Coordenadas e distância na reta e no plano
|
|
|
- Tiago Duarte Moreira
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais e pontos do espaço por ternos ordenados de números reais. Desse modo, curvas no plano e superfícies no espaço podem ser descritas por meio de equações, o que torna possível tratar algebricamente muitos problemas geométricos e, reciprocamente, interpretar de forma geométrica diversas questões algébricas. Ao longo destas notas, admitiremos que o leitor tenha conhecimento dos principais axiomas e resultados da Geometria Euclidiana Plana e Espacial, relativos aos seus elementos básicos: pontos, retas e planos. Por exemplo: por dois pontos distintos passa uma, e somente uma reta; por três pontos do espaço não situados na mesma reta passa um, e somente um plano; fixada uma unidade de comprimento, a cada par de pontos A e B corresponde um número real, denominado distância entre os pontos A e B ou comprimento do segmento AB, que designamos por d(a, B) e satisfaz as seguintes propriedades:
2 2 Geometria Analítica - Capítulo 1 a. d(a, B) 0. b. d(a, B) = 0 A = B. c. d(a, B) = d(b, A). d. d(a, B) d(a, C) + d(c, B)(desigualdade triangular). e. d(a, B) = d(a, C) + d(c, B) A, B e C são colineares e C está entre A e B. Fig. 1: O ponto C está entre A e B, logo d(a, B) = d(a, C) + d(c, B). 2. Coordenadas na reta Seja r uma reta. Dizemos que r é uma reta orientada quando sobre ela se escolheu um sentido de percurso, chamado positivo. O sentido oposto sobre a reta r é denominado negativo. Fig. 2: Escolha de um sentido de percurso na reta r. Sejam A e B pontos na reta r. Dizemos que o ponto B está à direita do ponto A (ou que A está à esquerda de B) quando o sentido de percurso de A para B coincide com o sentido positivo escolhido na reta r. Fig. 3: B está à direita de A na reta orientada r. Um eixo E é uma reta orientada na qual é fixado um ponto O, chamado origem. Fig. 4: Origem O escolhida no eixo E. IM-UFF K. Frensel - J. Delgado
3 Geometria Analítica - Capítulo 1 3 Todo eixo E pode ser posto em correspondência biunívoca com o conjunto dos números reais R da seguinte maneira: E R à origem O do eixo faz-se corresponder o número zero. a cada ponto X de E à direita de O corresponde o número real positivo x = d(o, X). a cada ponto X de E à esquerda de O corresponde o número real negativo x = d(o, X). O número real x, correspondente ao ponto X, é chamado a coordenada do ponto X. Proposição 1 Fig. 5: Coordenada de um ponto X do eixo E em relação à origem O. Sejam X e Y dois pontos sobre o eixo E com coordenadas x e y respectivamente. Então, d(x, Y ) = y x = x y. Prova. Se X = Y, não há o que provar. Suponhamos que X Y. Para fixar as idéias, vamos assumir que X está à esquerda de Y, isto é, x < y. Temos três casos a considerar: Caso 1. X e Y estão à direita da origem. Isto é, 0 < x < y. Fig. 6: Caso 1: 0 < x < y. Como X está entre O e Y, d(o, X) = x e d(o, Y ) = y, temos, por d(o, Y ) = d(o, X) + d(x, Y ), que y = x + d(x, Y ). Portanto, d(x, Y ) = y x = y x. K. Frensel - J. Delgado IM-UFF
4 4 Geometria Analítica - Capítulo 1 Caso 2. X e Y estão à esquerda da origem. Isto é, x < y < 0. Fig. 7: Caso 2: x < y < 0. Neste caso, Y está entre X e O, d(o, X) = x e d(o, Y ) = y. Logo, ou seja, d(o, X) = d(x, Y ) + d(y, O) x = d(x, Y ) y, d(x, Y ) = y x = y x. Caso 3. X e Y estão em lados opostos em relação à origem. Isto é, x < 0 < y. Fig. 8: Caso 3: x < 0 < y. Como O está entre X e Y, d(x, Y ) = d(x, O) + d(o, Y ). d(x, O) = x e d(o, Y ) = y. Logo, d(x, Y ) = x + y = y x = y x. Além disso, Verificando assim o desejado. Observação 1 Se X estiver à direita de Y, a demonstração é feita de maneira similar. Sejam X e Y pontos de coordenadas x e y, e M o ponto médio do segmento XY, de coordenada m. Então, m = x + y. 2 Fig. 9: Sendo M o ponto médio do segmento XY, temos d(m, X) = d(m, Y ). De fato, suponhamos que X está à esquerda de Y. Como o ponto médio M está entre X e Y, temos x < m < y. Logo, d(m, X) = d(m, Y ) x m = y m m x = y m 2m = x + y m = x + y. 2 IM-UFF K. Frensel - J. Delgado
5 Geometria Analítica - Capítulo Coordenadas no Plano Designamos por R 2 o conjunto formado pelos pares ordenados (x, y), onde x e y são números reais. O número x chama-se a primeira coordenada e o número y chama-se a segunda coordenada do par ordenado (x, y). Um sistema de eixos ortogonais num plano π é um par de eixos OX e OY, tomados em π, que são perpendiculares e têm a mesma origem O. Fig. 10: Sistema de eixos ortogonais OXY no plano π. O eixo OX é chamado eixo-horizontal e o eixo OY, eixo-vertical. Um plano π munido de um sistema de eixos ortogonais põe-se, de modo natural, em correspondência biunívoca com o conjunto R 2 : π R 2 De fato, dado um ponto P π, tomamos as retas r e s tais que: r eixo OY e P r, s eixo OX e P s. Fig. 11: Determinando as coordenadas do ponto P π Se o ponto X de interseção da reta r com o eixo OX tem coordenada x no eixo OX e o ponto Y de interseção da reta s com o eixo OY tem coordenada y no eixo OY, associa-se ao ponto P o par ordenado (x, y) R 2. K. Frensel - J. Delgado IM-UFF
6 6 Geometria Analítica - Capítulo 1 Reciprocamente: Dado o par ordenado (x, y) R 2 temos que, se: X é o ponto do eixo OX de coordenada x; Y é o ponto do eixo OY de coordenada y; r é a reta paralela ao eixo OY que passa por X; s é a reta paralela ao eixo OX que passa por Y, então {P} = r s. Os números x e y chamam-se as coordenadas cartesianas do ponto P relativamente ao sistema de eixos ortogonais fixado. A coordenada x é a abscissa de P e y é a ordenada de P. Observação 2 No eixo OX, os pontos têm coordenadas (x, 0). No eixo OY, os pontos têm coordenadas (0, y). Observação 3 Os eixos ortogonais decompõem o plano em quatro regiões chamadas quadrantes: Primeiro Quadrante = {(x, y) x > 0 e y > 0} Segundo Quadrante = {(x, y) x < 0 e y > 0} Terceiro Quadrante = {(x, y) x < 0 e y < 0} Quarto Quadrante = {(x, y) x > 0 e y < 0} Cada ponto do plano pertence a um dos eixos ortogonais ou a um dos quadrantes. Fig. 12: Quadrantes e eixos ortogonais no plano. Observação 4 Dados dois eixos concorrentes quaisquer, o processo acima descrito per- IM-UFF K. Frensel - J. Delgado
7 Geometria Analítica - Capítulo 1 7 mite estabelecer também uma correspondência biunívoca entre os pontos do plano e pares ordenados de números reais: De fato (veja a figura 13), cada ponto P do plano é o ponto de interseção de duas retas paralelas aos eixos coordenados. A paralela ao eixo OY que passa por P intersecta o eixo OX num ponto cuja coordenada nesse eixo é a primeira coordenada x de P. Analogamente, a paralela ao eixo OX que passa por P intersecta o eixo OY num ponto cuja coordenada nesse eixo é a segunda coordenada y de P. Fig. 13: Sistema de eixos não-ortogonais. 4. Distância entre dois pontos no plano Seja π um plano munido de um sistema de eixos ortogonais OXY e sejam P 1 = (x 1, y 1 ) e P 2 = (x 2, y 2 ) dois pontos do plano π. Seja Q = (x 1, y 2 ). Como d(p 1, Q) = y 2 y 1 e d(p 2, Q) = x 2 x 1 temos, pelo Teorema de Pitágoras, d(p 1, P 2 ) 2 = d(p 2, Q) 2 + d(p 1, Q) 2 d(p 1, P 2 ) 2 = x 2 x y 2 y 1 2 d(p 1, P 2 ) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 K. Frensel - J. Delgado IM-UFF
8 8 Geometria Analítica - Capítulo 1 Fig. 14: Distância entre dois pontos no plano. Observação 5 Sejam OXY um sistema de eixos concorrentes não-ortogonais, que se intersectam segundo um ângulo θ, e P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) dois pontos do plano. Pela lei dos cossenos, a distância entre P 1 e P 2 é dada por: d(p 1, P 2 ) 2 = d(p 1, Q) 2 + d(p 2, Q) 2 2 cos(π θ)d(p 1, Q) d(p 2, Q) d(p 1, P 2 ) = x 2 x y 2 y cos(θ) x 2 x 1 y 2 y 1 A complexidade dessa fórmula para calcular a distância entre dois pontos num sistema de eixos não-ortogonais motiva a preferência pelos sistemas de eixos ortogonais, no qual a fórmula para o cálculo da distância é bem mais simples. Fig. 15: Distância entre dois pontos no plano num sistema não-ortogonal. IM-UFF K. Frensel - J. Delgado
9 Geometria Analítica - Capítulo 1 9 Definição 1 Dados um ponto A num plano π e um número r > 0, o círculo C de centro A e raio r > 0 é o conjunto dos pontos do plano π situados à distância r do ponto A, ou seja: C = {P π d(p, A) = r }. Seja OXY um sistema de eixos ortogonais no plano π e sejam a e b as coordenadas do centro A nesse sistema de eixos. Então, P C d(p, A) = r d(p, A) 2 = r 2 (x a) 2 + (y b) 2 = r 2 Assim, associamos ao círculo C uma equação que relaciona a abscissa com a ordenada de cada um de seus pontos. Uma vez obtida a equação, as propriedades geométricas do círculo podem ser deduzidas por métodos algébricos. Fig. 16: Círculo de centro A = (a, b) e raio r > 0. Exemplo 1 Determine o centro e o raio do círculo dado pela equação: (a) C : x 2 + y 2 4x + 6y = 0. Completando os quadrados, obtemos: x 2 4x + y 2 + 6y = 0 (x 2 4x+4) + (y 2 + 6y+9) = (x 2) 2 + (y + 3) 2 = 13. Portanto, o círculo C tem centro no ponto A = (2, 3) e raio r = 13. K. Frensel - J. Delgado IM-UFF
10 10 Geometria Analítica - Capítulo 1 (b) C : x 2 + y 2 + 3x 5y + 1 = 0. Completando os quadrados, obtemos: x 2 + 3x + y 2 5y = 1 ( x 2 + 3x+ 9 ) ( + y 2 5y+ 25 ) = ( x ( + y 2) 5 ) 2 = Assim, C é o círculo de centro no ponto A = ( 3 2, 5 2 ) e raio Exemplo 2 Dados A e B dois pontos distintos do plano π, seja R o conjunto dos pontos eqüidistantes de A e B, ou seja: R = {P π d(p, A) = d(p, B)} Vamos mostrar algebricamente que R é a mediatriz do segmento AB, isto é, R é a reta perpendicular ao segmento AB que passa pelo ponto médio M de AB. Fig. 17: Mediatriz e ponto médio de AB. Fig. 18: Escolha do sistema de eixos ortogonais OXY. Para isso, escolhemos um sistema de eixos ortogonais OXY de modo que o eixo OX seja a reta que passa pelos pontos A e B, com origem no ponto médio M do segmento AB, orientada de modo que A esteja à esquerda de B (figura 18). IM-UFF K. Frensel - J. Delgado
11 Geometria Analítica - Capítulo 1 11 Nesse sistema de eixos, A e B têm coordenadas ( x 0, 0) e (x 0, 0), respectivamente, para algum número real x 0 > 0. Então, P = (x, y) R d(p, A) = d(p, B) d(p, A) 2 = d(p, B) 2 (x ( x 0 )) 2 + (y 0) 2 = (x x 0 ) 2 + (y 0) 2 (x + x 0 )) 2 + y 2 = (x x 0 ) 2 + y 2 x 2 + 2xx 0 + x0 2 + y 2 = x 2 2xx 0 + x0 2 + y 2 2xx 0 = 2xx 0 4xx 0 = 0 x = 0 P eixo OY. Portanto, R = {(x, y) R 2 x = 0} = eixo OY, que é, geometricamente a reta perpendicular ao segmento AB que passa pelo ponto médio M desse segmento, como queríamos provar. Observação 6 O exemplo anterior ilustra como métodos algébricos resolvem problemas geométricos. Exemplo 3 Dado o ponto P = (x, y), considere o ponto P = ( y, x). Fig. 19: Posição dos pontos P e P no plano. Primeiro observe que o triângulo POP é isósceles, pois: d(p, O) 2 = (x 0) 2 + (y 0) 2 = x 2 + y 2 d(p, O) 2 = ( y 0) 2 + (x 0) 2 = y 2 + x 2. K. Frensel - J. Delgado IM-UFF
12 12 Geometria Analítica - Capítulo 1 Além disso, d(p, P ) 2 = ( y x) 2 + (x y) 2 = y 2 + 2xy + x 2 + x 2 2xy + y 2 d(p, P ) 2 = 2(x 2 + y 2 ) d(p, P ) 2 = d(p, O) 2 + d(p, O) 2. Pela lei dos cossenos, o triângulo isósceles POP é retângulo em O. Isso significa que o ponto P é obtido a partir do ponto P por uma rotação de 90 o do segmento OP em torno da origem. Fig. 20: P rotacionado de 90 o até coincidir com P. Fig. 21: P rotacionado de 90 o até coincidir com P. Consideremos agora o ponto P = (y, x). De maneira análoga, podemos provar que P é também obtido a partir do ponto P por uma rotação de 90 o, no sentido oposto ao anterior, do segmento OP em torno da origem (veja a figura 21). Convencionamos que a rotação de 90 o que leva o ponto P = (x, y) no ponto P = ( y, x) tem sentido positivo, e que a rotação de 90 o que leva o ponto P no ponto P tem sentido negativo. Exemplo 4 Seja OXY um sistema de eixos ortogonais e considere os pontos P 1 = (x 1, y 1 ) e P 2 = (x 2, y 2 ). ( x1 + x 2 Então, M =, y ) 1 + y 2 é o ponto médio do segmento P 1 P De fato, sendo M = (x M, y M ), Q 1 = (x M, y 1 ) e Q 2 = (x M, y 2 ), é fácil verificar que os triângulos P 1 MQ 1 e P 2 MQ 2 são congruentes (AAL). IM-UFF K. Frensel - J. Delgado
13 Geometria Analítica - Capítulo 1 13 Logo, d(p 1, Q 1 ) = d(p 2, Q 2 ) x M x 1 = x 2 x M x M é o ponto médio entre x 1 e x 2 x M = x 1 + x 2 2. d(q 1, M) = d(q 2, M) y M y 1 = y 2 y M y M é o ponto médio entre y 1 e y 2 y M = y 1 + y 2 2. Fig. 22: M é o ponto médio do segmento P 1 P 2. Assim, as coordenadas do ponto médio M do segmento P 1 P 2 são os pontos médios das respectivas coordenadas dos pontos P 1 e P 2. K. Frensel - J. Delgado IM-UFF
14
Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA
Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 2011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:
Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,
Geometria Analítica - Aula
Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1
Retas e círculos, posições relativas e distância de um ponto a uma reta
Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
Capítulo Propriedades das operações com vetores
Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:
0 < c < a ; d(f 1, F 2 ) = 2c
Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,
MA23 - Geometria Anaĺıtica
MA23 - Geometria Anaĺıtica Unidade 1 - Coordenadas e vetores no plano João Xavier PROFMAT - SBM 8 de agosto de 2013 Coordenadas René Descartes, matemático e filósofo, nasceu em La Have, França, em 31 de
Geometria Analítica - Aula
Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Coordenadas e vetores no plano
1 Coordenadas e vetores no plano Sumário 1.1 Introdução....................... 2 1.2 Coordenadas e distância na reta........... 3 1.3 Coordenadas e distância no plano.......... 6 1.4 Distância entre pontos
Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1
Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
Aula 4. Coordenadas polares. Definição 1. Observação 1
Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Equações paramétricas das cônicas
Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:
Transformações geométricas planas
9 Transformações geométricas planas Sumário 9.1 Introdução....................... 2 9.2 Transformações no plano............... 2 9.3 Transformações lineares................ 5 9.4 Operações com transformações...........
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos
Ponto 1) Representação do Ponto
Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria
Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.
Capítulo 5 Vetores no plano 1. Paralelogramos Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos. Usando congruência de triângulos,
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 19. Coordenadas polares
Capítulo 19 Coordenadas polares Neste capítulo, veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana. Embora os sistemas cartesianos sejam muito utilizados,
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente
Equações da reta no plano
3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto
1. Operações com vetores no espaço
Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado
Produto interno e produto vetorial no espaço
14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................
Referenciais Cartesianos
Referenciais Cartesianos René Descartes (1596-1650) Filósofo e Matemático Francês. Do seu trabalho enquanto Matemático, destaca-se o estabelecimento da relação entre a Álgebra e a Geometria. Nasceu assim
Distância entre duas retas. Regiões no plano
Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,
Preliminares de Cálculo
Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números
Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105
Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Primeiro período de 2018 Está lista de exercícios contém exercícios de [2], [1] e exercícios de outras referências. Além dos exercícios
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
128 Capítulo 7 Coordenadas e distância no espaço 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tridimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo
Aula 10 Produto interno, vetorial e misto -
MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando
1 Vetores no Plano e no Espaço
1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no
2. Teorema de Pitágoras
. Teorema de Pitágoras Pitágoras de Samos foi um importante matemático e filśofo grego. Nasceu no ano de 57 a.c na ilha de Samos, na região da Ásia Menor (Magna Grécia) e residiu a maior parte da sua vida
Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano
Matemática Básica II - Trigonometria Nota 01 - Sistema de Coordenadas no Plano Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática [email protected]
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA
Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na
Curvas Planas em Coordenadas Polares
Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
Capítulo 1-Sistemas de Coordenadas
Capítulo 1-Sistemas de Coordenadas 1 Sistema Unidimensional de Coordenadas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente sobre uma reta (ou espaço unidimensional).
Título do Livro. Capítulo 5
Capítulo 5 5. Geometria Analítica A Geometria Analítica tornou possível o estudo da Geometria através da Álgebra. Além de proporcionar a interpretação geométrica de diversas equações algébricas. 5.1. Sistema
ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).
QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos
A Reta no Espaço. Sumário
16 A Reta no Espaço Sumário 16.1 Introdução....................... 2 16.2 Equações paramétricas da reta no espaço...... 2 16.3 Equação simétrica da reta no espaço........ 8 16.4 Exercícios........................
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
Coordenadas e vetores no espaço
13 Coordenadas e vetores no espaço Sumário 13.1 Coordenadas no espaço................ 2 13.2 Distância entre dois pontos do espaço........ 6 13.3 Vetores no espaço................... 10 13.4 Operações
Material Teórico - Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano - parte 1. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano - parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
O Plano no Espaço. Sumário
17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade
2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano
1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,
Coordenadas no espaço. Prof. Rossini Bezerra FBV
Coordenadas no espaço Prof. Rossini Bezerra FBV Objetivos Definir os sistemas ortogonais de coordenadas cartesianas no espaço. Localizar pontos no espaço a partir das suas coordenadas cartesianas. Interpretação
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,
Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff
1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
Geometria Analítica II - Aula 5 108
Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ
Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.
Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6
6 Hipérbole Sumário 6.1 Introdução....................... 2 6.2 Hipérbole........................ 2 6.3 Forma canônica da hipérbole............. 6 6.3.1 Hipérbole com centro na origem e reta focal coincidente
6.1 equações canônicas de círculos e esferas
6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que
Avaliação 1 Solução Geometria Espacial MAT 050
Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados
Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de Geometria Anaĺıtica 1 Equação da Reta Terceiro Ano - Médio Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Condição de alinhamento de três pontos Consideremos
18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1
18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais
CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE
CÔNICAS - MAT 2127 - CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco No plano euclidiano consideremos F 1 e F 2 dois pontos (focos) distintos. ELIPSE (1) Se
GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).
GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d
Aula 15 Superfícies quádricas - cones quádricos
Aula 15 Superfícies quádricas - cones quádricos MÓDULO - AULA 15 Objetivos Definir e estudar os cones quádricos identificando suas seções planas. Analisar os cones quádricos regrados e de revolução. Cones
Análise Vetorial na Engenharia Elétrica
nálise Vetorial na Engenharia Elétrica ula 13/03/09 1.3 - Medida algébrica de um segmento Segmento: um segmento é determinado por um par ordenado d de pontos. figura 1.8 apresenta um segmento Figura 1.8
Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil
Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto
Lista de exercícios de GA na reta e no plano Período de Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017
Lista de GA no plano 1 Lista de exercícios de GA na reta e no plano Período de 016. - Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 017 1 Retas no plano 1.1) Determine os dois pontos, que chamaremos
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
MAT Poli Cônicas - Parte I
MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
Aula 15 Parábola. Objetivos
MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no
