Integral Triplo. Seja M um subconjunto limitado de 3.
|
|
|
- Lavínia Tuschinski Carvalho
- 7 Há anos
- Visualizações:
Transcrição
1 Integral Triplo Seja M um subconjunto limitado de 3. Considere-se um paralelepípedo, de faces paralelas aos planos coordenados, que contenha M, e subdivida-se esse paralelepípedo por meio de planos paralelos aos planos coordenados. O conjunto de todos os paralelepípedos, assim obtidos, que estão contidos em M, constitui uma partição interior de M em paralelepípedos. Considerando, convenientemente, partições por cada vez mais planos, podemos fazer com que o máximo dos volumes das sub-regiões de M que constituem a partição interna tenda para zero. esde que a região M seja suficientemente regular, a união destas sub-regiões vai-se aproximando cada vez mais de M. Na definição que se segue: M 1,,M n são as sub-regiões que constituem uma partição interior de M; V 1,,V n são os respectivos volumes; em cada sub-região M i i 1,,n, consideramos um ponto x i,y i,z i. M z i M i y i x i Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 1
2 efinição: Sejam um subconjunto limitado de 3 e f : uma função limitada em. iz-se que f é uma função integrável à iemann em se existe e é finito lim n maxv i 0 n fx i, y i,z i V i, i1 onde, para i 1,,n, V i é o volume da região M i e x i, y i, z i M i, sendo M 1,,M n sub-regiões que constituem uma partição interior de em paralelepípedos. Este valor diz-se o integral triplo de f em M e representa-se por M fx,y, zdxdydz. Observação: Sendo M um subconjunto limitado de 3, caso exista, 1dxdydzvolume da região M. Observação: Propriedades análogas às apresentadas para o integral duplo são válidas para o integral triplo. Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 2
3 Cálculo do integral triplo Tal como o integral duplo, o integral triplo pode ser calculado por meio de integrais iterados. Proposição: Seja f : uma função contínua f no subconjunto de 3,, caracterizado pelas condições a x b f 1 x y f 2 x g 1 x,y z g 2 x, y, com f 1, f 2, g 1 e g 2 funções contínuas. Então, f é integrável em e fx,y, zdxdydz b dx a f 2 x dy f 1 x g 2 x,y fx, y, zdz. g 1 x,y Observação: Analogamente para os outros casos possíveis. Observação: Sendo uma região nas condições da proposição acima, dxdydz 1dxdydz b dx a f 2 x dy f 1 x g 2 x,y 1dz g 1 x,y b dx a f 2 x g 2 x, y g 1 x, ydy, f 1 x obtendo-se a expressão que permite calcular o volume do sólido com a forma da região, por meio do integral duplo. Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 3
4 Mudança de variáveis em integrais triplos O teorema da mudança de variáveis para o integral triplo é análogo ao correspondente teorema para o integral duplo. Seguem-se duas mudanças de variáveis importantes. Coordenadas cilíndricas z y x θ ρ x cos y sen z z com 0, 0 2 e z. (basicamente, x e y são substituídos pelas coordenadas polares de x, y - a projecção do ponto no plano xoy - e z mantém-se).,,z designam-se por coordenadas cilíndricas do ponto P. Assim, x 2 y 2 e o Jacobiano desta transformação é detj cos sen 0 sen cos cos 2 sen 2. Então, sendo a região definida em coordenadas cilíndricas, fx, y,zdxdydz fcos,sen, zdddz Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 4
5 Coordenadas esféricas Seja x, y,z um ponto P representado em coordenadas cartesianas. Consideremos: distância do ponto à origem (não é o mesmo das coordenados cilíndricas, neste caso, x 2 y 2 z 2 ); ângulo da projecção do segmento OP sobre o plano xoy (ângulo polar); ângulo que OP faz com o semi-eixo positivo Oz (ângulo vertical). z ϕ ρ ρ c o s ϕ y x θ ρ s in ϕ Assim, x cossen y sensen z cos com 0, 0 2 e 0,, designam-se por coordenadas esféricas do ponto P. Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 5
6 detj cossen sensen coscos sensen cossen sencos cos 0 sen 2 sen Nota: Considerando 0 e 0, tem-se detj 0. Os pontos do eixo de zz são ignorados, mas pode-se provar que tal não traz problemas. Então, sendo a região definida em coordenadas esféricas, fx, y, zdxdydz fcossen,sensen,cos2 senddd Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 6
7 Massa, centro de massa e momentos em 3 Calculam-se de modo análodo ao que se fez para duas dimensões. Consideremos um sólido com a forma de uma região, de 3, e seja : a função massa específica. A massa do sólido é dada por M x, y, zdxdydz e o centro de massa do sólido é o ponto x,y, z com x 1 M xx, y,zdxdydz, y 1 M yx, y, zdxdydz z 1 M zx, y, zdxdydz. O momento de inércia do sólido em relação a uma recta L é dado por I L d 2 x, y, zx, y, zdxdydz, com dx, y, z a distância do ponto x, y, z à recta L. Casos particular (momentos de inércia em relação aos eixos coordenados) I X y 2 z 2 x,y, zdxdydz I Y x 2 z 2 x,y, zdxdydz I Z x 2 y 2 x,y, zdxdydz em relação ao eixo dos xx em relação ao eixo dos yy em relação ao eixo dos zz Ana Matos Matemática Aplicada 20/11/2017 Integrais Triplos 7
TÓPICO. Fundamentos da Matemática II INTEGRAÇÃO MÚLTIPLA10. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
INTEGAÇÃO MÚLTIPLA TÓPICO Gil da Costa Marques Fundamentos da Matemática II. Introdução. Integrais Duplas.3 Propriedades das Integrais Duplas.4 Cálculo de Integrais Duplas.5 Integrais duplas em regiões
Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP
Integrais Múltiplos Slide 1 Transparências de apoio à leccionação de aulas teóricas Versão 2 c 2000, 1998 Integrais Múltiplos 1 Integrais Duplos Generalização do conceito de integral a subconjuntos limitados
INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1
Teoria INTEGRAIS MÚLTIPLAS Integral Dupla: Seja o retângulo R = {(x, y) R a x b, c y d} e a = x 0 < x 1
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA
CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis
9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis Professora: Michelle Pierri Exercício 1 Encontre o volume do sólido limitado
Coordenadas esféricas
UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016
MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013
MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x
ANÁLISE MATEMÁTICA III A TESTE 2 31 DE OUTUBRO DE :10-16H. Duração: 50 minutos
Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Out/5 ANÁLISE MATEMÁTICA III A TESTE 3 DE OUTUBRO DE 5 5:-6H RESOLUÇÃO (As soluções aqui propostas não são únicas!) Duração:
CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da
UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos
Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014
Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.
Integrais Duplos e Triplos.
Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )
3 Cálculo Integral em R n
3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3
Análise Matemática 2 FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO. Mestrado Integrado em Engenharia Electrotécnica e de Computadores
FCULDDE DE ENGENHRI D UNIVERSIDDE DO PORTO Mestrado Integrado em Engenharia Electrotécnica e de Computadores nálise Matemática 2 pontamentos das aulas teóricas - Integrais Múltiplos 29/21 Maria do Rosário
1. Superfícies Quádricas
. Superfícies Quádricas álculo Integral 44. Identifique e esboce as seguintes superfícies quádricas: (a) x + y + z = (b) x + z = 9 x + y + z = z (d) x + y = 4 z (e) (z 4) = x + y (f) y = x z = + y (g)
Primitva. Integral Indenida
Primitva Denição. 1 Uma função F (x) é chamada uma primitiva da função f(x) em um intervalo I (ou simplesmente uma primitiva de f(x), se para todo x I, temos F (x) = f(x). Exemplo. 1 1. emos que cos(x)
Integrais triplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 28. Assunto: Integrais Triplas
Assunto: Integrais Triplas UNIVRSIDAD FDRAL DO PARÁ CÁLCULO II - PROJTO NWTON AULA 8 Palavras-chaves: integração, integrais triplas, volume, teorema de Fubini, soma de Riemann Integrais triplas Assim como
CÁLCULO II: VOLUME II
CÁLCULO II: VOLUME II MAURICIO A. VILCHES - MARIA LUIZA CORRÊA epartamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3
INTEGRAIS DE FUNÇÕES DE VÁRIAS VARIÁVEIS
INTEGAIS DE FUNÇÕES DE VÁIAS VAIÁVEIS Gil da Costa Marques. Introdução. Integrais Duplas.. Propriedades das Integrais Duplas.. Cálculo de Integrais Duplas..4 Integrais duplas em regiões não retangulares.
Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica Caderno de Exercícios
Departamento de Matemática Faculdade de iências e Tecnologia Universidade de oimbra álculo III - Engenharia Electrotécnica aderno de Exercícios álculo Integral álculo do integral triplo em coordenadas
ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ. disponível em acannas/amiii
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 9// ANÁLISE MATEMÁTICA III CURSOS: LEAB, LEB, LEMG, LEMAT, LEN, LEQ, LQ PROPOSTA DE) RESOLUÇÃO DA
3.2 Coordenadas Cilíndricas
Exemplo 3.6 Encontre DzdV para D a região do espaço limitada pelos gráficos x = 1 z 2, x =, entre os planos y = e y = 1. Solução: observe que pela descrição da região de integração D, é mais conveniente
Integral Dupla. Aula 06 Cálculo Vetorial. Professor: Éwerton Veríssimo
Integral Dupla Aula 06 Cálculo Vetorial Professor: Éwerton Veríssimo Integral Dupla Integral dupla é uma extensão natural do conceito de integral definida para as funções de duas variáveis. Serão utilizadas
LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)
1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +
Integrais Triplas em Coordenadas Polares
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
Análise Matemática III Resolução do 2 ō Teste e 1 ō Exame - 20 de Janeiro horas
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Análise Matemática III Resolução do ō Teste e ō Exame - de Janeiro - 9 horas. O sólido tem simetria cilíndrica em torno do
A integral definida Problema:
A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y
ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira.
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Cálculo Diferencial e Integral II 2 ō Teste/ ō Exame - de Janeiro de 2 Duração: Teste - h3m ; Exame - 3h Apresente e justifique
ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA. Resolução do 1 o Teste.
. [.5] (a) Calcule a soma da série Resolução: A série INSTITUTO POLITÉCNICO DE SETÚBAL Resolução do o Teste n (n + ) ; n (n + ) + + 4 +... rapidamente se verifica que não é uma série aritmética ou geométrica.
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade
Algumas Aplicações das Integrais tríplas
Algumas Aplicações das Integrais tríplas META: Apresentar algumas aplicações das integrais triplas de funções de valores reais e domínio em R 3. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes
Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II
Universidade Federal de Viçosa Centro de Ciências xatas e Tecnológicas epartamento de Matemática MAT 43 - Cálculo iferencial e Integral III a Lista - 8/II Máximos e mínimos. A distribuição de temperatura
Teorema de Fubini e Mudança de Variáveis (Resolução Sumária)
Teorema de Fubini e Mudança de Variáveis (Resolução Sumária) 9 de Maio de 9. Escreva fdv como um integral iterado nas duas ordens de integração possíveis, onde o conjunto é: (a) O triângulo de vértices
Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)
Integrais uplas Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas epartamento de Matemática Sexta Lista de Exercícios MAT 4 - Cálculo iferencial e Integral III - 7/I Em cada caso,
Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.
Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre
Resumo dos resumos de CDI-II
Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto
Geometria Analítica II - Aula
Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço
MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO ESPAÇO E INTEGRAIS TRIPLAS
MAT1153 / 008.1 LISTA DE EXERCÍCIOS : (1) Fazer os seguintes exercícios do livro texto. Exercs da seção.1.4: Exercs 1(b), 4(a), 4(b). () Fazer exercícios 3:(b), (c), (d) da secão 4.1.4 pg 99 do livro texto.
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
Nome Cartão Turma Chamada
UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine
Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019
Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos
Lista 1 - Cálculo III
Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],
AMIII - Exercícios Resolvidos Sobre Formas Diferenciais e o Teorema de Stokes
AIII - Exercícios Resolvidos obre Formas Diferenciais e o Teorema de tokes 4 de Dezembro de. eja a superfície Calcule: a) A área de ; b) O centróide de ; { x, y, z) R 3 : z cosh x, x
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I =
1 Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas 1. Calcular I = (x 1)dV, sendo T a região do espaço delimitada pelos planos y =, z =, T y + z = 5 e pelo cilindro parabólico z = 4 x.. Determinar
P3 de Cálculo a Várias Variáveis I MAT Data: 23 de novembro
P3 de Cálculo a Várias Variáveis I MAT 62 23.2 Data: 23 de novembro Nome: Assinatura: Matrícula: Turma: Questão Valor Nota Revisão 3. 2 2. 3 3. Teste 2. Total. Instruções Mantenha seu celular desligado
Integrais Múltiplos Matemática Aplicada
Integrais Múltiplos Matemática Aplicada José Caldeira uarte Revisto em 4/5 Conteúdo Introdução Integrais uplos. efinição.... Propriedadesdointegralduplo....3 Aplicaçõesdosintegraisduplos... 4.3. Aplicações
Universidade Federal do Pará Cálculo II - Projeto Newton /4 Professores: Jerônimo e Juaci
Universidade Federal do Pará Cálculo II - Projeto Newton - 5/4 Professores: Jerônimo e Juaci a Lista de exercícios para monitoria. Determine o volume do sólido limitado pelos planos coordenados e pelo
Integral de funções de uma variável
Integrais Múltiplas Integral de funções de uma variável x = b a n a b f x dx = lim m m i=1 f(x i ) x Integral Dupla Seja f uma função de duas variáveis definida no retângulo fechado. R = a, b x c, d =
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
MAT Cálculo a Várias Variáveis I. Período
MAT116 - Cálculo a Várias Variáveis I Integração Tripla Período 01.1 1 Exercícios Exercício 1 Considere a região = {(x, y, z) R 3 x + y z 1}. 9 1. Calcule o volume de.. Determine o valor de b de forma
(3) Fazer os seguintes exercícios do livro texto. Exercs da seção : 1(d), 1(f), 1(h), 1(i), 1(j). 2(b), 2(d)
LISTA DE EXECÍCIOS DE GEOMETIA NO PLANO E NO ESPAÇO E INTEGAIS DUPLAS POFESSO: ICADO SÁ EAP (1) Fazer os seguintes exercícios do livro texto. Exercs da seção 1.1.4: 1(d), 1(f), 1(h), 1(i), 1(j). 2(b),
Cálculo IV EP5. Aula 9 Mudança de Variáveis na Integral Tripla. Aprender a fazer mudança de variáveis em integrais triplas. W uvw.
Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP5 Aula 9 Mudança de Variáveis na
CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA
CÁLCUL O INTEGRAI S DUPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais simples, nós somamos os valores de uma função f(x) em comprimentos dx. Agora, nas integrais duplas fazemos o mesmo, mas
1. Determine o valor do integral curvilíneo do campo F (x, y, z) = xzî + xĵ + y k ao longo da linha (L), definida por: { x 2 /4 + y 2 /25 = 1 z = 2
Análise Matemática IIC Ficha 6 - Integrais Curvilíneos de campos de vectores. Teorema de Green. Integrais de Superfície. Teorema de Stokes. Teorema da Divergência. 1. Determine o valor do integral curvilíneo
Lista 6: transformações lineares.
Lista 6: transformações lineares. 1) Diga, justificando, quais das seguintes funções constituem transformações lineares. a) T : R 2 R 2 tal que T (x 1, x 2 ) = (x 1 + x 2, 3x 1 x 2 ) b) T : R 2 R 2 tal
TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies
Notas de Aulas de Cálculo III. Prof. Sandro Rodrigues Mazorche. Turmas: A e C
Notas de Aulas de Cálculo III Prof. Sandro Rodrigues Mazorche 1 o semestre de 2015 Turmas: A e C Capítulo 1: Integral Dupla 1.1 Definição: Vamos considerar uma função z = f(x, y) definida em uma região
Teorema da Divergência e Teorema de Stokes
Teorema da Divergência e Teorema de tokes Resolução umária) 19 de Maio de 9 1. Calcule o fluxo do campo vectorial Fx, y, z) x, y, z) para fora da superfície {x, y, z) R 3 : x + y 1 + z, z 1}. a) Pela definição.
Diferenciabilidade de funções reais de várias variáveis reais
Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas
Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II
Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.
Capítulo I - Funções Vectoriais EXERCÍCIOS
ANÁLISE MATEMÁTIA II Universidade Fernando Pessoa Faculdade de iência e Tecnologia apítulo I - Funções Vectoriais EXERÍIOS 1. Sendo F, G e H funções vectoriais de t, encontre uma fórmula para a derivada
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha. Integrais Triplas
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo erra Cunha Integrais riplas Nas primeiras aulas discutimos integrais duplas em vária regiões. Seja motivado pelas aplicações, seja apenas pelo
Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto
Resumos de CD- 1. Topologia e Continuidade de Funções em R n 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto B r (a) = {x R n : x a < r}. 2. Seja A R n um conjunto. m ponto a A diz-se: (i)
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
Cálculo II. Derivadas Parciais
Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,
Cálculo Diferencial e Integral 2: Integrais Duplas
Cálculo Diferencial e Integral 2: Integrais Duplas Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Integrais Duplas sobre Retângulos 2 3 Lembrete:
x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3
Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar
Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície
Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte
O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.
Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
Capítulo 4. Coordenadas Curvilíneas. 4.1 Introdução. Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca
Capítulo 4 Coordenadas Curvilíneas 4.1 Introdução Definição 4.1 Um sistema de coordenadas é uma correspondência biunívoca Φ : E 3 D = D x D y D z R 3,P E 3 7 Φ (P )=(x, y, z) R 3. 1. Se Φ (P )=(x, y, z),x,ye
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano, as coordenadas são números
