Funções Hiperbólicas
|
|
|
- Ana Vitória de Figueiredo Deluca
- 8 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Hiperbólicas Prof.: Rogério Dias Dalla Riva
2 Funções hiperbólicas 1.Introdução.Função seno hiperbólico 3.Função cosseno hiperbólico 4.Função tangente hiperbólica 5.Função cotangente hiperbólica 6.Função secante hiperbólica 7.Função cossecante hiperbólica 8.Outras funções hiperbólicas 9.Identidades
3 1. Introdução Certas combinações das funções eponenciais e e e - surgem frequentemente em matemática e suas aplicações e, por isso, merecem nomes especiais. Elas são análogas de muitas formas às funções trigonométricas e possuem a mesma relação com a hipérbole que as funções trigonométricas têm com o círculo. Por essa razão são chamadas funções hiperbólicas, particularmente seno hiperbólico, cosseno hiperbólico e assim por diante. 3
4 . Função seno hiperbólico A função seno hiperbólico é definida por senh = e e O domínio e a imagem são o conjunto de todos os números reais, cujo gráfico apresenta-se a seguir. 4
5 . Função seno hiperbólico senh
6 3. Função cosseno hiperbólico A função cosseno hiperbólico é definida por cosh = e + e O domínio é o conjunto de todos os números reais e a imagem é o conjunto de todos os números no intervalo [1, + ), cujo gráfico apresenta-se a seguir. 6
7 3. Função cosseno hiperbólico cosh
8 4. Função tangente hiperbólica A função tangente hiperbólica é definida por tgh senh e e = = cosh e + e O domínio é o conjunto de todos os números reais e a imagem é o conjunto de todos os números no intervalo ]-1, 1[, cujo gráfico apresenta-se a seguir. 8
9 4. Função tangente hiperbólica tgh
10 5. Função cotangente hiperbólica por A função cotangente hiperbólica é definida cotgh cosh e + e = == senh e e O domínio é o conjunto R - {0} e a imagem é o conjunto de todos os números no intervalo ]-, -1[ U ]1, [, cujo gráfico apresenta-se a seguir. 10
11 5. Função cotangente hiperbólica cotgh
12 6. Função secante hiperbólica A função secante hiperbólica é definida por sech 1 = = cosh e + e O domínio é o conjunto dos números reais e a imagem é o conjunto de todos os números no intervalo ]0, 1], cujo gráfico apresenta-se a seguir. 1
13 6. Função secante hiperbólica sech,0 1,5 1,0 0,5 0, ,5-1,0-1,5 -,0 13
14 7. Função cossecante hiperbólica por A função cossecante hiperbólica é definida cossech 1 = = senh e e O domínio é o conjunto R - {0} e a imagem é o conjunto R - {0}, cujo gráfico apresenta-se a seguir. 14
15 7. Função cossecante hiperbólica cossech
16 8. Outras funções hiperbólicas As funções hiperbólicas também podem ser reescritas em função de e e e -, como segue: e e e + e tgh = cotgh = e + e e e sech = cossech = e + e e e 16
17 9. Identidades Eistem identidades satisfeitas pelas funções hiperbólicas que são similares àquelas satisfeitas pelas funções trigonométricas, cujas demonstrações encontram-se a seguir. 1 tgh = cosh senh = 1 cotgh 1 tgh = sech 1 cotgh = cossech 17
18 9. Identidades Como senh tgh = e cotgh = cosh cosh senh decorre que tgh = 1 cotg 18
19 9. Identidades Em cosh senh = 1 provamos a identidade substituindo pelas definições de cosh e senh. e + e e e e + e e + e e e e + e = = 4 4 e e e e + + e + e e e e e + e e + = = =
20 9. Identidades Em 1 tgh = sech provamos a identidade substituindo tgh pela sua definição em função de cosh e senh. senh cosh senh 1 1 = = = sech cosh cosh cosh 0
21 9. Identidades Em 1 cotgh = cossech provamos a identidade substituindo cotgh pela sua definição em função de cosh e senh. 1 cosh senh cosh cosh senh = = = senh senh senh 1 = = cossech senh 1
22 9. Identidades Empregando as seguintes relações, obtidas das definições de seno hiperbólico e cosseno hiperbólico cosh + senh = e cosh senh = e pode-se provar as seguintes identidades: senh( + y ) = senh cosh y + cosh senh y cosh( + y ) = cosh cosh y + senh senh y
23 9. Identidades Partindo da definição da função seno hiperbólico obtemos senh e senh = e + y ( + y ) e e 1 ( ) ( y y + y = = e e e e ) 3
24 9. Identidades senh ( y ) + = Entretanto Assim sendo: senh ( y ) ( cosh senh ) ( cosh y senh y ) ( ) ( y y ) = cosh senh cosh senh 1 cosh cosh y + cosh senh y + senh cosh y + senh senh y cosh cosh y + cosh senh y + senh cosh y senh senh y 1 senh( + y ) = [ cosh senh y + senh cosh y ] senh + y = senh cosh y + cosh senh y 4 ( ) cosh + senh = e cosh senh = e
25 9. Identidades Partindo da definição da função cosseno hiperbólico obtemos cosh e cosh = e + y ( + y ) + e + e 1 ( ) ( y y + y = = e e + e e ) 5
26 9. Identidades Entretanto cosh + senh = e cosh senh = e cosh ( y ) + = Assim sendo: cosh ( y ) ( cosh senh ) ( cosh y senh y ) ( ) ( y y ) = cosh senh cosh senh 1 cosh cosh y + cosh senh y + senh cosh y + senh senh y + cosh cosh y cosh senh y senh cosh y + senh senh y 1 cosh( + y ) = [ cosh cosh y + senh senh y ] cosh + y = cosh cosh y + senh senh y 6 ( )
Funções Hiperbólicas
Funções Hiperbólicas Luiza Amalia Pinto Cantão & Renato Fernanes Cantão Campus Experimental e Sorocaba Unesp http://www.sorocaba.unesp.br/professor/luiza http://www.sorocaba.unesp.br/professor/cantao 006
Derivadas das Funções Hiperbólicas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções
CÁLCULO I Aula 03: Funções Logarítmicas, Exponenciais e
CÁLCULO I Aula 03: s, e. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 4 A Seja x > 0. Denimos a função logarítmica natural como sendo a função dada pela medida da área
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas
Derivadas de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções
CÁLCULO I. 1 Funções Exponenciais e Logarítmicas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;
Gráficos de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções
Derivadas das Funções Trigonométricas Inversas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções
Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções
Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:
( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades
1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério
1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos
Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas
Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1].
Funções Trigonométricas função Seno Função Seno Função Seno: ropriedades (a) sen( + π) = sen() R R f () = sen() segmento (b) sen() = sen( ) Se está no primeiro ou segundo quadrante então sen() é positivo.
Mais funções e limites
Capítulo 3 Mais funções e ites Nesse capítulo, abordaremos as funções invertíveis, além de algumas classes especiais de funções: trignométricas, exponenciais, logarítmicas e hiperbólicas. 3.1 Funções Inversas
II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas
II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas Nesta aula são apresentadas as integrais de funções trigonométricas que se resolve através das relações trigonométricas
1. As funções tangente e secante As expressões para as funções tangente e secante são
CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos
Estratégias de Integração. Estratégias de Integração
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Estratégias de Integração
Derivadas de Ordem Superior
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas de Ordem
Integrais indefinidas
Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()
Substituição Trigonométrica
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica
Capítulo 3 Derivada e Diferencial
Capítulo 3 Derivada e Diferencial Objetivos Determinar a equação de retas tangentes a uma curva em um determinado ponto Resolver problemas que envolvam retas paralelas e normais à reta tangente de uma
Algumas Regras para Diferenciação
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para
FUNÇÕES HIPERBÓLICAS E CABOS PENDENTES 1 HYPERBOLIC FUNCTIONS AND PENDANT CABLES
Disc. Scientia. Série: Ciências Naturais e Tecnológicas, S. Maria, v. 5, n. 1, p. 139-16, 004. 139 ISSN 1519-065 FUNÇÕES HIPERBÓLICAS E CABOS PENDENTES 1 HYPERBOLIC FUNCTIONS AND PENDANT CABLES RESUMO
Matemática Ensino Médio Anotações de aula Trigonometira
Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo
Concavidade e o Teste da Derivada Segunda
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste
1. Trigonometria no triângulo retângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério
Notas de Aula de Cálculo Diferencial e Integral
Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos
Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais
Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Eponenciais e Logarítmicas.
Assíntotas. Assíntotas. Os limites infinitos para a função f(x) = 3/(x 2) podem escrever-se como
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Os limites
(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).
Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:
Assíntotas. 1.Assíntotas verticais e limites infinitos 2.Assíntotas horizontais e limites no infinito 3.Assíntotas inclinadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Assíntotas Prof.:
MAT146 - Cálculo I - Derivada das Inversas Trigonométricas
MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas
Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013
Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados
Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian
CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:
Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Concavidade:
4.1 Funções Deriváveis
4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
de Potências e Produtos de Funções Trigonométricas
MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,
Funções Crescentes e Funções Decrescentes
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Crescentes
DERIVADA. Definição: A reta tangente a uma curva y = f(x) em um ponto P(a, f(a)), é a reta por P que tem a inclinação
61 DERIVADA O problema de encontrar a reta tangente a uma curva e o problema para encontrar a velocidade de um objeto envolvem determinar o mesmo tipo de limite. Este tipo especial de limite é chamado
Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA
Continuidade. Continuidade
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Continuidade Antes
Escola Básica e Secundária da Graciosa. Matemática A 11.º Ano Funções Trigonométricas
Escola Básica e Secundária da Graciosa Matemática A 11.º Ano Funções Trigonométricas Função Seno Função Seno Correspondência unívoca que associa a cada número real, o valor do seno de, tal como definido
Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso
MÓDULO - AULA 30 Aula 30 Técnicas de integração Miscelânea Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso significa que você está completando boa parte desta jornada. Você já enfrentou
CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)
1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência
Integrais indefinidas
Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada
Cálculo Diferencial e Integral I
Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home
4.-1 Funções Deriváveis
4.- Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
Equações Exponenciais e Logarítmicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas
Apostila de. Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT
Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Home page: http://www.joinville.udesc.br/portal/professores/eliane/ Apostila editada pela Profa. Eliane Bihuna de Azevedo,
Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.
Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para
Cálculo Diferencial e Integral I
Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home
Matemática. Relações Trigonométricas. Professor Dudan.
Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática
Taxas de Variação: Velocidade e Funções Marginais. Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taas de Variação:
Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim
Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)
Trigonometria: Fórmulas de Adição e Subtração de Arcos
Humberto Gullo de Barros Trigonometria: Fórmulas de Adição e Subtração de Arcos Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação
Capítulo 1 Números Reais, Intervalos e Funções
Capítulo Números Reais, Intervalos e Funções Objetivos Identi car os conjuntos numéricos; Conhecer e aplicar as propriedades relativas à adição e multiplicação de números reais; Utilizar as propriedades
a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo
DERIVADA. A Reta Tangente
DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,
Funções Crescentes e Funções Decrescentes. Funções Crescentes e Funções Decrescentes. Função Crescente. Função Decrescente
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Função
MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA
MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA II Nome: MATEMÁTICA II Curso: TÉCNICO EM INFORMÁTICA
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo
Integração por Substituição
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Substituição
Trigonometria no Círculo - Funções Trigonométricas
Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em
A. Funções trigonométricas directas
A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa.
Taxas de Variação: Velocidade e Funções Marginais
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:
Taxas Relacionadas. 1.Variáveis Relacionadas 2.Resolução de Problemas Sobre Taxas Relacionadas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas Relacionadas
Funções Elementares do Cálculo Complexos 2
Funções Elementares do Cálculo Complexos AULA 6 META: Definir mais algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir mais algumas funções
6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS
6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.
A derivada da função inversa
A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................
MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28
Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais
10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS
0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)
TRIGONOMETRIA NA CIRCUNFERÊNCIA
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 1º Ano 4º Bimestre/01 Plano de Trabalho TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 1 CURSISTA: FABIANA OLIVEIRA DA SILVA RODRIGUES
Obter as equações paramétricas das cônicas.
MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y
TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS
1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a
A Derivada e a Inclinação de um Gráfico
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação
CONCEITOS BÁSICOS - REVISÃO
CONCEITOS BÁSICOS - REVISÃO GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR Sempre houve a necessidade
MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento [email protected]
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)
