MÉTODOS DE DERIVAÇÃO

Tamanho: px
Começar a partir da página:

Download "MÉTODOS DE DERIVAÇÃO"

Transcrição

1 MÉTODOS DE DERIVAÇÃO TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA FUNÇÃO CONSTANTE Uma ução costate ão apreseta variação, portato sua erivaa é ula ( c) 5 4 Por eemplo: () ( 5 ) ( π) TE3 Fuametos Matemáticos para a Eearia Elétrica I

2 Métoos e erivação DERIVADA DE UMA FUNÇÃO LINEAR A icliação e uma reta é costate Loo, a erivaa e uma ução liear é costate Deução: ' ' ( b m) m ( ) [ b m( ) ( b m) m m m Obs: ( bm) TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADA DE UMA CONSTANTE VEZES UMA FUNÇÃO () 3 - () 3() ()/ -() Deução: [ c [ c [ c c c c ( ) c ( ) ( ) [ c c' TE3 Fuametos Matemáticos para a Eearia Elétrica I

3 Métoos e erivação DERIVADAS DE SOMAS E DIFERENÇAS () 3 5 (),8,6 () () 3 3,8 5,6 () 3 () -, -, -, () (),8,8,9 [ ' ' ,5,7,5,9, 8,5,7 8,5 34,9 4, ,,8,4,3-4, 5,8 6,4 7,3 - [ ' ' Deução: [ ( ) ( ) ( ) ( ) ' ' [ [ TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADAS DE POTÊNCIAS INTEIRAS POSITIVAS Deução: ( ) ( K ) K ( K ) ( ) ( K ) Para iteiro positivo: ( ) TE3 Fuametos Matemáticos para a Eearia Elétrica I 3

4 Métoos e erivação DERIVADAS DE POTÊNCIAS INTEIRAS POSITIVAS Eemplos 5 () '() 5 () 3 '() ( ) ( ) 3 TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADAS DE POTÊNCIAS INTEIRAS NEGATIVAS Deução: ( K ) ( K ) K K ( K ) ( ) K ( K ) Para iteiro eativo: ( ) TE3 Fuametos Matemáticos para a Eearia Elétrica I 4

5 Métoos e erivação DERIVADAS DE POTÊNCIAS INTEIRAS NEGATIVAS Eemplo 5 () - '() 5 3 ( ) ( ) esta é, a verae, a rera e erivação para qualquer real TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação DERIVADAS DE POLINÔMIOS Jutao as reras e erivação e uções multiplicaas por costates, soma e uções e e erivação e potêcias é possível erivar qualquer poliômio Eemplo: 3 3 ( 5 4) ( ) ( 5 ) ( 4) 3 3 ( 5 4) ( ) 5 ( ) ( 4) 3 ( 5 4) ( 5 4) 6 TE3 Fuametos Matemáticos para a Eearia Elétrica I 5

6 Métoos e erivação NOTAÇÃO ALTERNATIVA PARA PEQUENAS VARIAÇÕES Usao a otação para represetar pequeas variações: ( ) Com essa otação, a erivaa poe ser escrita a seuite orma: ' TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A REGRA DO PRODUTO [ ( ) ( ) Uma orma e visualizar a epressão ( ) ( ) TE3 Fuametos Matemáticos para a Eearia Elétrica I 6

7 7 TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A REGRA DO PRODUTO Diviio tuo por : Multiplicao a última parcela o lao ireito a iualae por / e aplicao o ite quao : [ TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação Sabe-se que: A REGRA DO PRODUTO [ ' ' Portato: [ ' ' ' ' [ ' ', e

8 Métoos e erivação A REGRA DO QUOCIENTE Assumio que Q, também Q A rera o prouto poe ser usaa para se ecotrar uma órmula para Q em termos e e : ' ' Resolveo para Q (): Q ' Q' Q ' Q' ' ' ' ' ' TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A REGRA DO QUOCIENTE Q ' Q' ' ' ' Fazeo Q' : ' [ ' ' [ TE3 Fuametos Matemáticos para a Eearia Elétrica I 8

9 Métoos e erivação LINEARIZAÇÃO () 5 5 () reta taete a () () () reta taete a () Próimo ao poto e taêcia, a reta taete é uma boa aproimação a ução A reta taete a (a) passa pelo poto (a, (a)) e sua icliação é (a) L ( a) ' ( a)( a) Se é erivável em a, L() é a liearização e em a TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação ERRO DE LINEARIZAÇÃO L() liearização e () o poto a; variação em a meia que varia e a até (a ); ( a ) ( a) L variação em L a meia que varia e a até (a ) L L( a ) L( a) ( ) L a ' a a a a ' a a a L ' ( a) Como eralmete averá uma iereça etre os valores e () e L() para a, L Ou seja, averá um erro e aproimação Esse erro poe ser calculao como: erro L TE3 Fuametos Matemáticos para a Eearia Elétrica I 9

10 Métoos e erivação ERRO DE LINEARIZAÇÃO erro L ( a ) ( a) ' ( a) erro erro [ ( a ) ( a) ' ( a) ( a ) ( a) erro ' Oe: erro ε ε ( a ) ( a) ' ( a) ( a) Coorme, o ite: ( a ) ( a) ( a ) ( a) ' ( a) ' ( a) ' ( a) ' ( a) Portato, coorme, ε Ou seja, quato mais a, meor é o erro e aproimação E o ite o erro é ulo TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação ERRO DE LINEARIZAÇÃO Voltao ao erro etre e L: erro L L erro Portato, se é ertivável em a e se varia e a para (a ), uma variação e () próima e a poe ser escrita como seo a qual ε a meia que ( a) ε ' TE3 Fuametos Matemáticos para a Eearia Elétrica I

11 Métoos e erivação A REGRA DA CADEIA y ( ) z Supoo, se etão y z Parece ituitivo que: y y z z Assumio isso, etão quao : y y y z z ( z) ' ' ( ) ' ' [ ( ) ' ( ) ' TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A REGRA DA CADEIA Prova ormal a rera a caeia: Supoo ovamete que, e y z De acoro com a órmula para o erro e liearização: oe ε e z se, e também ε se z y ( ) z ε [ ' ε z ' ( z) z ε z [ ' ( z) ε z y ' Como z represeta uma pequea variação em z, z é equivalete a z Combiao as equações e y e z: [ ' ( z) ε z y [ ' ( z) ε [ ' ε y TE3 Fuametos Matemáticos para a Eearia Elétrica I

12 Métoos e erivação A REGRA DA CADEIA y ' [ ' ( z) ε [ ' ε y ( z) ' ' ( z) ε ' ε ε ε Uma vez que ε e ε coorme, três os quatro termos a ireita esaparecem o ite, restao: y ' ( z) ' ' ( ) ' Ou: y ' ( ) ' E por im: [ ( ) ' ( ) ' TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A DERIVADA DE / [ [ Em [(), () poe ser cosieraa a ução e etro Etão, usao a rera a caeia para ecotrar a erivaa, obtem-se: ' ' ( ( ) ) TE3 Fuametos Matemáticos para a Eearia Elétrica I

13 Métoos e erivação FUNÇÕES EXPONENCIAIS E A DEFINIÇÃO DE e Que ormato eve ter a erivaa e uma ução epoecial? () () ( a ) a a a a a a ( a ) ( a ) a a ( a ) ão epee e, apeas e a Portato, a erivaa e uma ução epoecial é proporcioal à própria ução TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação FUNÇÕES EXPONENCIAIS E A DEFINIÇÃO DE e Eemplos: Usao a calculaora: Usao a calculaora: Usao a calculaora: ( ) (,693 ) ( 3 ) (,986) 3 ( 4 ) (,38634 ) TE3 Fuametos Matemáticos para a Eearia Elétrica I 3

14 Métoos e erivação FUNÇÕES EXPONENCIAIS E A DEFINIÇÃO DE e Eiste alum valor e a que aça a a? Para que isso acoteça: a Ou para muito pequeo: a a Calculao para muito pequeo: ( ), e a 788 De ato, poe ser provao que: e e que: ( ),788 e a a ( ) De moo que: ( e ) e TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A DERIVADA DE l() l Como, etão: l e [ e Cosierao l() como a ução e etro, e visto que a erivaa e e é o próprio e, pela rera a caeia resulta que: l e [ l l l e [ [ l TE3 Fuametos Matemáticos para a Eearia Elétrica I 4

15 Métoos e erivação A DERIVADA DE a Partio a ietiae: l ( a ) l( a) Derivao em ambos os laos, cosierao a como a ução e etro e usao o ato e que [l() /, pelas reras a caeia e o prouto resulta que: [ l ( a ) [ l( a) a a ( a ) l( a) l( a) ( a ) l( a) ( a ) l( a) a [ TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A DERIVADA DE se() Como eve ser o ráico a erivaa a ução seo? se() - -7pi/ -3pi -5pi/ -pi -3pi/ -pi -pi/ pi/ pi 3pi/ pi 5pi/ 3pi 7pi/ 4pi [se()' -7pi/ -3pi -5pi/ -pi -3pi/ -pi -pi/ pi/ pi 3pi/ pi 5pi/ 3pi 7pi/ 4pi O ráico parece iicar que [ se cos( ) TE3 Fuametos Matemáticos para a Eearia Elétrica I 5

16 Métoos e erivação A DERIVADA DE se() Deução Cosierao a ietiae a soma os âulos, se [ se por substituição se obtem: [ se [ se se ( ) se ( ) se cos cos se [ se cos se se cos [ cos cos se se [ se se cos cos se TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A DERIVADA DE se() [ se se cos cos se Aalisao umericamete os ois ites a epressão acima: [cos() -/ [se()/,,5,,99833,,5,,99998,,5,,,,,,,,,, cos se TE3 Fuametos Matemáticos para a Eearia Elétrica I 6

17 Métoos e erivação A DERIVADA DE se() [ se se cos Substituio pelos valores os ites: cos [ se se cos [ se cos se TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação A DERIVADA DE cos() Partio a epressão: Aplicao a erivaa os ois laos e cosierao π/ como a ução e etro, pela rera a caeia resulta que: cos se π π [ cos se cos Como cos( π/) se(): [ cos se y π ycos() y-se() - -pi -3pi/ -pi -pi/ pi/ pi 3pi/ TE3 Fuametos Matemáticos para a Eearia Elétrica I 7

18 Métoos e erivação A DERIVADA DE t() Lembrao que t se cos e aplicao a rera o quociete: [ t se cos [ t cos [ se 'cos se [ cos ' cos se cos cos [ t cos TE3 Fuametos Matemáticos para a Eearia Elétrica I Métoos e erivação AS DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS INVERSAS [ arcse Como arccos π arcse : [ arccos [ arct TE3 Fuametos Matemáticos para a Eearia Elétrica I 8

19 Métoos e erivação DERIVADA DE FUNÇÕES IMPLÍCITAS y 4 Aplica-se a erivaa os ois laos a equação: y 4 y 4 ( ) ( y ) ( 4) y y y - ( y) y - TE3 Fuametos Matemáticos para a Eearia Elétrica I 9

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = <

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = < Máimo do Aluo: Rumo ao Eame! Teste de avaliação A { R : ( ) } < A R : ta < A R : ta < Págs e A R : k, < A R : k, < A R : k, < A R : k, < A, 7 7 cos θ cos θ cos θ 6 cos θ cosθ cosθ No etato, θ,, pelo que

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira

Aula 11. Separação de Variáveis em Coordenadas Esféricas. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira Eletromagetismo I Prof. Ricaro Galvão - Semestre 05 Preparo: Diego Oliveira Aula Separação e Variáveis em Cooreaas Esféricas Em cooreaas esféricas, a Equação e Laplace é aa por φr,θ,ϕ) = 0 r r ) r φ r

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária

Resposta ao Impulso, ao Degrau e à Excitação Arbitrária 9 Resposta ao Impulso, ao Degrau e à Excitação Arbitrária INTRODUÇÃO Estuamos, até agora, a resposta e sistemas iâmicos às excitações harmôicas e perióicas, seo que essas últimas foram trasformaas, através

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves

ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Nível Avaçao ALGORITMO DE GOSPER E APLICAÇÕES Humberto Silva Naves Cotiuao com as iéias o artigo Itegrais iscretas (e Euaro Poço a Eurea úmero 7), vamos tetar escobrir fórmulas fechaas para algus somatórios

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas.

CÁLCULO I. Apresentar a técnica de derivação implícita; Resolver problemas envolvendo taxas relacionadas. CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula no 3: Derivação Implícita. Derivaa a Função Inversa. Taxas Relacionaas. Objetivos a Aula Apresentar a técnica e erivação implícita;

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari [email protected] Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio.

05 - (MACK SP) O coeficiente do termo em x -3 no BINÔMIO DE NEWTON. desenvolvimento de (UNIFOR CE) No desenvolvimento do binômio. BINÔMIO DE NEWTON 0 - (UNIFOR CE) No desevolvimeto do biômio 4 ( ) 4 8 4, o termo idepedete de é 0 - (PUC RJ) O coeficiete de o desevolvimeto 7 0 5 5 0 0 - (PUC RJ) No desevolvimeto do biômio 4 8 ( ),

Leia mais

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados Gabarto a sta e Iterpolação e Métoo os Mímos Quaraos ercíco : a cos Prmera orma: Iterpolação e agrage 8 5 P cos5 P - 89765 6 5 85 5 5 5 P 5 : : rro Portato 6 cos9 9 ; -5 6 9-9 - 6 5 5 5 85 cos6 6 ; 5 9

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE

VIBRAÇÕES MECÂNICAS - CAPÍTULO 2 - VIBRAÇÃO LIVRE VIBRAÇÃO LIVRE VIBRAÇÕES MECÂNICAS - CAPÍTULO - VIBRAÇÃO LIVRE 3. VIBRAÇÃO LIVRE Cofore ostrao o apítulo aterior, uitos sisteas iâios poe ser represetaos por ua equação ifereial e segua ore, liear, o oefiietes ostates

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Considere agora uma função f cujo gráfico é dado por y 0 O que ocorre com f() quando se aproima de por valores maiores que? E quando se aproima de

Leia mais

s: damasceno.info.

s:  damasceno.info. Matemática II 9. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.amasceno.ino www.amasceno.ino amasceno.ino - Derivação implícita. Consiere

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes.

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes. ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis depedetes. - DISTRIBUIÇÃO DE FREQUÊNCIA a) Dados Brutos É um cojuto resultate

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA 1 Uma série de potêcias depede de uma variável real e apreseta costates, chamadas de coeficietes. Ela se apreseta da seguite forma: Quado desevolvemos a série, x permaece x, pois é uma variável! O que

Leia mais

Representação de Números em Ponto Flutuante

Representação de Números em Ponto Flutuante Represetação de Números em Poto Flutuate OBS: Esta aula é uma reprodução, sob a forma de slides, da aula em vídeo dispoibilizada pelo prof. Rex Medeiros, da UFRN/ECT, em https://youtu.be/ovuymcpkoc Notação

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero [email protected] http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais