Regras do Produto e do Quociente. Regras do Produto e do Quociente
|
|
|
- Mônica Rico Carvalho
- 9 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e o Quociente A erivaa o prouto e uas funções iferenciáveis é igual ao prouto a primeira função pela erivaa a seguna, mais o prouto a seguna função pela erivaa a primeira. [ f ( ) g ( )] f ( ) g ( ) + g ( ) f ( ) Prof.: Rogério Dias Dalla Riva Regras o Prouto e o Quociente 1.A regra o prouto.a regra o quociente.simplificação e erivaas.uma aplicação: pressão Demonstração: Algumas emonstrações matemáticas, como a Regra a Soma, são imeiatas. Outras envolvem sutilezas que poem parecer injustificaas. A emonstração que se segue apresenta este último aspecto soma e subtração a mesma graneza. Seja F() f()g(). 5 Na aula anterior, vimos que a erivaa e uma soma ou a iferença e uas funções é simplesmente a soma ou a iferença e suas erivaas. As regras para a erivaa e um prouto ou e um quociente e uas funções não são tão simples. F( + ) F lim 0 f ( + ) g( + ) f g lim 0 f ( + ) g( + ) f ( + ) g + f ( + ) g f g lim 0 g( + ) g f ( + ) f lim f ( ) g g( + ) g f ( + ) f lim f ( + ) lim + lim g lim f g + g f F 6 1
2 Eemplo 1: Ache a erivaa e y + ( )(5 ). Aplicano a Regra o Prouto, poemos escrever Derivaa a Derivaa a ( seguna ) ( primeira ) (Primeira) Seguna y (5 + ) () + (5 + )( ) ( ) f f f f f + 1 f 10 No eemplo seguinte, note que o primeiro passo para iferenciar consiste em escrever a função original sob nova forma. Temos agora uas regras e iferenciação relativas a proutos a Regra o Múltiplo Constante e a Regra o Prouto. A iferença entre essas uas regras é que a Regra o Múltiplo Constante se refere ao prouto e uma constante e uma graneza variável. c é uma Constante F cf, one f() Graneza Variável 8 11 Eemplo : Ache a erivaa e 1 f + 1 ( 1). Reescreva a função e aplique então a Regra o Prouto para achar a erivaa Enquanto que a Regra o Prouto se refere ao prouto e uas granezas variáveis F f g, one f() e g() Granezas Variáveis O próimo eemplo compara essas uas regras. 9 1
3 . A regra o quociente Eemplo : Ache as erivaas as funções a. y ( + ) b. y ( + ) a. Pela Regra o Prouto y ( ) ( + ) + ( + )() Vimos que, aplicano a Regra a Constante, a Regra a Potência, a Regra o Múltiplo Constante e as Regras a Soma e a Diferença, poemos iferenciar qualquer função polinomial. Combinano essas regras com a Regra o Quociente, poemos agora iferenciar qualquer função racional. 16. A regra o quociente Eemplo : Ache as erivaas as funções a. y ( + ) b. y ( + ) b. Pela Regra o Múltiplo Constante y + ()( + ) + 6 A erivaa o quociente e uas funções iferenciáveis é igual ao prouto o enominaor pela erivaa o numeraor, menos o prouto o numeraor pela erivaa o enominaor, tuo iviio pelo quarao o enominaor. f g f f g g g, g ( ) A regra o quociente A Regra o Prouto poe ser estenia a proutos e mais e ois fatores. Por eemplo, se f, g e h são funções iferenciáveise, então Demonstração: Seja F() f()/g(). Tal como na Regra o Prouto, a chave a emonstração consiste em somar e subtrair a mesma epressão. [ f ( ) g ( ) h ( )] f ( ) g ( ) h ( ) + f ( ) g ( ) h ( ) + f ( ) g ( ) h ( ) 15 18
4 . A regra o quociente. A regra o quociente f ( + ) f F( + ) F g( + ) g F lim lim 0 0 g f ( + ) f g( + ) lim 0 g g( + ) g f ( + ) f g + f g f g( + ) lim 0 g g( + ) g( ) f ( + ) f f g( + ) g lim lim 0 0 lim [ g g( + ) ] 0 f ( ) f g( ) g lim g + + lim lim f lim lim [ g g( + ) ] 0 g f f g ( g ) 19 (1/ ) 1 1 y ( 5) 5 y ( + 5 ) ( + 5 )() ( 1)( + 5) + 15 ( ) ( + 5 ) ( + 5 ) + + ( + 5 ). A regra o quociente. A regra o quociente Eemplo : Ache a erivaa e y + ( ) ( ) ( ) ( )( + ( ) y ( ) 0 Nem too quociente eve necessariamente ser iferenciao pela Regra o Quociente. Por eemplo, caa um os quocientes no próimo eemplo poe ser consierao como o prouto e uma constante e uma função e. Em tais casos, a Regra o Múltiplo Constante é mais eficiente.. A regra o quociente. A regra o quociente Eemplo 5: Ache a erivaa e (1/ ) y + 5 Comece escreveno sob nova forma a função original. Aplique então a Regra o Quociente e simplifique o resultao. 1 Eemplo 7: Escreveno sob nova forma antes e iferenciar. Função Original Nova Forma Diferenciar Simplificar a. y y ( + ) y ( + ) y b. y y y ( ) y ( ) 6 c. y y ( ) y ( ) y y y ( ) y ( ) y
5 . Simplificação e erivaas Eemplo 8: Ache a erivaa e (1 )( + ) y 5 Esta função contém um prouto entro e um quociente. Poeríamos primeiro multiplicar os fatores no numeraor e aplicar então a Regra o Quociente. Entretanto, para aquirir prática na utilização a Regra o Prouto entro a Regra o Quociente, iferencie como segue Simplificação e erivaas (1 )( + ) (1 )( + ) 5 y (1 )() + ( + ) (1 )( + )(5) ( 6 6 (1 )( ) (5 ( 11 ) ( ) ( 6) (5 8 1) 6 Aplicano a Regra o Quociente, P t t t t t ( + 1)(50 ) (5 + 15) 50t 00t + 50t 50t 50t 9 Eemplo 9: Na meia em que o sangue corre o coração pelas artérias principais para as capilares e e retorno pelas veias, a pressão sistólica cai continuamente. Consiere uma pessoa cuja pressão P (em milímetros e mercúrio) é aa por t P t , 0 t 10, one t é meio em segunos. A que taa está variano a pressão 5 segunos após o sangue eiar o coração? 7 Quano t 5, a taa e variação é P 00(5) 1,8 mm Hg/s t 6 Portanto, a pressão está caino a uma taa e 1,8 mm Hg por seguno quano t 5 segunos. 0 5
Derivadas de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções
Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções
LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:
LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.
Derivadas das Funções Hiperbólicas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções
Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Derivadas de Ordem Superior
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas de Ordem
Algumas Regras para Diferenciação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para
A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5
A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra
CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;
CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano
Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;
CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais
CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x
CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e
Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1
Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:
Extremos e o Teste da Derivada Primeira
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Extremos e o Teste
Polinômios. 1.Introdução 2.Técnicas de fatoração 3.Fatoração de polinômios de terceiro grau ou de grau superior 4.Teorema do zero racional
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Polinômios Prof.:
Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades
( ) ( ) Polinômios. Polinômios. a n x n + a n-1 x n a 1 x + a 0. O Teorema Fundamental da Álgebra afirma que todo polinômio de grau n
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Técnicas de fatoração O
Concavidade e o Teste da Derivada Segunda
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste
1. Integração por partes. d dx. 1. Integração por partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
Continuidade. Continuidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Continuidade Antes
Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:
Problemas de Otimização
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Problemas de Otimização
DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)
Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;
Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Concavidade:
Gráficos de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções
Funções Crescentes e Funções Decrescentes. Funções Crescentes e Funções Decrescentes. Função Crescente. Função Decrescente
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Função
CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES
CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:
Medida de Ângulos em Radianos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos
Taxas Relacionadas. 1.Variáveis Relacionadas 2.Resolução de Problemas Sobre Taxas Relacionadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas
CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.
CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
Integração por Partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
Integração por Substituição
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Substituição
Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais
Projecto Delfos: Escola de Matemática Para Jovens 1 Teoria dos Números 09/09/2011
Projecto Delfos: Escola e Matemática Para Jovens 1 Teoria os Números 09/09/2011 Funções aritméticas Este texto e apoio baseia-se no seguno capítulo e Tom M. Apostol, Introuction to Analytic Number Theory.
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17 Assunto: Funções Implícitas, Teorema as Funções Implícitas Palavras-chaves: funções, funções implícitas, erivação implícita Funções implícitas
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e
dy dx dt dt Taxas Relacionadas Taxas Relacionadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas
Estratégias de Integração. Estratégias de Integração
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Estratégias de Integração
Professor Mauricio Lutz DERIVADAS
DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto
a prova de Matemática da FUVEST 2ª fase
a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em
A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
Funções Crescentes e Funções Decrescentes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Crescentes
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:
Leis de Newton. 1.1 Sistemas de inércia
Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual
Área e Teorema Fundamental do Cálculo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental
Funções Hiperbólicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Hiperbólicas
QUESTÕES COMENTADAS DE MECÂNICA
QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao
Volumes de Sólidos de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
Física II. Lei de Gauss
Física II 1) Três cargas Q 1 =5µC, Q 2 =-80µC e Q 3 = 10 µc estão ispostas em triângulo. Q 1 está a 50cm e Q 2 (seguno o eixo os xx ) e Q 3 está a 30cm e Q 1 e a 40cm e Q 2 no sentio positivo o eixo yy.
s: damasceno.info.
Matemática II 9. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.amasceno.ino www.amasceno.ino amasceno.ino - Derivação implícita. Consiere
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA ALUNO(a): Valor: Nº: SÉRIE:2ª TURMA: 5,0 UNIDADE: VV JC JP PC DATA: / /2015 Obs.: Esta lista eve ser entregue apenas ao professor no ia a aula
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.
Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb
Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares
= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s
UFRJ Equipe UFRJ Olimpíaa Brasileira e Física Lista Aula 3C Física Jorão 1 É aa a seguinte função horária a velociae escalar e uma partícula em movimento uniformemente variao: v = 15 + t (SI) Determine:
MÉTODOS DE DERIVAÇÃO
MÉTODOS DE DERIVAÇÃO TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA FUNÇÃO CONSTANTE Uma ução costate ão apreseta variação, portato sua erivaa é ula ( c) 5 4 Por eemplo:
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
III Corpos rígidos e sistemas equivalentes de forças
III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.
Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:
Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente
