UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17. Assunto: Funções Implícitas, Teorema das Funções Implícitas"

Transcrição

1 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 17 Assunto: Funções Implícitas, Teorema as Funções Implícitas Palavras-chaves: funções, funções implícitas, erivação implícita Funções implícitas Consieremos a equação + y 2 = 1 Observemos que os pontos o R 2 que satisfazem essa equação constituem a circunferência e centro na origem e raio 1. Se isolarmos y na equação anterios, obteremos: y 2 = 1 y = ± 1 Assim, temos y = 1 ou y 1 Diremos que as funções f(x) = 1 e g(x) 1 estão enias implicitamente pela equação + y 2 = 1. Os grácos as funções f(x) e g(x) são mostraos a seguir A equação + y 2 = 1 poe ser posta na forma + y 2 1 = 0 e as funções f(x) e g(x) satisfazem + (f(x)) 2 1 = + ( 1 ) 2 1 = 0 + (g(x)) 2 1 = + ( 1 ) 2 1 = 0

2 No que zemos acima consieramos x como variável inepenente, mas não há naa na equação = y 2 = 1 que inique que tinha que ser assim. Portanto, poemos consierar y como variável inepenente e escrevermos x em função e y. = 1 y 2 x = ± 1 y 2 Portanto x = 1 y 2 ou x 1 y 2 Diremos então que as funções ϕ(y) = 1 y 2 e ψ(y) 1 y 2 estão enias implicitamente pela equação = y 2 = 1 (ou = y 2 1 = 0). Temos que: ϕ(y) 2 + y 2 1 = 0, qua e ψ(y) 2 + y 2 1 = 0 Se não muarmos as posições os eixos x e y o plano cartesiano, os grácos as funções ϕ e ψ são as seguintes Consieramos agora o caso geral. Observemos inicialmente que toa equação nas variáveis x e y poe ser escrita na forma = 0, em que F é uma função e uas variáveis. Diremos que uma equação = 0 ene implicitamente y como função e x se existe uma funlçaõ y = f(x) que satisfaz F (x, f(x)) = 0, para too x D f. Neste caso, iremos também que a função f(x) está enia implicitamente pela equação = 0. Diremos aina que a equação = 0 ene implicitamente cx como função e y se existe uma função x = ϕ(y) que satisfaz F (ϕ(y), y) = 0. Também iremos neste caso que a função ϕ(y) está bem enia implicitamente pela equação = 0. Observamos que uma mesma equação poe enir implicitamente várias funções. Voltemos ao caso a função y = 1, que está enia implicitamente que equação + y 2 = 1. A erivaa essa função poe ser calculaa por ois processos. 1 Processo: Calculamos iretamente a erivaa e y usano a expressão y = 1. 2 Processo: = x.( 2x) x 2 1 x 2 2

3 Derivamos os ois membros a equação = y 2 = 1, levano-see em conta que y está em função e x. (x2 + y 2 ) = (1) 2x + 2y = 0 x y Dizemos que está expressa em termos e x e y. Se substituirmos y por 1, obteremos x 1 x 2 As erivaas as outras funções implicitamente por + y 2 = 1 também poem ser calculaas por esses processos. Há situações nas quais são conseguimos obter a expressão explícita e y como função e x. Quano isso acontece não poemos calcular a erivaa pelo primeiro processo. É o caso, por exemplo, a equação y + y 3 + sin(x + y) = 0 Conforme veremos aiante, essa equação ene implicitamente y como função e x, mas não é possível isolar o y em termos e x. Em too caso, poemos aplicar o 2 processo o exemplo anterios para calcularmos. (y + y3 + sin(x + y)) = (0) y + 3y 2 y + [cos(x + y)].(1 + y ) = 0 y + 3y 2 y + cos(x + y) + y cos(x + y) = 0 y (1 + 3y 2 + cos(x + y)) cos(x + y) y cos(x + y) = 1 + 3y 2 + cos(x + y) ou, usano a notação e Leibniz, cos(x + y) 1 + 3y 2 + cos(x + y) No caso geral, se a função y = f(x) está enia implicitamente pela equação = 0, então F (x, f(x)) = 0. equação, obtemos Aplicano a regra a caeia, para calcularmos a erivaa e ambos os membros essa 3

4 F (x, f(x)). x (F (x, f(x))) = (0) F (x, f(x)). = 0 + y x F (x, f(x)) + F (x, f(x)). y = 0 Portanto F (x, f(x)) x F (x, f(x)) y Estamos supono que F (x, f(x)) 0. Lembrano que f(x) = y, poemos escrever essa fórmula como y O que nos á uma maneira e expressar x y em termos e x e y. Consieremos agora o caso em que a equação = 0 ene implicitamente x como função e y, isto é, x = ϕ(y) e F (ϕ(y), y) = 0.Assim teremos (F (ϕ(y), y)) = (0) (F (ϕ(y), y)) x + (F (ϕ(y), y)) = 0 y Supono que (F (ϕ(y), y)) 0, temos: x Como ϕ(y) = x, poemos escrever a forma F (ϕ(y), y) y F (ϕ(y), y) x y x 4

5 Exemplo 1 Sabeno que a equação aa ene implicitamente y como função e x e também ene implicitamente x como função e y, use as fórmulas anteriores para expressar e em termos e x e y y 2 = 1 Neste caso escrevemos Portanto + y 2 1 = 0 e = + y y + y 3 + sin(x + y) = 0 x y 2y x y y 2y x 2x y x Escrevemos Logo = y + y 3 + sin(x + y) x cos(x + y) y 1 + 3y 2 + cos(x + y) y x 1 + 3y 2 + cos(x + y) cos(x + y) Ao aplicarmos esses processos evemos tomar cuiao com o signicao as notações,, F x e F y. Por exemplo y3 = 3y 2 y x y3 = 0 y y3 = 3y 2 5

6 Existem equações que não enem implicitamente nenhuma função. é o caso, por exemplo, a equação + y 2 1 Essa equação não ene implicitamente nenhuma função, pois não existe uma expressão y = f(x) que substituía no lugar e y que prouzirá 1, visto que o primeiro membro a equação é sempre negativo. Observamos que, neste caso, poemos calcular pelo 2 processo, mas essa erivaa não tem razão e haver, pois a função não existe. A seguir temos mais uas equações que não enem implicitamente nenhuma função. Exemplo 2 Mostre que a equação aa não ene implicitamente nenhuma função 1. + sin(x + y) = 3 + y2 Temos que Portanto, o máximo que a soma e 2. xy = + y 2 + sin(x + y) + y2 + y 2 + sin(x + y) = 2 + y 2 com sin(x + y) poe atingir é 2. Logo sempre teremos + sin(x + y) 3 + y2 O único pra (x, y) que é satisfeito por essa equação é o par (0, 0), pois se existisse y 0(ou x 0) tal que xy = + y 2, teríamos mas sabemos que Outro Processo: xy + y 2 = 1, xy + y Se existissem x e y ambos não nulos tais que xy = + y 2 então xy > 0. Logo, ou x ou y são positivos ou são negativos. Temos que 6

7 xy + y 2 = 0 2xy + y 2 xy (x y) 2 xy O que é uma contraição, pois o primeiro membro é positivo e o seguno é negativo. Neste ponto, evemos superar estas uas questões: Quano uma equação = 0 ene implicitamente funções (y = f(x) ou x = ϕ(y))? Se = 0 ene implicitamente funções, quano tais funções são iferenciáveis? As respostas para essas perguntas evem ser provenientes a própria equação e tasi respostas são fornecias pelo teorema as funções implícitas. Teorema 1 (Teorema as funções implícitas. Caso = 0) Sejam uma função enia em um conjunto aberto A e (x 0, y 0 ) A. Se 1. é e classe C 1 em A, 2. F (x 0, y 0 ) = 0 e 3. F y (x 0, y 0 ) 0, então existem intervalos abertos I e J com x 0 I e y 0 J e uma função iferenciável f : I J que satisfaz F (x, f(x)) = 0, para too x I e F (x, f(x)) f (x) x F (x, f(x)) y Se no teorema anterior substituirmos a terceira hipótese por F x (x 0, y 0 ) 0, concluiremos que existirão intervalos abertos I e J com x 0 I e y 0 J e uma função ϕ : J I iferenciável que satisfaz F (ϕ(y), y) = 0, para too y J e F (ϕ(y), y) ϕ y (y) F (ϕ(y), y) x Exemplo 3 Mostre que a equação aa ene implicitamente y como função e x e que tal função é iferenciável. Além isso, expresse em termos e x e y 1. y + y 3 + sin(x + y) = 0 Escrevemos = y + y 3 + sin(x + y) 7

8 Assim teremos F (x, y) = cos(x + y) x F y (x, y) = 1 + 3y2 + cos(x + y) Portanto é e classe C 1 em R 2. Temos também que F (0, 0) = 0 e F (0, 0) = 1 0 y Portanto, a equação ene implicitamente uma função iferenciável y = f(x) 2. x 4 + 2xy + y 5 = 11 Escrevemos Logo = x 4 + 2xy + y 5 11 F x (x, y) = 4x3 + 2y F (x, y) = 2y + 5y4 y Portanto é e classe C 1 em R 2.E também que: e F (2, 1) = ( 1) + ( 1) 5 11 = = 0 F y (2, 1) = 2.( 1) + 5.( 1) = 3 0 Portanto essa função ene implicitamente uma função iferenciável y = f(x) e F (x, y) x 4x 3 + 2y F y (x, y) 2y + 5y 4 8

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

AULA 12 Aplicação da Derivada (página 220)

AULA 12 Aplicação da Derivada (página 220) Belém, e maio e 0 Caro aluno, Nesta aula ocê encontra problemas resolios e Taxas Relacionaas. Resola os exercícios as páginas e a. Leia o enunciao com muita atenção. Cuiao com as uniaes. Faça um esquema

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 19. A Lei da Indução de Faraday Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 19 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday

Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira. Aula 24. A Lei da Indução de Faraday Eletromagnetismo I Prof. Ricaro Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 24 A Lei a Inução e Faraay Na aula passaa iscutimos a força eletromotriz ε = E l em um circuito e mostramos que se o

Leia mais

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite

Bola Aberta UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10. Assuntos: Continuidade de funções e limite Assuntos: Continuidade de funções e limite UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 10 Palavras-chaves: continuidade, funções contínuas, limite Bola Aberta Sejam p R n e r R com r

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos

Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 22. Assunto: Máximos e mínimos Assunto: Máximos e mínimos UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos Sejam f uma função a valores

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015

Cálculo Diferencial e Integral I - Turma C 26 de Junho de 2015 Cálculo Diferencial e Inegral I - Turma C 6 e Junho e 5 Quesão................................................................................ 7 Calcule as inegrais abaixo: ( ) πx (a) ( poins) x cos Soluion:

Leia mais

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40

Universidade Federal do Espírito Santo Prova de Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES. log 3x 40 Universiae Feeral o Espírito Santo Prova e Cálculo I Data: 14/08/2013 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno: Matrícula Nota: : :.Observações: IPara fazer a prova é permitio usar somente caneta,

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Funções de várias variáveis reais a valores reais (Funções de R n em R)

Funções de várias variáveis reais a valores reais (Funções de R n em R) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 08 Assunto:Funções de várias variáveis reais a valores reais, domínio e imagem, curvas de nível, gráco da função de duas variáveis reais a

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

Máximos e mínimos (continuação)

Máximos e mínimos (continuação) UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 3 Assunto: Máximos e mínimos Palavras-chaves: máximos e mínimos, valores máximos e valores mínimos Máximos e mínimos (continuação) Sejam f

Leia mais

26 a Aula AMIV LEAN, LEC Apontamentos

26 a Aula AMIV LEAN, LEC Apontamentos 26 a Aula 2004..5 AMIV LEAN, LEC Apontamentos (Ricaro.Coutinho@math.ist.utl.pt) 26. Sistemas e equações iferenciais 26.. Definição Consiere-se f : D R R n R n,contínuanoconjuntoabertod Vamos consierar

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

CÁLCULO I. Calcular o limite de uma função composta;

CÁLCULO I. Calcular o limite de uma função composta; CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 06: Limites Laterais. Limite da Função Composta. Objetivos da Aula Denir ites laterais de uma função em um ponto de seu

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 28: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Área entre Curvas, Comprimento de Arco e Trabalho Objetivos da Aula Calcular área entre curvas; Calcular o comprimento

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

Lista 9. Ernesto Massaroppi Junior e João Lirani

Lista 9. Ernesto Massaroppi Junior e João Lirani Lista 9 1) Deseja-se unir uma polia e aço funio (GS), que transmite um momento e torção constante e 0 [kgf.cm], a um eixo e aço ABNT 1040 com 50 [mm]. Dimensione a união supono-a feita por meio e pino

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução

Sistemas lineares. x,..., x são as incógnitas; 1 Introdução Sistemas lineares Vamos pensar na seguinte situação-problema: Um terreno e 8000 m² eve ser iviio em ois lotes. O lote maior everá ter 000 m² a mais que o lote menor. Vamos calcular a área que caa lote

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

SME0300 Cálculo Numérico Aula 6

SME0300 Cálculo Numérico Aula 6 SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

1 Receita básica. x + cos(x) = y + y 3 x 2 + y 2 = 1. E o escrevemos na forma. x + cos(x) y y. F 1 x F 2. x 1 x 2 x n J F = F n F n F n

1 Receita básica. x + cos(x) = y + y 3 x 2 + y 2 = 1. E o escrevemos na forma. x + cos(x) y y. F 1 x F 2. x 1 x 2 x n J F = F n F n F n Receitas para solução de sistemas de equações usando o método de Newton-Raphson no Scilab Prof. Fabio Azevedo - Cálculo Numérico - MAT01169 1 Receita básica Nesta receira básica, mostraremos como calcular

Leia mais

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s

= Resposta: 3,6 m/s 2. 4 No instante t 0. Resolução: + α t v = 20 2t (SI) b) 0 = 20 2t t = 10 s. Resposta: a) v = 20 2t (SI); b) 10 s UFRJ Equipe UFRJ Olimpíaa Brasileira e Física Lista Aula 3C Física Jorão 1 É aa a seguinte função horária a velociae escalar e uma partícula em movimento uniformemente variao: v = 15 + t (SI) Determine:

Leia mais

9 a ficha de exercícios de Mecânica Geométrica

9 a ficha de exercícios de Mecânica Geométrica Resolução Sumária a 9 a ficha e exercícios e Mecânica Geométrica 5 e Maio e. a) Dê um exemplo e uma varieae Riemanniana conteno ois pontos pelos quais não passa qualquer geoésica. b) Dê um exemplo e uma

Leia mais

3.8 O Teorema da divergência ou Teorema de Gauss

3.8 O Teorema da divergência ou Teorema de Gauss 144 CAPÍTULO 3. INTEGRAI DE UPERFÍCIE 3.8 O Teorema a ivergência ou Teorema e Gauss O Teorema e tokes relaciona uma integral e superfície com uma e linha ao longo o boro a superfície. O Teorema e Gauss

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

Plano tangente e reta normal

Plano tangente e reta normal UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 15 Assunto: Plano tangente, reta normal, vetor gradiente e regra da cadeia Palavras-chaves: plano tangente, reta normal, gradiente, função

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica

Leia mais

31 a Aula AMIV LEAN, LEC Apontamentos

31 a Aula AMIV LEAN, LEC Apontamentos 31 a Aula 20041126 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 311 Métoo os coeficientes ineterminaos 3111 Funamentação Vamos agora aborar a EDO e coeficientes constantes, mas não homogénea:

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Introdução Generalização

Introdução Generalização Cálculo 2 - Capítulo 2.9 - Derivação implícita 1 Capítulo 2.9 - Derivação implícita 2.9.1 - Introdução 2.9.3 - Generalização 2.9.2 - Derivação implícita Veremos agora uma importante aplicação da regra

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital.

CÁLCULO I Aula 11: Limites Innitos e no Innito. Assíntotas. Regra de l'hôspital. Limites s CÁLCULO I Aula 11: Limites s e no... Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Limites s 1 Limites no 2 Limites s 3 4 5 Limites s Denição Seja f uma função denida

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

Primitivas e a integral de Riemann Aula 26

Primitivas e a integral de Riemann Aula 26 Primitivas e a integral de Riemann Aula 26 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Derivadas parciais de ordem superior

Derivadas parciais de ordem superior UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 21 Assunto: Derivadas parciais de ordem superior e máximos e mínimos Palavras-chaves: derivadaderivada parcial ordem de derivação ordem superior

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a NOTAÇOES R : conjunto dos números reais N : conjunto dos números naturais C : conjunto dos números complexos i : unidade imaginária: i2 = z : módulo do número z E C det A : determinante da matriz A d(a,

Leia mais

PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.

PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista Equações Horáriaspode ser feita por completo. PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Neste capítulo vamos estender as noções do cálculo diferencial a funções que dependem de mais de uma variável

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x)

(d) f (x) = ln (x + 1) (e) f (x) = sinh (ax), a R. (f) f(x) = sin(3x) Lista de Cálculo Diferencial e Integral I Derivadas 1. Use a denição para encontrar a primeira derivada de cada uma das funções abaixo. (a) f (x) x 1 2x + (b) f (x) x + 1 (d) f (x) ln (x + 1) (e) f (x)

Leia mais

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3

Justifique todas as passagens. Boa Sorte! e L 2 : = z 1 3 3 ā Prova de Cálculo II para Oceanográfico - MAT145 01/12/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Boa Sorte! Q 1 2 3 4 5 Extra 6 Extra 7

Leia mais

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita

Deriva»c~ao em cadeia e deriva»c~ao impl ³cita Aula 3 Deriva»c~ao em cadeia e deriva»c~ao impl ³cita A regradacadeia e umaregradederiva»c~ao que nos permite calcular a derivada de uma composi»c~ao (ou um encadeamento) de fun»c~oes, tais como f(g(x))

Leia mais

Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014

Limites - Aula 08. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil. 14 de Março de 2014 Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 14 de Março de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica Limite - Noção Intuitiva

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n QUESTÕES-AULA 32 1. Considere a sequência de termo geral x : N R; x(n) = x n = 2n+1 1 2 n π Considerando valores cada vez maiores para a variável independente n, pode-se observar que os valores x(n) ficam

Leia mais

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1

Universidade Federal do Espírito Santo Segunda Prova de Cálculo I Data: 04/10/2012 Prof. Lúcio Fassarella DMA/CEUNES/UFES. 2 x x = cos (x) 1 Universiae Feeral o Espírito Santo Seguna Prova e Cálculo I Data 4//22 Prof. Lúcio Fassarella DMA/CEUNES/UFES Aluno Matrícula Nota. (3 pontos) Calcule os ites (i) (ii) (iii) x! 2 x x + 22 = cos (x) x!

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1

Cálculo Diferencial e Integral I. Jair Silvério dos Santos * Professor Dr. Jair Silvério dos Santos 1 MATEMATICA APLICADA A NEGÓCIOS 3, 0 (200) Cálculo Cálculo Diferencial e Integral I LIMITES LATERAIS Jair Silvério dos Santos * Professor Dr Jair Silvério dos Santos Teorema 0 x x 0 Dada f : A R R uma função

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Coordenadas esféricas

Coordenadas esféricas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas

Leia mais