Módulo V Força e Campo Elétrico Móulo V Clauia Regina Campos e Carvalho Móulo V orça e Campo létrico orça létrica: As interações, e atração ou e repulsão, entre corpos carregaos positiva ou negativamente são forças e natureza elétrica

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 Teoria dos Números 09/09/2011

Projecto Delfos: Escola de Matemática Para Jovens 1 Teoria dos Números 09/09/2011 Projecto Delfos: Escola e Matemática Para Jovens 1 Teoria os Números 09/09/2011 Funções aritméticas Este texto e apoio baseia-se no seguno capítulo e Tom M. Apostol, Introuction to Analytic Number Theory.

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

XIII. PROGRAMAÇÃO POR METAS

XIII. PROGRAMAÇÃO POR METAS XIII. PROGRAMAÇÃO POR METAS. Programação Multicritério No moelo e Programação Linear apresentao nos capítulos anteriores optimiza-se o valor e uma única função objectivo num espaço efinio por um conjunto

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS

QUESTÕES PROPOSTAS RESOLUÇÃO POR ETAPAS Fisica 1.. C Da Terra à Lua Pág. 30A 4.1. (C) As forças»f 1 e»f têm sentios contrários. 4.. (B) O bloco terá nas uas situações movimento uniformemente acelerao. Na situação A, como as forças têm o mesmo

Leia mais

OLIMPÍADAS DE FÍSICA. Selecção para as provas internacionais. 19 de Maio de Prova Teórica

OLIMPÍADAS DE FÍSICA. Selecção para as provas internacionais. 19 de Maio de Prova Teórica OLIMPÍADAS DE FÍSICA Selecção para as provas internacionais 19 e Maio e 000 Prova Teórica Duração a prova: 3H I. Vários tópicos Este problema é constituío por várias alíneas sem qualquer ligação entre

Leia mais

10º ENTEC Encontro de Tecnologia: 28 de novembro a 3 de dezembro de 2016

10º ENTEC Encontro de Tecnologia: 28 de novembro a 3 de dezembro de 2016 SIMULAÇÃO DE UM PROCESSO FERMENTATIVO EM UM BIORREATOR PERFEITAMENTE MISTURADO Ana Carolina Borges Silva 1 ; José Walir e Sousa Filho 2 1 Universiae Feeral e Uberlânia 2 Universiae e Uberaba carolina.borges87@gmail.com,

Leia mais

Determinação da abundância natural do isotópico 40 K

Determinação da abundância natural do isotópico 40 K Determinação a abunância natural o isotópico 40 I. Introução O potássio natural contem os isótopos 39, 40 e 41, os quais só o 40 é raioactivo. O objectivo este trabalho é meir a abunância natural o isótopo

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA

APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA APLICAÇÕES DA TRIGONOMETRIA ESFÉRICA NA CARTOGRAFIA E NA ASTRONOMIA Aplica-se a trigonometria esférica na resolução e muitos problemas e cartografia, principalmente naqueles em que a forma a Terra é consieraa

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção Introdução à Probabilidade e à Estatística (BCN0406-1) Prova 2 (A) 16/08/2018 Correção (1.pt) 1. Dadas as seguintes probabilidades associadas à variável aleatória X: -1 1 2 p() 1/2 1/3 1/6 a) Calcule a

Leia mais

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10 Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:

Leia mais

4Parte. Relatórios das atividades laboratoriais OBJETIVO GERAL. Parte I Preparação da atividade laboratorial

4Parte. Relatórios das atividades laboratoriais OBJETIVO GERAL. Parte I Preparação da atividade laboratorial Relatórios as ativiaes laboratoriais Relatórios as ativiaes laboratoriais AL 1.1 QUEDA LIVRE: FORÇA GRAVÍTICA E ACELERAÇÃO DA GRAVIDADE OBJETIVO GERAL Determinar a aceleração a graviae num movimento e

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos P.44 Daos: 5 6 C; $ B 4 J Da expressão o trabalho a força elétrica: $ B ( B ) 4 5 6 ( B ) B 5 4 6 Esse resultao inica ue B. B P.45 Se os potenciais e e B valem, respectivamente, 5 e, em relação a um certo

Leia mais

Física Fascículo 07 Eliana S. de Souza Braga

Física Fascículo 07 Eliana S. de Souza Braga Física Fascículo 7 Eliana S e Souza raga Ínice Eletrostática Resumo Teórico 1 Eercícios Gabarito4 Eletrostática Resumo Teórico Força eletrostática lei e oulomb F K Q = Q 1 Vácuo: 1 K K = = 9 1 N m 4 πε

Leia mais

Matemática e suas tecnologias

Matemática e suas tecnologias Matemática 4 0. c a) INORRETO. O móulo e zero é igual a zero. b) INORRETO. O móulo e qualquer número negativo é o oposto o número. c) ORRETO. Os móulos e ois números opostos são iguais. ) INORRETO. O móulo

Leia mais

Resultados Resultados

Resultados Resultados Resultaos 72 Resultaos Este capítulo irá apresentar os testes realizaos para valiar o trabalho. Os primeiros testes serão realizaos utilizano um círculo vermelho como objeto alvo. Para os testes seguintes,

Leia mais

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas Introução ao rocessamento e íntese e imagens ransformações e Visualiação: Matries Homogêneas Júlio Kioshi Hasegawa Fontes: Esperança e Cavalcanti UFRJ; raina e Oliveira 4 U; e Antonio Maria Garcia ommaselli

Leia mais

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40 Universiae Feeral o Espírito Santo Prova e Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :.Observações: IPara fazer a prova é permitio usar somente caneta,

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Física III Escola Politécnica GABARITO DA PS 13 de julho de 2017

Física III Escola Politécnica GABARITO DA PS 13 de julho de 2017 Física III - 4323203 Escola Politécnica - 2017 GABARITO DA PS 13 e julho e 2017 Questão 1 1) Um capacitor esférico é formao por ois conutores em equilíbrio eletrostático. O conutor interno possui formato

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA

10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10 DIMENSIONAMENTO DE SECÇÕES RETANGULARES COM ARMADURA DUPLA 10.1 INTRODUÇÃO A armaura posicionaa na região comprimia e uma viga poe ser imensionaa a fim e se reuzir a altura e uma viga, caso seja necessário.

Leia mais

Escola Politécnica FGE GABARITO DA PS 7 de julho de 2005

Escola Politécnica FGE GABARITO DA PS 7 de julho de 2005 PS Física III Escola Politécnica - 2005 FGE 2203 - GABARITO DA PS 7 e julho e 2005 Questão 1 Um conutor escarregao, esférico e centrao na origem possui uma caviae e forma e localização qualquer como mostra

Leia mais

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais