Funções Crescentes e Funções Decrescentes
|
|
|
- Tomás Schmidt Moreira
- 9 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Crescentes e Funções Decrescentes Prof.: Rogério Dias Dalla Riva
2 Funções Crescentes e Funções Decrescentes 1.Funções crescentes e funções decrescentes 2.Pontos críticos e sua utilização 3.Uma aplicação: lucro, receita e custo
3 1. Funções crescentes e funções decrescentes Uma função é crescente se seu gráfico sobe quando x se desloca para a direita, e é decrescente se seu gráfico desce quando x se desloca para a direita. A definição a seguir constitui um enunciado mais formal. 3
4 1. Funções crescentes e funções decrescentes Definição de Função Crescente e Função Decrescente Uma função f é crescente em um intervalo se, para qualquer x 1 e x 2 no intervalo, x 2 > x 1 implica f(x 2 ) > f(x 1 ) Uma função f é decrescente em um intervalo se, para qualquer x 1 e x 2 no intervalo, x 2 > x 1 implica f(x 2 ) < f(x 1 ). 4
5 1. Funções crescentes e funções decrescentes y Função Crescente f(x 2 ) f(x 1 ) x 1 x 2 x 5
6 1. Funções crescentes e funções decrescentes y Função Decrescente f(x 1 ) f(x 2 ) x 1 x 2 x 6
7 1. Funções crescentes e funções decrescentes A função da figura a seguir é decrescente no intervalo (-, a), constante no intervalo (a, b) e crescente no intervalo (b, ). Na realidade, pela definição de função crescente e função decrescente, a função exibida na figura é decrescente no intervalo (-, a] e crescente no intervalo [b, ). No presente texto, entretanto, restringimos nosso estudo à determinação de intervalos abertos, nos quais a função é crescente ou decrescente em um intervalo. Pode-se utilizar a derivada de uma função para determinar se a função é crescente ou decrescente em um intervalo. 7
8 1. Funções crescentes e funções decrescentes 8
9 1. Funções crescentes e funções decrescentes Teste para Funções Crescentes e Funções Decrescentes 1. Se f (x) >0 para todo x em (a, b), f é crescente em (a, b). 2. Se f (x) < 0 para todo x em (a, b), f é decrescente em (a, b). 3. Se f (x) = 0 para todo x em (a, b), f é constante em (a, b). 9
10 1. Funções crescentes e funções decrescentes Exemplo 1: Mostre que a função f ( x) é decrescente no intervalo aberto (-, 0) e crescente no intervalo aberto (0, ). = x 2 A derivada de f é f ' ( x) = 2x 10
11 1. Funções crescentes e funções decrescentes No intervalo aberto (-, 0), o fato de x ser negativo implica que f (x) = 2x é também negativa. Logo, pelo teste para uma função decrescente, podemos concluir que f é decrescente nesse intervalo. Analogamente, no intervalo (0, ), como x é positivo, também o é 2x. Logo, concluímos que f é crescente nesse intervalo, como pode ser observado na figura a seguir. 11
12 1. Funções crescentes e funções decrescentes 12
13 1. Funções crescentes e funções decrescentes Exemplo 2: De 1970 a 1980, o consumo C de aves (em libras sem osso por pessoa por dia) admite como modelo C = 33,5 + 0,074t 2, 0 t 20, onde t = 0 corresponde a Mostre que o consumo de aves cresceu de 1970 a
14 1. Funções crescentes e funções decrescentes A derivada deste modelo é dc/dt = 0,148t. Para t positivo, a derivada é positiva. Portanto, a função é crescente, o que implica que o consumo de aves aumentou de 1970 a
15 No Exemplo 1, foram dados dois intervalos um em que a função era decrescente e um em que era crescente. Suponhamos agora que tivéssemos de determinar esses intervalos. Para isto, poderíamos ter levado em conta o fato de que, para uma função contínua, f (x) só pode mudar de sinal em valores de x para os quais f (x) = 0 ou em valores de x para os quais f (x) não é definida, conforme mostra a figura a seguir. Esses dois tipos de números são chamados pontos críticos de f. 15
16 16
17 Definição de Ponto Crítico Se f é definida em c, então c é um ponto crítico de f se f (c) = 0 ou se f não é definida em c. Nota: Esta definição exige que o ponto crítico esteja no domínio da função. 17
18 Diretrizes para Determinar os Intervalos de Crescimento e Decrescimento 1. Achar a derivada de f. 2. Determinar os pontos críticos de f e utilizá-los para estabelecer os intervalos de teste; isto é, achar todos os valores de x para os quais f (x) = 0 ou f (x) não é definida. 3. Testar o sinal de f (x) para um valor arbitrário em cada um dos intervalos de teste. 4. Utilizar o teste das funções crescentes ou decrescentes para decidir se é crescente ou decrescente em cada intervalo. 18
19 Exemplo 3: Ache os intervalos abertos em que a função f ( x) = x x 2 é crescente ou decrescente. 19
20 Comecemos calculando a derivada de f. Em seguida, igualemos a derivada a zero e resolvamos a equação para achar os pontos críticos. ( ) 3 3 Diferenciando a função original ' 2 f x = x x Igualando a zero a derivada x x = 3( x)( x 1) = 0 Fatorando x = 0, x = 1 Pontos críticos 20
21 Como não há valores de x para os quais f não seja definida, decorre que x = 0 e x = 1 são os únicos pontos críticos. Assim, os intervalos que devem ser testados são (-, 0), (0, 1) e (1, ). A tabela abaixo apresenta o resultado do teste desses três intervalos. Intervalo (-, 0) (0, 1) (1, ) Valor de teste x = -1 x = ½ x = 2 Sinal de f (x) f (-1) = 6 > 0 f (½) = -¾ < 0 f (2) = 6 > 0 Conclusão Crescente Decrescente Crescente 21
22 22
23 A função do Exemplo 3 não somente é contínua em toda a reta real, mas também diferenciável ali. Para tais funções, os únicos pontos críticos são aqueles para os quais f (x) = 0. O próximo exemplo considera uma função contínua que tem ambos os tipos de ponto crítico os números para os quais f (x) = 0 e os que f (x) não é definida. 23
24 Exemplo 4: Determine os intervalos abertos em que a função ( x ) 2 f ( x) = 4 é crescente ou decrescente
25 Comecemos achando a derivada da função. 1 ' f ( x) = ( x 4 ) (2 x) Diferenciar 3 4x = Simplificar ( x ) Vemos que a derivada é zero quando x = 0 e que não é definida para x = ± 2. Assim, os pontos críticos são x = -2, x = 0 e x = 2. Pontos críticos 25
26 Isto implica que os intervalos de teste são (-, -2), (-2, 0), (0, 2) e (2, ) Intervalos de teste A tabela abaixo resume os resultados do teste nesses quatro intervalos; a figura a seguir exibe o gráfico da função. Intervalo (-, -2) (-2, 0) (0, 2) (2, ) Valor de teste x = -3 x = -1 x = 1 x = 3 Sinal de f (x) f (-3) < 0 f (-1) > 0 f (1) < 0 f (3) > 0 Conclusão Decrescente Crescente Decrescente Crescente 26
27 27
28 Nota: Na tabela anterior, não é necessário calcular f (x) para os valores de teste basta determinar seu sinal. Assim é que podemos determinar o sinal de f (-3) como segue: f ' 4( 3) negativo ( 3) = = = 1 3(9 4) 3 positivo negativo 28
29 As funções nos Exemplos 1 a 4 são contínuas em toda a reta real. Se há valores isolados de x para os quais a função não seja contínua, tais valores devem ser utilizados, juntamente com os pontos críticos, para determinar os intervalos de teste. 29
30 Por exemplo, a função f ( x) = 4 x x não é contínua quando x = 0. Como a derivada de f, 4 2( x 1) f '( x) = 3 x é zero quando x = ± 1, devemos tomar os seguintes valores para determinar os intervalos de teste: x = -1, x = 1 (Pontos críticos) x = 0 (Descontinuidade) 30
31 Intervalo (-, -1) (-1, 0) (0, 1) (1, ) Valor de teste x = -2 x = -½ x = ½ x = 2 Sinal de f (x) f (-2) < 0 f (-½) > 0 f (½) < 0 f (2) > 0 Conclusão Decrescente Crescente Decrescente Crescente Após testar f (x), constatamos que a função é decrescente nos intervalos (-, -1) e (0, 1), e crescente nos intervalos (-1, 0) e (1, ), conforme mostra a figura a seguir. 31
32 32
33 Exemplo 5: Mostre que a função f(x) = x 3 3x 2 + 3x é crescente em toda a reta real. Pela derivada de f, f (x) = 3x 2 6x + 3 = 3(x 1) 2, podemos ver que o único ponto crítico é x = 1. Assim, os intervalos de teste são (-, 1) e (1, ). A tabela a seguir resume o teste nesses dois intervalos. Pela figura a seguir, vemos que f é crescente em toda a reta real mesmo que f (1) = 0. 33
34 Intervalo (-, 1) (1, ) Valor de teste x = 0 x = 2 Sinal de f (x) f (0) = 3(0-1) 2 > 0 f (2) = 3(2-1) 2 > 0 Conclusão Crescente Crescente 34
35 3. Uma aplicação: lucro, receita e custo Exemplo 6: Um distribuidor nacional de brinquedos estabelece os seguintes modelos de custo e receita para um de seus jogos. C = 2,4x 0,0002x 2, 0 x R = 7,2x 0,001x 2, 0 x Determine o intervalo em que a função lucro é crescente. 35
36 3. Uma aplicação: lucro, receita e custo O lucro na produção de x unidades é P = R C = (7,2x 0,001x 2 ) (2,4x 0,0002x 2 ) = 4,8x 0,0008x 2. 36
37 3. Uma aplicação: lucro, receita e custo Para achar o intervalo em que o lucro é crescente, façamos o lucro marginal P igual a zero e resolvamos em relação a x. P ' = 4,8 0,0016 x Diferenciando a função lucro ' 4,8 0,0016x = 0 Fazendo P igual a 0. 0,0016x = 4,8 Subtraindo 4,8 de ambos os membros 4,8 x = Dividindo ambos os membros por -0,0016 0,0016 x = unidades Simplificando 37
38 3. Uma aplicação: lucro, receita e custo No intervalo (0, 3.000), P é positiva e o lucro é crescente. No intervalo (3.000, 6.000), P é negativa e o lucro é decrescente. A figura abaixo ilustra os gráficos das funções custo, receita e lucro. 38
Funções Crescentes e Funções Decrescentes. Funções Crescentes e Funções Decrescentes. Função Crescente. Função Decrescente
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Função
Extremos e o Teste da Derivada Primeira
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Extremos e o Teste
Concavidade e o Teste da Derivada Segunda
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste
Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Concavidade:
Algumas Regras para Diferenciação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para
Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:
Problemas de Otimização
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Problemas de Otimização
Derivadas de Ordem Superior
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas de Ordem
Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
Taxas Relacionadas. 1.Variáveis Relacionadas 2.Resolução de Problemas Sobre Taxas Relacionadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas
Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares
Integração por Partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais
dy dx dt dt Taxas Relacionadas Taxas Relacionadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas
Continuidade. Continuidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Continuidade Antes
Área e Teorema Fundamental do Cálculo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos
Volumes de Sólidos de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos
1. Integração por partes. d dx. 1. Integração por partes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes
Frações Parciais e Crescimento Logístico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Frações Parciais e
Derivadas de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:
Integrais Impróprias
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integrais Impróprias
Polinômios. 1.Introdução 2.Técnicas de fatoração 3.Fatoração de polinômios de terceiro grau ou de grau superior 4.Teorema do zero racional
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Polinômios Prof.:
Introdução às Funções
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Introdução às Funções Prof.:
Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.
O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos
CÁLCULO I. 1 Funções Crescentes e Decrescentes
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e
( ) ( ) Polinômios. Polinômios. a n x n + a n-1 x n a 1 x + a 0. O Teorema Fundamental da Álgebra afirma que todo polinômio de grau n
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Técnicas de fatoração O
Função do 2 o Grau. 11.Sinal da função quadrática 12.Inequação do 2 o grau
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função do o Grau Prof.: Rogério
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
Funções Hiperbólicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Hiperbólicas
Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e
Unidade 6 Aplicações do estudo das derivadas
Unidade 6 Aplicações do estudo das derivadas Máximos e mínimos de uma função Definição 6.. Dada a função f : I, um ponto x I é chamado de (i) ponto de máximo relativo (ou local) da função quando f ( x)
Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:
( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA
AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma
O Teorema do Valor Médio
Universidade de Brasília Departamento de Matemática Cálculo 1 O Teorema do Valor Médio Começamos este texto enunciando um importante resultado sobre derivadas: Teorema do Valor Médio. Suponha que f é uma
Integração por Substituição
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Substituição
Concavidade e pontos de inflexão Aula 20
Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Gráficos de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD
ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar
Medida de Ângulos em Radianos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos
Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas
Derivadas das Funções Trigonométricas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções
Cálculo de Volumes por Cascas Cilíndricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de Volumes
Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira
MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
QUESTÕES-AULA Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4. Se calcularmos (g f)(x) e (f g)(x) teremos,
QUESTÕES-AULA 36 1. Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4 Se calcularmos (g f)(x) e (f g)(x) teremos, e (g f)(x) = g(f(x)) = g(x 4 4) = 4 x 4 4 + 4 x (f g)(x)
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.
Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar
Aula 22 O teste da derivada segunda para extremos relativos.
O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012
MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
Área de uma Superfície de Revolução
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada
1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em
Aula 21 Máximos e mínimos relativos.
Aula 21 Objetivo Utilizar o conceito de derivada para determinar pontos de máximo e mínimo relativos de funções. Quando olhamos uma montanha, identificamos facilmente os picos da montanha e os fundos dos
Trabalho. 1.Introdução 2.Resolução de Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,
Equações Exponenciais e Logarítmicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas
MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução
MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)
Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções
A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).
Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca
III-1 Comprimento de Arco
Nesta aula vamos iniciar com o tratamento de integral que não calcula apenas área sob uma curva. Especificamente, o processo ainda é unidimensional, mas envolve conceitos de geometria (especificamente
Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande
Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande Curso: Técnico em Des. Construção Civil Turma: DCC01A 2017/2 Disciplina: Matemática I Professor: Emerson Dutra
Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)
Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais
PROBLEMAS DE OPTIMIZAÇÃO
PROBLEMAS DE OPTIMIZAÇÃO EXTREMOS: MÁXIMOS E MÍ IMOS As questões de optimização estão relacionados com a escolha da melhor alternativa para a resolução de um problema com base em critérios particulares.
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
Derivadas e Taxas de Variação. Copyright Cengage Learning. Todos os direitos reservados.
Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. 1 Derivadas e Taxas de Variação O problema de encontrar a reta tangente a uma curva e o problema para encontrar a
MATEMÁTICA. ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net Definição: Uma função
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA ENSINO MÉDIO - 1º ANO Função Polinomial do 1º Grau (FUNÇÃO AFIM) PROFESSOR: ALEXSANDRO DE SOUSA Definição: Toda função do tipo: f(x) = ax + b (x ϵ IR) São funções
