Coordenadas esféricas
|
|
|
- Mauro de Paiva Castro
- 7 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas Seja P (x, y, z) um ponto do espaço R em que x, y e z são coordenadas cartesianas de P. As coordenadas esféricas de P são os números θ, ρ e ϕ em que θ é o ângulo (medido no sentido anti-orário) entre o semi-eixo positivo x e o segmento de extremidades em (,, ) e (x, y, ), ρ é a distância entre os pontos (,, ) e P e ϕ é o ângulo (medido no sentido anti-orário) entre o semi-eixo positivo z e o segmento de extremidades em (,, ) e P. Vamos denotar por d a distância entre a origem e o ponto (x, y, ). Temos que sin ϕ d d ρ sin ϕ ρ cos θ x d x d cos θ x ρ sin ϕ cos θ, sin θ y d y d sin θ Logo, y ρ sin ϕ sin θ. E cos ϕ z ρ z ρ cos ϕ as coordenadas cartesianas e as coordenadas esféricas se relacionam como segue x ρ sin ϕ cos θ y ρ sin ϕ sin θ z ρ cos ϕ
2 Consideremos a função ϕ(θ, ρ, ϕ) (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ) e o conjunto E θρϕ {(θ, ρ, ϕ) R ; θ π, ρ r, ϕ π} em que r. A função ϕ transforma o conjunto E θρϕ na esfera E de centro na origem e raio r. Vamos calcular o determinante jacobiano da função ϕ. (x, y, z) (θ, ρ, ϕ) x θ y θ z θ x ρ y ρ z ρ x ϕ y ϕ z ϕ ρ sin ϕ sin θ sin ϕ cos θ ρ cos ϕ cos θ ρ sin ϕ cos θ sin ϕ sin θ ρ cos ϕ sin θ cos ϕ ρ sin ϕ ρ sin ϕ sin θ + ρ sin ϕ cos ϕ sin θ + ρ sin ϕ cos θ + ρ sin ϕ cos ϕ cos θ ρ sin ϕ[sin ϕ sin θ + cos ϕ sin θ + sin ϕ cos θ + cos ϕ cos θ] ρ sin ϕ[sin ϕ(sin θ + cos θ) + cos ϕ(sin θ + cos θ)] ρ sin ϕ[sin ϕ + cos ϕ] ρ sin ϕ (x, y, z) (θ, ρ, ϕ) ρ sin ϕ Assim, aplicando-se coordenadas esféricas à fórmula de mudança de variável na integral tripla, obtemos f(x, y, z) dxdydz f(ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)ρ sin ϕ dθdρdϕ E E θρϕ Exemplo Calcule B e (x +y +z ) dv, onde B é a bola unitária B {(x, y, z) R ; x + y + z } Resolução:
3 Para que um ponto P, com coordenadas esféricas θ, ρ e ϕ, percorra toda bola unitária B, devemos ter Para temos que θ π ρ ϕ π x ρ sin ϕ cos θ y ρ sin ϕ sin θ z ρ cos ϕ x + y + z (ρ sin ϕ cos θ) + (ρ sin ϕ sin θ) + (ρ cos ϕ) ρ sin ϕ cos θ + ρ sin ϕ sin θ + ρ cos ϕ ρ [sin ϕ cos θ + sin ϕ sin θ + cos ϕ] ρ [sin ϕ(cos θ + sin θ) + cos ϕ] ρ [sin ϕ + cos ϕ] ρ B e (x +y +z ) d e (ρ ) ρ sin ϕ dθdρdϕ B θρϕ B θρϕ π e ρ ρ sin ϕ dθdρdϕ e ρ ρ sin ϕ dρdϕdθ Temos que e ρ ρ sin ϕ dρ sin ϕ sin ϕ [ e ρ] [ ] e ρ ρ dρ sin ϕ eρ sin ϕ(e ) e sin ϕ [ e e ] sin ϕ Logo, B e (x +y +z ) d π e sin ϕ dϕdθ e π sin ϕ dϕdθ
4 Temos agora que, π sin ϕ [ ] π cos ϕ [ cos π + cos ] [ + ] B e (x +y +z ) d e dθ e [ ] π θ e [.π.] π(e ) Exemplo Utilize coordenadas esféricas para determinar o volume do sólido que ca acima do cone z x + y e abaixo da esfera x + y + z z. Resolução: A equação x + y + z z pode ser reescrita como segue x + y + z z x + y + z. ( ( ).z + ( (x ) + (y ) + z ) ( essa equação representa a esfera de centro no ponto A equação dessa esfera em coordenadas esféricas é dada por ) ) (,, ) e raio. (ρ sin ϕ cos θ) + (ρ sin ϕ sin θ) + (ρ cos ϕ) ρ cos ϕ ρ ρ cos ϕ ρ cos ϕ A equação do cone z x + y em coordenadas esféricas é dada por ρ cos ϕ (ρ sin ϕ cos θ) + (ρ sin ϕ sin θ) ρ sin ϕ cos θ + ρ sin ϕ sin θ ρ sin ϕ(cos θ + sin θ) ρ sin ϕ cos ϕ sin ϕ. Como ϕ π, temos que ϕ π. Logo ϕ π é a equação do cone z x + y em coordenadas esféricas.
5 Para melor visualização do sólido, que vamos denotar por E, determinemos a intersecção da esfera com o cone, embora isso não seja necessário para o cálculo da integral { { z x + y + z z x y z z x y z x + y Somando membro a membro essas duas igualdades, obtemos: z z z z z(z ) z ou z Para z, obtemos x + y. Logo x y. (,, ) é um ponto de intersecção da esfera com o cone. Para z, obtemos x y. z x + y ( ) a esfera e o cone também se interceptam na circunferência de centro no ponto (,, ), raio e contida em um plano paralelo ao plano xy. Esse sólido pode ser descrito, em coordenadas polares, por { (θ, ρ, ϕ); θ π, ρ cos ϕ, ϕ π } volume de E E dxdydz E θρϕ dθdρdϕ π cos ϕ ρ sin ϕ dρdϕdθ Temos que cos ϕ ρ sin ϕ dρ sin ϕ cos ϕ [ ρ ρ dρ sin ϕ [ π ] cos ϕ ] sin ϕ cos ϕ dϕ dθ sin ϕ [ ρ ] cos ϕ sin ϕ cos ϕ Calculemos a integral interna 5
6 π sin ϕ cos ϕ dϕ π sin ϕ cos ϕ dϕ [ ] π cos ϕ ( ) [ ] 6 [ ] π cos ϕ [ cos π ] cos [ ] Logo, 6 dθ 6 dθ 6 [ ] π θ 6 [π ] π 8 Exemplo Use a integral tripla para calcular o volume da esfera de raio r. Resolução: Consideremos a esfera E de raio r e centro na origem Temos que volume da esfera E dxdydz Vamos usar coordenadas esféricas. Para isso, devemos considerar o seguinte conjunto E θρϕ {(θ, ρ, ϕ) R ; θ π, ρ r, ϕ π} e, assim, temos, θρϕ E ρ sin ϕ dθdρdϕ π r ρ sin ϕ dρdϕdθ Temos que, r ρ sin ϕ dρ sin ϕ r [ ρ ρ dρ sin ϕ ] r [ ] r sin ϕ r sin ϕ Então, π r sin ϕ dϕdθ r π sin ϕ dϕdθ Agora temos que, 6
7 π sin ϕ dϕ [ ] π cos ϕ [ cos π + cos ] [ + ] r [ ] π dθ r θ r [.π.] πr Exemplo Use integrais triplas para determinar o volume do cone circular reto de altura e raio da base r. Resolução: Consideremos o cone da gura Por semelança de triângulo, obtemos r ρ z z r ρ Vamos usar coordenadas cilíndricas. Para que um ponto P percorra todo o cone é necessário que as suas coordenadas cilíndricas variem nos seguintes intervalos Denotando por C o cone, devemos ter então θ π ρ r r ρ z C θρz {(θ, ρ, z) R ; θ π; ρ r, r } ρ z Temos então volume do cone C Temos que, dxdydz C θρz ρ dθdρdz r ρ dzdρdθ r ρ ρ dz ρ r ρ [ dz ρ z r ρ ] ρ [ r ] ρ r ρ ρ r ρ Assim, r (ρ r ρ ) dρdθ 7
8 Logo, r (ρ r ρ ) [ dρ ρ ] r r ρ r r r r ( r ) r 6 r 6 r dθ 6 r dθ ] π [θ 6 r 6 r [π ] πr 8
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=
Cálculo IV EP5 Tutor
Eercício : Calcule esfera + + =. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP
Integrais Triplas em Coordenadas Polares
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região
ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:
Cálculo III-A Lista 5
Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Lista 5 Eercício : Calcule + dv onde é a região contida dentro do cilindro + = 4
ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA
Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.
Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na
Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP
Integrais Múltiplos Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Integrais Múltiplos 1 Integrais Duplos Generalização do conceito de integral a subconjuntos limitados
Lista 1 - Cálculo III
Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],
Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I =
1 Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas 1. Calcular I = (x 1)dV, sendo T a região do espaço delimitada pelos planos y =, z =, T y + z = 5 e pelo cilindro parabólico z = 4 x.. Determinar
MAT Cálculo a Várias Variáveis I. Período
MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
Geometria Analítica II - Aula
Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço
LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)
1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado
Integrais Duplos e Triplos.
Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )
Integral Triplo. Seja M um subconjunto limitado de 3.
Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos
CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da
UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos
Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019
Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos
Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)
Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,
Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II
Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura
1. Superfícies Quádricas
. Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016
MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin
TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões
Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas
Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585
Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)
Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013
MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x
Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo
Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.
P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro
P3 de Cálculo a Várias Variáveis I MAT 62 23.2 Data: 23 de novembro Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 3. 2 2. 3 3. Teste 2. Total. Instruções Mantenha seu celular desligado
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014
Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.
Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci
Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo
INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1
Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1
Teorema da Divergência e Teorema de Stokes
Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.
ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3
3.2 Coordenadas Cilíndricas
Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente
Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)
1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação
Exercícios Resolvidos Mudança de Coordenadas
Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida
Lista 7 Funções de Uma Variável
Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta
Nome Cartão Turma Chamada
UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine
Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores
FCULDDE DE ENGENHRI D UNIVERSIDDE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de Computadores nálise Matemática 2 pontamentos das aulas teóricas - Integrais Múltiplos 29/21 Maria do Rosário
Cálculo III-A Módulo 13
Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Módulo 3 Aula 4 Teorema de Gauss Objetivo Estudar um teorema famoso que permite calcular
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números
Exercícios Resolvidos Esboço e Análise de Conjuntos
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,
Lista 2 de CF368 - Eletromagnetismo I
Lista 2 de CF368 - Eletromagnetismo I Fabio Iareke 28 de setembro de 203 Exercícios propostos pelo prof. Ricardo Luiz Viana , retirados de []. Capítulo 3 3-
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.
Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar
Exercícios Resolvidos Teorema da Divêrgencia. Teorema de Stokes
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Exercícios Resolvidos Teorema da Divêrgencia. Teorema de tokes Exercício 1 Considere a superfície definida por e o campo
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS
MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.
MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015
MA2 - Lista 9 Coordenadas sféricas e Mudança de Variáveis 7 de outubro de 25. Marque o ponto cujas coordenadas esféricas é (,, ) e encontre as coordenadas retangulares do ponto. 2. Mude o ponto (, 3, 2
8.1 Áreas Planas. 8.2 Comprimento de Curvas
8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura
INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS
INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.
Integrais - Aplicações I. Daniel 26 de novembro de 2016
Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por
A integral definida Problema:
A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y
Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios
Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas
Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1
Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x
Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.
Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:
INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior
Primitva. Integral Indenida
Primitva Denição. 1 Uma função F (x) é chamada uma primitiva da função f(x) em um intervalo I (ou simplesmente uma primitiva de f(x), se para todo x I, temos F (x) = f(x). Exemplo. 1 1. emos que cos(x)
Universidade Tecnológica Federal do Paraná. APS Cálculo 2
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa Nome: APS Cálculo 2 1. As dimensões de uma caixa retangular fechada foram medidas com 80 cm,
AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes
AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
CÁLCULO INTEGRAL A VÁRIAS VARIÁVEIS
CÁLCULO INTEGRAL A VÁRIAS VARIÁVEIS O essencial Paula Carvalho e Luís Descalço EDIÇÃO, DISTRIBUIÇÃO E VENDAS SÍLABAS & DESAFIOS - UNIPESSOAL LDA. NIF: 510212891 www.silabas-e-desafios.pt [email protected]
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
Integrais - Aplicações I
Integrais - Aplicações I Daniel 13 de novembro de 2015 Daniel Integrais - Aplicações I 13 de novembro de 2015 1 / 37 Áreas entre duas Curvas Área entre duas curvas Se f e g são funções integráveis em [a,b]
