## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

Tamanho: px
Começar a partir da página:

Download "## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!"

Transcrição

1 ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir os vetores 3 t (4u w) 5 t u w 4 e w 3i, etermine t 3 e moo que: 3 t (4u w) 5 t u w 4 u i j e w 3i aos, vamos simplificar a epressão Assim: 3 Eliminano os parênteses: 5 5 3t 4u w 5t u w 4 Unino os termos semelhantes: 5 5 3t 5t 4u u w w Realiano o mmc no º membro a equação: 4 6u 0u 5w 8w 8t Reunino os termos semelhantes: 4 6u 3w 8t Isolano o vetor t : 4 6u 3w t Agora, substituino os vetores u (, ) e w (3, 0) : 3 t 6(, ) 3( 3, 0) 3 Multiplicano os vetores pelos respectivos escalares: ( 5, 6) ( 69, 0) t 3 Subtraino os vetores e ajustano a epressão: (, 6) t (, 6) 3 3 Multiplicano o escalar pelo vetor: 6 t, 3 3 Simplificano a coorenaa : 3 t, 3 6 Temos o vetor t procurao! 6) Determine algebricamente o vetor resultante nos casos a seguir e, ao final, represente-o graficamente: a) Observano o gráfico ao no eercício, temos que: u (0,3), v ( 4, ), t ( 0, ) e w ( 3, ) E o vetor resultante procurao, que chamaremos e R, é ao por: R u v t w Assim: R u v t w R ( 0,3) (4, ) (0, ) ( 3, ) R (, ) A representação gráfica e R está apresentaa ao lao 0 R Página e

2 LISTA DE EXERCÍCIOS Paralelismo [ou Colineariae] e Vetores [página 35] ) Dao o vetor w = (3,, 5), eterminar a e b e moo que os vetores u = (3,, ) e v = (a, 6, b)+ w sejam paralelos Inicialmente, vamos calcular o vetor v v ( a, 6, b) w v ( a, 6, b) (3,, 5) v ( a, 6, b) (6, 4,0) v ( a 6,0, b 0) Agora, como os vetores u e v evem ser paralelos, aplicamos a conição e paralelismo: n a b 3 Observe que: n 5 Resolveno a epressão separaamente, temos: a b a 30 b 0 0 a 8 b 30 a 9 5 b Que são os valores procuraos! LISTA DE EXERCÍCIOS Cálculo o Móulo e um Vetor + Vetor Unitário [página 39] 6) Calcule a istância o ponto T(, 9) à origem O problema solicita o cálculo a istância o ponto (, 9) Aplicano a fórmula a istância entre ois pontos no TO TO TO TO 5 ( T O ) ( T O ( 0) ( uc 5 0) ) T até a origem (0, 0) R, teremos: Observe na representação abaio, que a istância o ponto (, 9) O T até a origem (0, 0) O é, na verae, o móulo o vetor posição OT Então poeríamos calcular iretamente, consierano o vetor posição OT (, 9) Assim: OT ( ) OT 44 8 (9) OT 5 5 TO uc T 9 O Página e

3 9) Daos os pontos A(3, m, 4) e B(8, m, m), eterminar m e moo que AB 35 Inicialmente vamos efinir o vetor AB Então: AB B A ( 8, m, m) (3, m, 4) (5, m, m 4) Como ( 5, m, m 4) AB e AB 35, aplicano a fórmula o móulo e um vetor, teremos: AB 35 (5) ( m ) ( m Desenvolveno os quaraos 35 5 m m 8m 6 Elevano ambos os membros ao quarao 35 m 8m 4 35 m Organiano a equação o º grau 8m 6 0 Resolveno-a, teremos: 3 m e m 8m 4 Logo, os valores procuraos para m formam o conjunto solução { 3, } m ( ) m 4m 3 0 S 4) ) Obter um ponto P, o eio as cotas, cuja istância ao ponto T(,, ) seja igual a 3 P Este eercício tem uas maneiras iferentes para ser resolvio, embora utiliem o mesmo raciocínio ª MANEIRA: Se um ponto P pertence ao eio a cotas (eio ) então ele tem a forma: P ( 0, 0, ) Temos então que: PT 3, conforme o enunciao a questão Aplicano a fórmula a istância entre ois pontos, teremos: Então, substituino os valores PT ( P T ) ( P T ) ( P T 3 (0 ) (0 ) ( Desenvolveno os quaraos (*) ( 3) 4 9 Elevano ambos os membros ao quarao Resolveno a equação o º grau, encontramos: 0 ) e 4 3 ) T Logo, o ponto P poerá ser: P (0, 0, 0) ou ( 0, 0, 4) P ª MANEIRA: Se um ponto P pertence ao eio a cotas (eio ) então ele tem a forma: P ( 0, 0, ) Poemos consierar então o vetor TP, entre os pontos aos, que escreveremos: P TP P T ( 0, 0, ) (,, ) (,, ) A istância entre os pontos T e P também é o móulo o vetor TP, ou seja, TP 3 PT 3 T Aplicano a fórmula o móulo e um vetor, temos: TP () ( ) ( ) E aí segue que a resolução é iêntica à anterior partino a equação (*) veja acima Página 3 e

4 [Eercício Resolvio Bônus] Prove que o triângulo cujos vértices são os pontos A(0, 5), B(3, ) e C( 3, ) é isósceles; e calcule o seu perímetro Primeiramente, queremos provar que o triângulo ABC (veja o esquema ao lao) é isósceles A Poemos então consierar os vetores sobre seus laos: u AB Então:, v BC e w CA u AB B A ( 3, ) (0, 5) u ( 3, 7) v BC C B ( 3, ) (3, ) v (6, 0) w CA AC ( 0, 5) ( 3, ) w (3, 7) Calculano as istâncias através os móulos os vetores, temos: AB BC CA u v w (3) ( 6) (3) ( 7) (0) (7) C Note que, inicialmente, não sabemos quais os laos o triângulo têm o mesmo comprimento, e também não estamos preocupaos com a posição esse triângulo no sistema e coorenaas cartesianas Assim, o triângulo [acima] o nosso esquema e raciocínio é genérico! B Como AB temos que o triângulo ABC é isósceles [como queríamos provar] CA BC Agora, o seu perímetro ( p ) é: p p 6 58 uc AB BC CA 6) Determine as istâncias o ponto P(, 4, ) aos eios coorenaos, e, representano P no R 3 Inicialmente representaremos o ponto P no R 3 Veja: Para eterminarmos as istâncias solicitaas no eercício em questão, poeríamos utiliar uma relação [no R 3 ] que calcule a istância entre um ponto P e uma reta qualquer (que neste caso seria um os eios coorenaos, ou ) Entretanto, neste momento, aina não conhecemos tal relação Toavia temos que: A istância o ponto P ao eio será a istância o ponto P (, 4, ) ao ponto P (, 0, 0) A istância o ponto P ao eio será a istância o ponto P (, 4, ) ao ponto ( 0, 4, 0) P P ( 0, 0, A istância o ponto P ao eio será a istância o ponto P (, 4, ) ao ponto ) Veja na figura a seguir! Página 4 e

5 Desta forma, teremos os vetores: PP P PP (0, 4, ) PP P PP (, 0, ) P (, 0, 0) (, 4, ) P ( 0, 4, 0) (, 4, ) P P P PP P PP (, 4, 0) P ( 0, 0, ) (, 4, ) Calculano as istâncias através os móulos os vetores, temos: PP (0) (4) () uc P aoeio P aoeio 5 PP ( ) (0) () uc P aoeio P aoeio 5 PP ( ) (4) (0) P aoeio 7 uc P aoeio PS: uma boa observação no R 3 permite verificar os valores iretamente através o Teorema e Pitágoras LISTA DE EXERCÍCIOS Versor e um Vetor [página 4] ) Determinar o valor e a para que u = (a, a, a) seja um versor Para que um vetor qualquer seja um VERSOR, ele everá inicialmente ser unitário, ou seja, ter móulo Se o vetor u ( a, a, a) é um VERSOR, então ele everá ser unitário Assim, aplicano a fórmula o móulo e um vetor unitário, teremos: ( a ) ( a) (a) a 4a 9a 9 a 4a a 9 a 3 3) Daos os pontos A(,, 3), B( 6,, 3) e C(,, ), eterminar o versor o vetor w, tal que w 3BA BC Precisamos efinir o vetor w Para isso, escreveremos inicialmente os vetores BA e BC Assim: Página 5 e

6 BA A B (,, 3) ( 6,, 3) (7, 4, 0) BC C B (,,) ( 6,, 3) (7, 4, ) Agora, calcularemos o vetor w, pois: w 3BA BC w 3(7, 4, 0) (7, 4, ) w (,, 0) (4, 8, 4) w (7, 4, 4) O eercício solicita eterminar o VERSOR e w Então, aplicano a fórmula o VERSOR e um vetor, teremos: vers w w w w (7) (4) (4) (7, 4, 4) vers w vers w,, Que é a resposta procuraa! 5) Determinar o vetor e móulo 5, paralelo ao vetor v = (,, ) Inicialmente, vamos calcular o móulo o vetor ao v v () ( ) () 4 v v 6 Agora, calcularemos o seu VERSOR, que é unitário (tem móulo ), que tem mesma ireção (paralelo) e mesmo sentio vers v v,, ) vers v ( v 6 vers v,, Como queremos um vetor e móulo 5, multiplicamos o t 5 vers v t ,, t,, vers v por (5) e teremos o vetor peio que chamaremos e t Entretanto, como o sentio o vetor procurao t não foi efinio no problema, poeríamos ter multiplicao o ( 5), e assim teríamos um outro vetor que também satisfa as conições aas Então: vers v por t 5 vers v t 5 0,, Portanto, os vetores possíveis são: t 5,, LISTA DE EXERCÍCIOS Prouto Escalar [página 50] 4) Os pontos A, B e C são vértices e um triângulo equilátero com lao e 0 cm Calcule o prouto escalar entre AB e AC Observano o esquema ao lao, poemos escrever: B AB AC AB AC AB AC AB AC cos 0 0cos 60º 00(/ ) AB AC 50 Que é a resposta procuraa! A 60º º 60º 0 C Página 6 e

7 6) Calcular n para que seja e 30º o ângulo entre os vetores u = (, n, ) e j Inicialmente vamos calcular o móulo os vetores u e j Então: u () ( n) () j (0) () (0) u n 4 j (0) () (0) u n 5 j 0 0 j Obs: Vale lembrar que o vetor j é o VERSOR o eio e, portanto é fato que j (0,, 0) e j, tornano o cálculo o seu móulo (ao lao) esnecessário Agora, calcularemos o prouto escalar entre os vetores u e j Então: u j u j (0) n() (0) u j 0 n 0 u j n Como sabemos (pelo enunciao) que o ângulo entre os vetores aos é e 30º, aplicamos os valores encontraos anteriormente na efinição geométrica o prouto escalar Assim: u j u j cos n n 5 ()cos 30º 3 n 5 n 3n 5 n 3n 5 n ( n ) 3n 5 4n 3n 5 n 5 5 n Que é a resposta procuraa! 7) Daos os vetores a = (,, m), b = (m+, 5, ) e c = (m, 8, m), eterminar o valor e m para que o vetor a b seja ortogonal ao vetor c a Inicialmente vamos calcular os vetores a b e c a a b (,, m) ( m, 5, ) ( m 4, 4, m ) c a ( m, 8, m ) (,, m) (m, 7, 0 ) Então: Agora, para que ois vetores sejam ortogonais, o prouto escalar entre eles eve ser ZERO Conforme o enunciao ( a b) ( c a ), então [ a b] [ c a] 0 Aplicano a efinição algébrica o prouto escalar, teremos: [ a b] [ c a] 0 ( m 4)(m ) ( 4)(7) ( m )(0 Substituino os valores ) Efetuano as multiplicações 0 m m 8m Organiano 0 6m 36 Resolveno a equação o º grau, teremos: 3 m m ( ) 3m 8 0 m e 6 m Logo, os valores procuraos para m formam o conjunto solução {6, 3} S Página 7 e

8 9) Sabeno que o ângulo entre ois vetores u (,, ) e v (,, m ) é / 3, eterminar m ) Qual o valor e m para que os vetores a m i 5j 4k e b (m ) i j 4k sejam ortogonais? Página 8 e

9 3) Determinar um vetor unitário ortogonal ao vetor (,, ) v Página 9 e

10 5) Determinar o vetor v, sabeno que v 5, v é ortogonal ao eio O, v w 6 e que w j k 3 9) Daos os vetores u (, a, a ), v ( a, a, ) e ( a,, ), etermine o valor e a e maneira que u v ( u v) w w Página 0 e

11 7) Na torre a figura ao lao [veja a figura no Material Básico e Estuo], etermine o ângulo formao entre os cabos AB e AC, e o ângulo aguo que o cabo AD forma com a linha vertical Página e

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS PROF. HAROLDO FILHO COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO Algumas as utiliaes são: atribuir um significao geométrico a fatos e natureza numérica, como o comportamento e uma função real

Leia mais

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10 Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os funamentos a física 3 Uniae A Resoluções os testes propostos 1 T.56 Resposta: a I. Correta. A força elétrica tem a ireção o vetor campo elétrico, que é tangente à linha e força no ponto consierao. II.

Leia mais

QUESTÕES COMENTADAS DE MECÂNICA

QUESTÕES COMENTADAS DE MECÂNICA QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao

Leia mais

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2 Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)

P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1) P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os funamentos a física Uniae A Capítulo Campo elétrico Resoluções os testes propostos 1 T.5 Resposta: Daos: F e 10 N; q 50 mc 50 10 C A carga q é negativa. ntão a força elétrica F e e o vetor campo elétrico

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Em um plano, munido do sistema Questão 01 - (UECE/2017)

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Em um plano, munido do sistema Questão 01 - (UECE/2017) Em um plano, munio o sistema Questão 01 - (UECE/017) e coorenaas cartesianas usual, as equações x y + 6 = 0 e x + 4y 1 = 0 representam uas retas concorrentes. A meia a área a região limitaa por essas retas

Leia mais

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas Introução ao rocessamento e íntese e imagens ransformações e Visualiação: Matries Homogêneas Júlio Kioshi Hasegawa Fontes: Esperança e Cavalcanti UFRJ; raina e Oliveira 4 U; e Antonio Maria Garcia ommaselli

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

Capítulo Propriedades das operações com vetores

Capítulo Propriedades das operações com vetores Capítulo 6 1. Propriedades das operações com vetores Propriedades da adição de vetores Sejam u, v e w vetores no plano. Valem as seguintes propriedades. Comutatividade: u + v = v + u. Associatividade:

Leia mais

GAAL: Exercícios 1, umas soluções

GAAL: Exercícios 1, umas soluções GAAL: Exercícios 1, umas soluções 1. Determine o ponto C tal que AC = 2 AB, sendo A = (0, 2), B = (1, 0). R: Queremos C tal que AC = 2 AB. Temos AB = (1 0, 0 ( 2)) = (1, 2), logo 2 AB = (2, 4). Então queremos

Leia mais

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano 1 Conjunto R 1.1 Definição VETORES NO PLANO Representamos por R o conjunto de todos os pares ordenados de números reais, ou seja: R = {(x, y) x R y R} 1. Coordenadas Cartesianas no Plano Em um plano α,

Leia mais

Modulo 5 Lei de Stevin

Modulo 5 Lei de Stevin Moulo 5 Lei e Stevin Simon Stevin foi um físico e matemático belga que concentrou suas pesquisas nos campos a estática e a hirostática, no final o século 16, e esenvolveu estuos também no campo a geometria

Leia mais

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.

3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P. Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano

Leia mais

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006

PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MATEMÁTICA EXAME NACIONAL DO ENSINO SECUNDÁRIO. PROVA ESCRITA DE MATEMÁTICA 12º ano 435 e 635 2ª FASE 2006 PARECER DA ASSOCIAÇÃO DE PROFESSORES DE MAEMÁICA EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA ESCRIA DE MAEMÁICA º ano e 6 ª FASE 006 A generaliae os alunos que realizaram esta prova e eame são os que iniciaram

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

AULA 12 Aplicação da Derivada (página 220)

AULA 12 Aplicação da Derivada (página 220) Belém, e maio e 0 Caro aluno, Nesta aula ocê encontra problemas resolios e Taxas Relacionaas. Resola os exercícios as páginas e a. Leia o enunciao com muita atenção. Cuiao com as uniaes. Faça um esquema

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido):

GA3X1 - Geometria Analítica e Álgebra Linear. Definição (Segmentos orientados de mesmo comprimento, direção e sentido): G3X1 - Geometria nalítica e Álgebra Linear 3 Vetores 3.1 Introdução efinição (Segmento orientado): Um segmento orientado é um par ordenado (,) de pontos do espaço. é a origem e é a etremidade do segmento

Leia mais

O trabalho realizado pela força elétrica corresponde a energia recebida pelo elétron. 15 4

O trabalho realizado pela força elétrica corresponde a energia recebida pelo elétron. 15 4 Aprimorano os Conhecimentos e Eletriciae ista 4 Potencial Elétrico Energia Potencial Elétrica Euilíbrio Elétrico os Conutores Prof.: Célio Normano. (.C.SA-BA) Num tubo e TV, os elétrons são aceleraos em

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

Força Elétrica. 6,0 C, conforme descreve a figura (Obs.: Q 4 é negativo)

Força Elétrica. 6,0 C, conforme descreve a figura (Obs.: Q 4 é negativo) Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k

tenha tamanho igual a 5. Determinar o valor de k, se existir, para que os vetores u k,2,k Vetores Questão 1 Determine o valor de k para que o vetor v (2k,k, 3k) tenha tamanho igual a 5. Questão 2 Ache w tal que w i k 2 i k 2 i j k e w 6. Questão 3 Determinar o valor de k, se existir, para que

Leia mais

30 a Aula AMIV LEAN, LEC Apontamentos

30 a Aula AMIV LEAN, LEC Apontamentos 30 a Aula 20041124 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 301 Equações iferenciais e orem n Comecemos com consierações gerais sobre equações e orem n; nomeaamente sobre a sua relação

Leia mais

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:

SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea: Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas

Leia mais

Álgebra Linear I - Lista 7. Respostas

Álgebra Linear I - Lista 7. Respostas Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão 4 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

VETORES + O - vetor V 2 vetor posição do ponto P 2

VETORES + O - vetor V 2 vetor posição do ponto P 2 Objetivo VETORES Estudar propriedades de vetores e a obtenção de resultantes. Introdução Para localizar um ponto P em uma reta, três elementos são necessários: uma referência R, escolhida arbitrariamente,

Leia mais

Força elétrica e campo elétrico Prof. Caio

Força elétrica e campo elétrico Prof. Caio 1. (Fuvest) Os centros e quatro esferas iênticas, I, II, III e IV, com istribuições uniformes e carga, formam um quarao. Um feixe e elétrons penetra na região elimitaa por esse quarao, pelo ponto equiistante

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que

Leia mais

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC

2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC 1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,

Leia mais

Lista de exercícios de GA na reta e no plano Período de Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017

Lista de exercícios de GA na reta e no plano Período de Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017 Lista de GA no plano 1 Lista de exercícios de GA na reta e no plano Período de 016. - Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 017 1 Retas no plano 1.1) Determine os dois pontos, que chamaremos

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

MATEMÁTICA. Teorema de Tales e Semelhança de Triângulos. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Teorema de Tales e Semelhança de Triângulos. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Teorema de Tales e Semelhança de Triângulos Professor : Dêner Rocha Monster Concursos 1 Teorema de Tales O Teorema de Tales foi estabelecido por Tales de Mileto, consiste em uma interseção entre

Leia mais

1ª Prova de Geometria Analítica 1 Data: 06/09/2016

1ª Prova de Geometria Analítica 1 Data: 06/09/2016 1ª Prova de Geometria Analítica 1 Data: 06/09/2016 Nome: GRR: Curso: Nota Esta prova contém 10 questões. Confira! Valor desta avaliação: 10,0. Leia com atenção as seguintes instruções: 1. O tempo de duração

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Na figura abaixo, está representado um triângulo equilátero [ABC]. Seja a o comprimento de cada um dos lados do triângulo. Seja M o ponto médio do lado [BC]. Mostre

Leia mais

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s Simulao 1 Física AFA/EFOMM 1- A face inferior e uma camaa e nuvens é plana e horizontal. Um rojão estoura entre o solo e a camaa e nuvens. Uma pessoa situaa na mesma vertical e junto ao solo vê o clarão

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

FGE Eletricidade I

FGE Eletricidade I FGE0270 - Eletriciae I 3 a Lista e eercícios 1. Duas granes placas conutoras, paralelas entre si e separaas por uma istância e 12 cm, têm cargas iguais e e sinais opostos nas faces ue se efrontam. Um elétron

Leia mais

GA - Retas no espaço euclidiano tridimensional

GA - Retas no espaço euclidiano tridimensional 1 GA - Retas no espaço euclidiano tridimensional Prof. Fernando Carneiro, IME-UERJ Rio de Janeiro, Março de 014 Conteúdo 1 O que é reta Equação paramétrica de uma reta.1 Exemplos...........................

Leia mais

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc..

Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. Introdução a vetor Professor Fiore O que são grandezas? Chamamos de grandezas coisas que podem ser medidas. Por exemplo, tempo, área, volume, temperatura, velocidade, aceleração, força, etc.. O que são

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b.

1ª Avaliação. A substituição de x por 9 leva a uma indeterminação do tipo 0/0. ( 3) ( x ) ( ) ( ) ( ) ( ) lim = lim = lim = lim. = x b x b. ª Avaliação ) Encontre lim 9 9. A substituição e por 9 leva a uma ineterminação o tipo 0/0. ( ) + 9 lim lim lim lim 9 9 9 9 9 9 + 9 + 9 + lim 9 ( 9 ) 9 lim + + 9 + 6 9 ( + ) se 0 < < b ) Dao f, etermine

Leia mais

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.

Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. 1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um

Leia mais

III Corpos rígidos e sistemas equivalentes de forças

III Corpos rígidos e sistemas equivalentes de forças III Corpos rígios e sistemas equivalentes e forças Nem sempre é possível consierar toos os corpos como partículas. Em muitos casos, as imensões os corpos influenciam os resultaos e everão ser tias em conta.

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013

Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013 Teste Intermédio de MATEMÁTICA - 9o ano 1 de abril de 013 Proposta de resolução Parte 1 1. Como 7 0,33, representando os valores na reta real, temos 11 7 11 0,33 0,7 0.4 0,37 + Logo, ordenando por ordem

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 Matemática Etensivo V. 7 Eercícios ) D ) ) 6 Temos que: 6 e 6 Logo, C (, ) (, ). 6 Completando quadrado, temos: ( ) ( 6) ( ) ( 6 9) 9 ( ) ( ) 9 ( ) ( ) 6 ( ) ( ) 6 ( ) ( ) Logo, C (, ) e r. Portanto, (

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

"Introdução à Mecânica do Dano e Fraturamento" Parte I. São Carlos, outubro de 2000

Introdução à Mecânica do Dano e Fraturamento Parte I. São Carlos, outubro de 2000 "Introução à Mecânica o Dano e Fraturamento" Texto n.3 : FUNDAMENTOS DA TERMODINÂMICA DOS SÓLIDOS Parte I São Carlos, outubro e 2000 Sergio Persival Baroncini Proença - Funamentos a termoinámica os sólios

Leia mais

4 Estática das estruturas espaciais 1

4 Estática das estruturas espaciais 1 35 4 Estática das estruturas espaciais 4. omponentes Retangulares de uma orça Espacial. Vamos discutir os problemas que envolvem as três dimensões do espaço. onsideremos uma força atuante na origem de

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - ula 2 1. Vetores. 2. Distâncias. 3. Módulo de um vetor. Roteiro 1 Vetores Nesta seção lembraremos brevemente os vetores e suas operações básicas. Definição de vetor. Vetor determinado

Leia mais

A equação da circunferência

A equação da circunferência A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

Extensivo Física C V. 1

Extensivo Física C V. 1 Extensivo Física V Exercícios 0) Veraeira Veraeira Veraeira N o e próton N o e elétrons Veraeira Falsa Fornecer elétrons Veraeira Falsa Possui, porém, a mesma quantiae e cargas positivas e negativas Falsa

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO terça-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO terça-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P DE ELETROMAGNETISMO 06.05.4 terça-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitio estacar folhas a prova

Leia mais

Proposta de teste de avaliação 2 Matemática 9

Proposta de teste de avaliação 2 Matemática 9 Proposta de teste de avaliação Matemática 9 Nome da Escola Ano letivo 0-0 Matemática 9.º ano Nome do Aluno Turma N.º Data Professor - - 0 Na resolução dos itens da parte A, podes utilizar a calculadora.

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas GEOMETRIA ANALÍTICA Coordenadas Cartesianas EIXO DAS ORDENADAS OU EIXO DOS Y EIXO DAS ABSCISSAS OU EIXO DOS X EIXO DAS ORDENADAS OU EIXO DOS Y ORIGEM EIXO DAS ABSCISSAS OU EIXO DOS X COORDENADAS DE UM

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Etensivo v. 8 Eercícios 0) 9 6 = ; e = 3 centro Note que C = (0, 0). Também, c = e a = 3. Então, da equação c = b + a temos = b + 3 b = 4. Assim, a equação dessa hipérbole fica: = = 3 4 9 6 A ecentricidade

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que:

Análise Vetorial. Capítulo Sejam os dois segmentos de reta AB e CD, com AB = B A tal que: Capítulo 1 Análise etorial 1.1 ejam os dois segmentos de reta AB e CD, com AB = B A e CD = D C, tal que: AB = î 2ĵ ˆk CD = 3î 6ĵ 3ˆk Para verificar que AB e CD são paralelos basta verificar que AB CD =

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/2014)

Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/2014) Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/014) Prof. Alvaro Vannucci Na última aula vimos: A experiência e fena-upla e Thomas Young (1801). Se sin m interferência será construtiva (no ponto P

Leia mais

LISTA EXTRA DE EXERCÍCIOS MAT /I

LISTA EXTRA DE EXERCÍCIOS MAT /I LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A TURMA A. TESTE Nº 2 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A TURMA A. TESTE Nº 2 Grupo I ESOL SEUNÁRI OM º ILO. INIS º NO E ESOLRIE E MTEMÁTI TURM TESTE Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma

Leia mais

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD

Equilíbrio de uma Partícula Cap. 3 T CE T CD P B T DC =-T CD T DC -T CD Eemplo. MEÂNIA - ESTÁTIA esenhar todos os diagramas de corpo livre possíveis para o problema mostrado na figura abaio, considerando todos os nomes de forças como vetores. Equilíbrio de uma Partícula ap.

Leia mais

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5). GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d

Leia mais

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a NOTAÇOES R : conjunto dos números reais N : conjunto dos números naturais C : conjunto dos números complexos i : unidade imaginária: i2 = z : módulo do número z E C det A : determinante da matriz A d(a,

Leia mais

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981 CC Visão Computacional Geometria Projetiva Instituto ecnológico de Aeronáutica Prof. Carlos Henrique Q. Forster Sala IEC ramal 598 ópicos da aula Rotação em D, Escala e Refleo Deformação do quadrado unitário

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO MATERIAL EXTRAÍDO DOS LIVROS-TEXTOS (KOLMAN/ROSEN) UFSC - CTC - INE UFSC/CTC/INE p. 1 11 - ESTRUTURAS ALGÉBRICAS 11.1) Operações Binárias 11.2)

Leia mais

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella A Forma Geométrica os Cabos Suspensos Prof. Lúcio Fassarella - 008 - Problema: Determinar a forma eométrica e um cabo e comprimento L suspenso em suas extremiaes por postes e mesma altura H separaos por

Leia mais