CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE"

Transcrição

1 CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas de todas as ordes em a e costrua-se a série de potêcias f a) a) f ' a) a ) a ) ) f " a) f a)! )! ou seja a ) ) f a) )! 0) covecioado-se esta ultima represetação que f a) f a) A esta série chama-se série de Taylor de f ) com origem em a ; quado seja a 0 a série )! desiga-se por série de Mac-auri f ) 0) Vejamos algus eemplos ) A série!! )! ou )! é série de Mac-auri de f ) e pois para esta fução tem-se f 0) f 0) f 0) f -) 0) e 0 ) Para f ) / costrua-se a série de Taylor com origem em a Atededo a que f -) ) ) obtém-se a série ) ) ) )!! ou seja )! ) ) ) )! )! 6

2 ) ) ) ) ou aida ) ) Nos dois eemplos apresetados a soma da série de Taylor coicide com f ) para cada pertecete aos respectivos itervalos de covergêcia: )! e ] - [ ) ) ) ] 0 [ Nem sempre porém assim acotece A série de Taylor poderá ser covergete para certo valor 0 e a respectiva soma ão coicidir com f 0 ) Por eemplo a fução f ) e 0 / 0 0 tem derivadas de todas as ordes ulas a origem ; a série de Mac-auri é etão uma série com os termos todos ulos cuja soma ão coicide evidetemete com o valor da fução para os valores de 0 Estuda-se seguidamete um teorema que dá as codições para que uma fução seja soma da respectiva série de Taylor de Mac-auri) para os valores de que a façam covergete Teorema : A codição ecessária e suficiete para que a série de Taylor de f ) com origem em a suposta covergete em certo 0 teha por soma f 0 ) é que para 0 o resto da fórmula de Taylor de ordem - de f ) com origem em a teda para zero Demostração : Cosiderado a fórmula de Taylor de ordem para f ) com origem em a a ) ) f ) f a) a) f ' a) f a) r ) )! vê-se que a parte poliomial ou seja f ) r ) coicide com a soma dos primeiros termos da série e Taylor de f ) com origem em a Supodo que a série de Taylor coverge para 0 ter-se-á f 0 ) f a) 0 a) f ' a) a 0 a ) ) f ) )! 7

3 se e só se f 0 ) lim [ f 0 ) r - 0 ) ] o que equivale a ter-se lim r - 0 ) 0 como se queria provar Na prática a aplicação directa da codição do teorema para averiguar sobre a evetual igualdade etre f ) e a soma da respectiva série de Taylor é ormalmete iviável Eiste o etato uma codição suficiete que permite cocluir com facilidade sobre a verificação de tal igualdade em muitos casos de iteresse É do que trata o teorema seguite : Teorema : Sedo f ) ) M para 0 com M e costates em certo itervalo I cotido o itervalo de covergêcia da série de Taylor e a que a origem a da série perteça etão f ) é aquele itervalo soma da sua série de Taylor Demostração : Nas codições do euciado o resto da fórmula de Taylor pode escrever-se a forma de agrage : a) ) r ) f *)! com * estritamete compreedido etre a e Etão para 0 e para qualquer 0 I r 0 a ) * 0 M 0 0 ) f 0 ) M! a! Como lim k /! 0 qualquer que seja k resulta l i m M 0 a )! 0 a )! dode lim r - 0 ) 0 ou aida lim r - 0 ) 0 Este último resultado garate de acordo com o teorema f 0 ) f a) 0 a) f ' a) a 0 a ) ) f ) )! qualquer que seja 0 I como se queria provar Vejamos dois eemplo de aplicação ) Sedo f ) cos tem-se f 0) f 0) 0 f 0) - f 0) 0 f 4) etc ou seja f -) 0 ) e f ) - ) ) 8

4 A série de Mac-auri para f ) cos é etão depois de elimiados os termos ulos o que equivale a associar cada termo ulo com o termo sigificativo imediatamete aterior) :! 4 4! ) )! ou ) )! O itervalo de covergêcia desta série é ] - [ e como qualquer das sucessivas derivadas de f ) cos assume sempre uma das formas ± se ou ± cos tem- -se f ) ) esse itervalo para ogo para qualquer ] - [ tem-se cos ) De modo semelhate se obteria ) )! se ) )! ] - [ Na prática em grade úmero de casos o desevolvimeto em série de Taylor Mac- -auri) tem de fazer-se por processos mais epeditos É que a obteção de uma epressão geral para as sucessivas derivadas de modo a ter-se uma epressão geral para os termos da série é ormalmete impraticável E por outro lado o estudo do comportameto do resto para saber ode é válido o desevolvimeto em sempre pode fazer-se com a simplicidade desejável Veremos o poto seguite técicas de desevolvimeto em série de Taylor Mac- -auri) que se baseiam a possibilidade de derivar e primitivar termo a termo as séries de potêcias Técicas de desevolvimeto em série - Itrodução Vamos primeiro covecioar uma simbologia que será útil o que segue Dada a fução f ) represetaremos por f k) ) com k 0 a sua derivada de ordem k covecioado-se que a derivada de ordem 0 é a própria fução f 0) ) f ) f ) ) f ) f ) ) f ) etc Cosidere-se agora a fução S) a a ) defiida o itervalo de covergêcia da série de potêcias Esta fução admite derivadas de todas as ordes o iterior desse itervalo as quais podem ser obtidas por derivação sucessiva da série termo a termo p 9

5 Repare-se que todos os termos da série são fuções do tipo f ) b a) m com b costate real e m iteiro ão egativo Sedo m 0 f ) b costate) tem-se f a) f 0) a) b b 0!) f ) a) f ) a) 0 ; sedo m tem-se f a) f 0) a) f ) a) f ) a) f m - ) a) 0 f m) a) b m!) f m) a) f m) a) f m) a) 0 Aplicado estes resultados aos termos da série de potêcias S) o itervalo de covergêcia obtém-se a a ) p de soma ) S p a) a p!) ) S p a) a p!) p ) S a) a p!) sedo que S k) a) 0 para k { p p p } Costruido a série de Taylor com origem em a para a fução S) elimiação dos evetuais termos ulos a a ) p obtém-se após a ) p! p a p!) a ) p! p a p!) a ) p p a p!) ou seja após simplificação que é a série origial Isto é p p p ) a a) a a) a a Teorema : Qualquer série de potêcias em a é série de Taylor com origem em a da sua própria soma - Obteção prática do desevolvimeto O teorema estudado em jutamete com a possibilidade de derivar e primitivar termo a termo as séries de potêcias permite obter de forma epedita desevolvi- 0

6 metos em série de Taylor em muitos casos de iteresse prático Os casos típicos de aplicação desta técica são os seguites : º Caso : Desevolver f ) em série de Taylor com origem em a sabedo que a fução admite como primitiva certa fução F) que se sabe ser defiida por uma série de potêcias em a o respectivo itervalo de covergêcia I Neste caso de F) termo a a ) p para I resulta por derivação termo a p f ) a p a ) pelo meos para INT I podedo esta igualdade prologar-se às etremidades do itervalo caso elas seja covergete a série das derivadas [e lateralmete cotíua a fução f )] º Caso : Desevolver f ) em série de Taylor com origem em a sabedo que f ) é defiida por uma série de potêcias em a o respectivo itervalo de covergêcia J p Neste caso de f ) a a ) para J resulta por primitivação termo a termo f ) k a a ) p pelo meos para J p com k costate a determiar Para determiar a costate de primitivação k basta fazer a em ambos os membros saido k f a) Tem-se portato f ) f a) a a ) p pelo meos para J p podedo esta igualdade prologar-se às etremidades de J caso elas seja covergete a série das primitivas [e lateralmete cotíua a fução f ) ] Para ilustrar estas técicas de desevolvimeto em série apresetam-se dois eemplos : ) Para desevolver em série de Mac-auri a fução f ) ) basta otar que esta fução admite como primitiva F ) e que esta fução pode ser desevolvida pela série geométrica

7 F ) - < < Etão por derivação termo a termo f ) ) ) para - < < ) Para desevolver em série de Taylor com origem em a fução f ) log ) basta otar que f ) ) / / ) ) ) ) para < ou seja para ] - [ Tem-se etão por primitivação log ) k ) ) pelo meos para ] - [ com k costate a determiar Fazedo em ambos os membros sai k log e etão log ) log ) ) valedo a igualdade também para por ser para esse valor de covergete série e cotíua a fução f ) log )

8 Eercícios - Escreva as séries de Mac-auri para as fuções: a) se ; b) cos Estudado o comportameto do resto da fórmula de Mac-auri mostre que cada uma das fuções é soma da correspodete série o respectivo itervalo de covergêcia - Dada a fução f ) arc tg a) Mostre por idução que a derivada de ordem é dada por f ) ) - )! cos arc tg ) se [ arc tg π /)] ; b) Escreva a série de Mac-auri e mostre que a soma desta série é o valor da fução o respectivo itervalo de covergêcia - Escreva a série de Taylor com origem em a π ) para y se ) e mostre que tal série tem por soma a fução o itervalo ] - [ 4 - Cosidere a fução a) Mostre que f 0) 0 ; f ) / e b) Mostre por idução que a derivada de ordem os potos 0 tem por epressão geral f ) ) A B α β λ e / com A B α β λ costates e deduza daí que f ) 0) 0 para ; c) Costrua a série de Mac-auri para f ) e mostre que embora esta série seja covergete o itervalo ] - [ apeas para 0 a sua soma é igual ao valor de f ) 5 - Desevolva em série de Mac-auri as fuções seguites idicado os itervalos ode são válidos os desevolvimetos: a) log ) ; b) ) ; c) ) ) ; d) se cos ;

9 e) ; f) f ) arc tg 0 0 ; g) se ; h) ; i) log ) ; j) log - ) ; k) ) ) ; l) ) ; m) log ) ; ) log ) ; o) log ) ; p) ; q) arc tg ; r) log ) 6 - Desevolva em série de Taylor com origem em a as fuções seguites idicado os itervalos ode são válidos os desevolvimetos: a) ; b) e ; c) log ; d) ) ; e) - - ) ; f) 7 Determie o termo geral do desevolvimeto em série de Mac-auri da fução y 4 e aproveite o resultado para calcular y 5) 0) 8 - Desevolva segudo as potêcias de - as seguites fuções e idique os itervalos ode são válidos os desevolvimetos: a) y / ; b) y 4 ) 9 - Desevolva segudo as potêcias de / as seguites fuções e idique os cojutos ode são válidos os desevolvimetos: a) y ; b) y ) ) 0 - Desevolva segudo as potêcias de arc se a fução f ) arc se e idique o cojuto ode é válido o desevolvimeto - Desevolva segudo as potêcias de log a fução y log e idique para que valores de é válido o desevolvimeto 4

10 - Desevolva segudo as potêcias de valores de é válido o desevolvimeto a fução y e idique para que RESPOSTAS: - a) ) b) ) - b) ) - ) )! em ] - [ ; )! em ] - [ em [- ] )! 5 - a) log ) π ) em ] - [ para - ; b) / ) ) ) para - < < ; c) 0 para - < < ; 0 d) ) )! para R ; 0 e) f) ) 0 ) )!! )! para - ; g) ) )! para R ; 0 para - < ; p / par h) ) com p para - < < ; 0 ) / impar i) ) para -/ < / ; 0 j) log k) 0 para - < ; 0 ) para - < < ; l) ) 0 para - < < ; m) para - ; 5

11 ) ) para - ; 0 5 ) o) ) para - ;! ) p) ) para - < < ; q) π/4 ) para - < ; 0 r) [ ] 0 ) / / ) para - < < e 6 - a) ) ) para 0 < < ; b) 0! ) 0 c) ) ) d) 4 ) ) para 0 ; ) ) para - < < ; e) ) ) ) para 0 < < ; f) 0 ) 7 - O termo geral é 4 / ) / 8 - a) ) b) 9 - a) [ ] ) )! )! )! para R ; para 0 < 0 ) e y 5) 0) 05 / 6 ) / ) ) para 0 < < ; 0 0 ) ) ) para - < < ) / ) para < - ou > ; b) ) / ) para < - ou > 0 - ) 0 arc se ) )! para - - log 0! para > 0-0 para > -/ 6

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS

5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS 5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS Na secção aterior cocluímos que uma fução aalítica um determiado poto é holomorfa uma viihaça desse poto. Iremos mostrar que o iverso é igualmete válido. Nesta

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então

==Enunciado== 2. (a) Mostre que se h(t) é uma função seccionalmente contínua e periódica, de período T, que admite transformada de Laplace, então Departameto de Matemática - Escola Superior de ecologia - Istituto Politécico de Viseu Complemetos de Aálise Matemática Egeharia de Sistemas e Iformática Euciado e Resolução da a. Frequêcia de 5/6 Duração:

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização

Leia mais

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT46 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

δ de L. Analogamente, sendo

δ de L. Analogamente, sendo Teoremas fudametais sobre sucessões Teorema das sucessões equadradas Sejam u, v e w sucessões tais que, a partir de certa ordem p, u w v lim u = lim v = L (fiito ou ão), a sucessão w também tem limite,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Istituto Uiversitário de Lisboa Departameto de Matemática Exercícios de Sucessões e Séries Exercícios: sucessões. Estude quato à mootoia cada uma das seguites sucessões. (a) (g) + (b) + + + 4 (c) + (h)

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Matemática II º Semestre 2ª Frequência 14 de Junho de 2011

Matemática II º Semestre 2ª Frequência 14 de Junho de 2011 Matemática II 00-0 º Semestre ª Frequêcia de Juho de 0 Pedro Raposo; Maria João Araújo; Carla Cardoso; Vasco Simões O teste tem a duração de :0 horas Deve resolver os grupos em folhas separadas Grupo I

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Matemática II 28 de Junho de 2010

Matemática II 28 de Junho de 2010 Matemática II 8 de Juho de 00 Eame UCP Gestão/Ecoomia Duração: h0m Perguta 4 5 6 7 8 Cotação,5,5,5,5,5,5,5,5 GRUPO I. Calcule a derivada o poto P (, 4) da fução z(, y) log y a direcção do vector z.. Calcule

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Grupo I. ( 1) ln. (Cotação: 1,5 valores) n n. Grupo II. z. Calcule f (2,1,2)

Grupo I. ( 1) ln. (Cotação: 1,5 valores) n n. Grupo II. z. Calcule f (2,1,2) Matemática II 0-0 º Semestre Eame 7 de Jaeiro de 0 Pedro Raposo; Carla Cardoso; Miguel Carvalho O teste tem a duração de :0 horas. Deve resolver os grupos em folhas separadas.. Estude a atureza da série.

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018 Lista de Exercícios de Cálculo Módulo - Primeira Lista - 0/08. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 6 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 6 000 } { 4

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017 Lista de Exercícios de Cálculo 2 Módulo - Primeira Lista - 0/207. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 000 2 } { 4

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8.

MAT Cálculo Diferencial e Integral para Engenharia IV 2 o Semestre de a Lista de exercícios. x 2. + d) x. 1 2 x3. x x8. MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de 6 - a Lista de exercícios. Obter uma expressão das somas das séries abaixo e os respectivos raios de covergêcia, usado derivação e itegração

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente 650M MCÁLCULO 7-6 Determie se a sequêcia coverge ou diverge. Se ela covergir, ecotre o limite. 7. a (0,) 8. a 5 9. a 0. a. a e /. a. a tg ( ) p. a () 5. a 6. a 7. a cos(/) 8. a cos(/) ( )! 9. a ( )! 0.

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ] Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb) Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolaridade Versão Nome: Nº Turma: Proessor: José Tioco /4/8 Apresete o seu raciocíio de orma clara, idicado todos os cálculos que tiver de eetuar e

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho Sucessões/Fuções - º ao Eames e Iterm 000-06. Cosidere uma fução f de domíio IR +. Admita que f é positiva e que o eio O é assítota do gráfico de f.

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

(def) (def) (T é contração) (T é contração)

(def) (def) (T é contração) (T é contração) CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática

UFV - Universidade Federal de Viçosa CCE - Departamento de Matemática UFV - Uiversidade Federal de Viçosa CCE - Departameto de Matemática a Lista de exercícios de MAT 47 - Cálculo II 6-II. Determie os ites se existirem: + x x se x b x x c d x + x arcta x x x a x e, < a x

Leia mais

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 5 de Cálculo Diferencial e Integral II Sequências e Séries

Centro de Ciências Tecnológicas - CCT - Joinville Departamento de Matemática Lista 5 de Cálculo Diferencial e Integral II Sequências e Séries Cetro de Ciêcias Tecológicas - CCT - Joiville Departameto de Matemática Lista 5 de Cálculo Diferecial e Itegral II Sequêcias e Séries. Determie os quatro primeiros termos de cada uma das sequêcias dadas

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

CAPÍTULO III SUCESSÕES DE TERMOS REAIS

CAPÍTULO III SUCESSÕES DE TERMOS REAIS CAPÍTULO III SUCESSÕES DE TERMOS REAIS. Geeralidades Chama-se sucessão de termos reais a qualquer aplicação de N em R. O real u que correspode ao atural é o primeiro termo da sucessão o real u que correspode

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idetifique todas as folhas Folhas ão idetificadas NÃO SERÃO COTADAS Faculdade de Ecoomia Uiversidade Nova de Lisboa EXAME DE CÁLCULO I Ao Lectivo 009-0 - º Semestre Eame Fial de ª Época em 0 de Jaeiro

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e CAPÍTULO 3 Eercícios 3 3 Seja a equação y y 0 B Como o Eercício ( item (e, yabl B y( Bl A 0 B B B B y(! y(! B 4 4 4 l A0! A( l A solução procurada é y ( l 4 l $ % 4 Pela ª Lei de Newto, m dv dt dv v dt

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais