Matemática e suas tecnologias

Tamanho: px
Começar a partir da página:

Download "Matemática e suas tecnologias"

Transcrição

1 Matemática 4 0. c a) INORRETO. O móulo e zero é igual a zero. b) INORRETO. O móulo e qualquer número negativo é o oposto o número. c) ORRETO. Os móulos e ois números opostos são iguais. ) INORRETO. O móulo e um número positivo é igual ao próprio número. e) INORRETO. 0. a fx ( + ) = x + x x= f( + ) = + f( ) = 4+ 4 f( ) = 0. fx ( + ) = x + x f( x + ) = ( x ) + ( x ) fx ( ) = x x++ x f ( x)= x Os gráficos as funções f e g são simétricos em relação ao eixo as abscissas. gx ( ) = fx ( ) 0. b Uma possível função cujo gráfico é uma parábola com vértice no ponto (0, ) é obtio por uma translação o gráfico a função fx ( )= x, uas uniaes para cima. Matemática 4 Matemática e suas tecnologias Resoluções ENEM 4 ssim: gx ( ) = fx ( ) + gx ( ) = x e Os gráficos as funções f e g são simétricos em relação ao eixo as abscissas. gx ( ) = fx ( ) 07. O móulo e um número real é não negativo. ssim, os resultaos obtios por Marcos e por ntônia são números reais positivos ou iguais a zero, poeno ser inteiros ou não. 08. c fx ( ) = 4x f( x) = 4 ( x) = 4x= fx ( ) função fx ( )= 4 x é ímpar e o gráfico é uma reta. 09. O gráfico e uma função par é simétrico em relação ao eixo as orenaas. 0. c De 98 a 007 tivemos 6 intervalos e 4 anos. O aumento o número e espécies ameaçaas e extinção foi e = 7 a caa intervalo e 4 anos. Portanto, o número e espécies ameaçaas e extinção em 0 era estimao em = b Méia para o reagente : = = 6. Méia para o reagente : = = 48, Méia para o reagente : = = 68,. Méia para o reagente 4: = = 66, Méia para o reagente : = = 66,. O pesquisaor está especialmente interessao naquele reagente que apresentar a maior quantiae os resultaos e seus experimentos acima a méia encontraa para aquele reagente: Reagente Reagente Reagente Reagente 4 Reagente Experimento 0 Experimento 6 6 > 4,8 4 Experimento 6 7 > 4,8 8 > 6,8 7 > 6,6 9 > 6,6 Experimento > 4,8 0 > 6,8 8 > 6,6 0 > 6,6 Experimento > 6 > 4,8 > 6,8 > 6,6 > 6,6 Logo, o reagente e número é que atene às expectativas o pesquisaor. Matemática e suas Tecnologias ENEM 4

2 0. a De acoro com o gráfico, a quantiae total e bactérias por ia a semana é aa por: ạ feira: = 600 ạ feira: = ạ feira: = 70 ạ feira: = 00 6 ạ feira: = 700 Sábao: = 90 Domingo: = 0 Portanto, a quantiae total e bactérias nesse ambiente e cultura foi máxima na ạ feira. 0. b Despesa salarial com os 70 funcionários o Ensino Funamental em 04:,% e = 0, = = Despesa salarial com os 80 funcionários o Ensino Méio em 04: 7% e = 0, = = Despesa salarial com os 0 funcionários o Ensino Méio em 04:,% e = 0, = = espesa com outros custos a empresa não sofrerá alteração. Logo, para que o lucro mensal em 04 seja o mesmo e 0, o aumento a receita a empresa será a iferença entre os totais pagos com salários nos ois anos, ou seja: ( ) = a Méia o caniato I: = = = 8, Méia o caniato II: 4 x+ 6 4x+ 0 = =? Méia o caniato III: = = = 9, Para o caniato II vencer a competição, a sua méia terá que ser maior que,8: 4x + 0 >,8 4x + 0 > 8 4x > 68 x > 7. 0 Logo, a menor nota que o caniato II everá obter na prova final e química, para vencer a competição, é olocano as notas os caniatos em orem crescente, tem-se a tabela: aniatos K 4 L 4 9 M 4 6 N P Meiana as notas o caniato K: = + 4 Meiana as notas o caniato L: =, + Meiana as notas o caniato M: = + 7 Meiana as notas o caniato N: = Meiana as notas o caniato P: = Logo, N será o caniato aprovao. 06. a Se o valor a moa é igual a 8, então essa é a numeração que apresenta o maior número e reclamações. Seno x e ( x), respectivamente, a porcentagem e sapatos brancos e pretos com efeito, utilizano o conceito e méia aritmética poneraa, tem-se: x 0+ ( x) = 04, x= 0, e x = 04, x+ ( x) Esse resultao inica que a maior quantiae e sapatos com efeito é a cor branca. Portanto, não serão mais encomenaos os sapatos e cor branca e os e número e Supono que a taxa e esemprego oculto o mês e ezembro e 0 tenha sio a metae a mesma taxa em junho e 0, então a taxa e esemprego oculto o mês e ezembro e 0 foi e, %. Supono que a taxa e esemprego total em ezembro e 0 seja igual a essa taxa em ezembro e 0, então a taxa e esemprego total em ezembro e 0 foi e 9%. Logo: a % +,% = 9 % a = 7, e a) quantiae total e kcal contia em sanuiche completo, porção e fritas, refrigerante iet 00 ml e porção e frutas é igual a = 7. b) quantiae total e kcal contia em sanuiche light, porção e fritas, refrigerante 00 ml e porção e frutas é igual a = 646. c) quantiae total e kcal contia em sanuiche light, porção e fritas, suco e laranja 00 ml e porção e frutas é igual a = 64. ) quantiae total e kcal contia em sanuiche e peixe, porção e fritas, suco e laranja 00 ml e porção e frutas é igual a = 709. e) quantiae total e kcal contia em sanuiche e peixe, porção e fritas, refrigerante iet 00 ml e torta e maçã é igual a = 766. Portanto, a refeição e maior valor energético, não exceeno o limite e 800 kcal, é a que se apresenta na alternativa E. 09. b taxa e oação e sangue no país é aa por: 670 9, % intensificação a campanha everia ser realizaa nas regiões em que o percentual e oaores por habitantes fosse menor ou igual ao o país. Portanto, e acoro com a tabela, a campanha everia ser intensificaa nas regiões Norte, Noreste e Sueste. 0. Observa-se que, os 8 milhões e hectares o país, 80 milhões são ocupaos pela agricultura. Dessa forma, o percentual corresponente à área utilizaa para agricultura em relação à área o território brasileiro, é ao por: , , 094 = 94, % Matemática e suas Tecnologias ENEM 4

3 ENEM 4 Matemática 4 0. b Sejam x e y, respectivamente, os números e carros roubaos as marcas X e Y. x+ y= 060, x= y x+ y= 90 x= 60 e y = 0 x= y Portanto, o número esperao e carros roubaos a marca Y é b Seja uma matriz invertível tal que =. = = Multiplicamos os ois membros pela inversa a matriz. = I n= In = In matriz é a matriz ientiae e orem n, ou seja: = soma os elementos a matriz é +++ = n. nparcelas 0. x M = 0 y t M é ortogonal M = M ssim: MM = MM I = MM t t x y = x y 0 + x xy 0 = xy y 0 y = y = ou y = + x = x= 0 Se x = 0 e y =±, então xy = 0. Portanto, M = ou M = e o menor valor possível 0 que um os elementos e M poe assumir é. 04. e João: Pacote : 740 = 80 reais Pacote : = 0 reais Pacote : 60 + = 0 reais Maria: Pacote : 4 40 = 60 reais Pacote : = 0 reais Pacote : 60 reais Portanto, tanto para João como para Maria o pacote é mais econômico. 0. b Seno i a iae a criança, temos: i i 4 = = i=+ i = i anos i i + Portanto, para o meicamento X, temos: 6 ose e criança = 60 = 60 = 0 mg b Sejam x, y e z, respectivamente, os preços o cinto, a camiseta e a calça. x+ y+ z = x+ y+ z= x+ y+ z = 8 Somano as três equações, temos: 4x+ 4y+ 4z= x+ y+ z= 8 ssim: x+ y+ z= x + ( x+ y+ z) = x+ 8 = x= Portanto, o preço e cinto é reais. 07. x + y + 0z = 00 x + y + z = 9 x z = 0 x z= 0 z= x x+ y+ z= 9 x+ y+ x= 9 y= 9 x x + y + 0z = 00 x + (9 x) + 0x = 00 x x + 0x = 00 x = 40 Matemática e suas Tecnologias ENEM 4

4 08. b Executivo: W: 00, + 40, = 00, K: 80, +, = 0, L: 80, + 0, = 0, Esposa: W: 00, + 40, = 9, 00 K: 80, +, = 7, L: 80, + 0, = 40, 0 Portanto, para ter mais economia o executivo eve pegar o táxi a empresa W e sua esposa o táxi a empresa K. 09. e Sejam g, m e t, respectivamente, os preços a gelaeira, a máquina e lavar roupas e a televisão, e Q a quantia isponível. g+ m= Q + 00 t+ m= Q g+ t= Q g+ m+ t= Q+ 700 Substituino caa uma as três primeiras equações na quarta, temos: Q t = Q t = 00 Q g = Q g = 00 Q m = Q m = 000 Determinamos a quantia isponível = Q+ 700 Q= 00 ssim: a) FLS gelaeira custa 00 reais a mais o que a máquina e lavar. b) FLS televisão custa 00 reais a mais o que a gelaeira. c) FLS televisão custa 00 reais a mais o que a máquina e lavar. ) FLS t+ g= = 800 e) VERDDEIR Q = e Sejam p, i e c, respectivamente, as quantiaes, em porções e 00 gramas, e pastel, iogurte e chocolate que caa criança eve receber. 00p+ 0i+ 600c = 0 8p+ 4i+ 4c = 66 p+ 0, i+ 06, c =, 4p++ i c = 7 4p+ i+ c = 0p+ i+ 6c = Subtraímos a primeira equação a seguna: 0p+= i 6 = i 6 0p Subtraímos a primeira equação o obro a terceira: 6p+ 9i= 7 ssim: 6p + 9 (6 0p) = 7 6p p = 7 p = 0, i = 6 0p i = 6 0 0, i= 4p ++ i c = 7 4 0,++ c = 7 c = Portanto, são uas porções (e 00 g) e chocolate, porção e iogurte e meia porção e pastel, o que corresponem a 0 gramas e pastel, 00 gramas e iogurte e 00 gramas e chocolate. 4 Matemática e suas Tecnologias ENEM 4

5 ENEM 4 Matemática 4D 0. e D G F D G F D M N G F O M D G 0. omo a paciente eve tomar copo e água a caa meia hora urante 0 horas, o número e copos e água que ela eve tomar é 0 = 0. ssim, o volume e água que a paciente vai tomar é 0 0 ml = 000 ml = L e, portanto, ela escolheu a garrafa IV, pois L =,L. 0. b área ocupaa pela nova piscina eve ser menor que a ocupaa pela piscina já existente, então: 60 setor < retângulo πr < R < R < 00 R < 00 R < 800 R = 8, pois R eve ser natural e 8 < 800 < a I) área o trapézio o esquema I, em cm, é ( ) 80 = II) área o retângulo o esquema II, em cm, é = III) O aumento a área, em cm, foi e = c N F N' M' 07. 6, 8 = Escala e : 4, Tamanhos reais: L =, cm x = 6,4 cm c =,4 cm x = 40,8 cm cm 90 c = 0 = 0 cm 4 = 0 0 cm (Triângulo pitagórico) Total: = 0 cm =, m. 09. a ) Observano que 6,4 = e 0, = 4, caa camaa, na área e armazenamento, comporta x 4 = 0 contêineres. ) Para armazenar 00 contêineres, serão necessárias (e suficientes) camaas, pois 00 0 =. m Q 0 m ) pós o empilhamento total a carga, a altura mínima a ser atingia é, m =, m. 0. c Percurso e meia circunferência πr p = = π R = 4, 670 p 0000 km 0000 km tp = horas 800 km / h 06. a Toas as áreas calculaas a seguir estão em quilômetros quaraos. área coberta pelas antenas antigas era: S = (π ) = 8π área coberta pela nova antena é: S N = π 4 = 6π área e cobertura foi ampliaa em 6π 8π = 8π 40 D 40 0 Pitágoras: = 0 + (40 ) = = 000 = Km Matemática e suas Tecnologias ENEM 4

6 Matemática 4E 0. c sen( + ) = sen cos+ sen cos sen x x + sen x cos = x sen x x + cos sen x + x sen x = x cos = senx sen x cos x 0. b sen( + ) = sen cos+ sen cos sen( ) = sen cos a) Incorreto sen0 = sen( + 8 = ) sen cos8 + sen8 cos b) orreto sen0 = sen( = ) sen0 cos0 + sen0 cos0 c) Incorreto sen0 = sen( ) = sen cos ) Incorreto sen( 0 ) sen0 cos0 e) Incorreto sen0 o = sen( o ) = sen o cos o sen o 0. Se α e β são as meias os ois ângulos internos e aguos e um triângulo retângulo, então: 90 o + α + β = 80 α + β = 90 cos( α + β) = cos( 90 ) = e sen( α+ β) = sen( 90 = ) 0. cos( ) + = (cos sen ) + ( sen + cos ) cos( ) + = cos cos( ) = cos 06. b y= cos4 cos6 sen4 sen6 y = cos( ) y= cos( 0 ) y= 07. b α= 0 α= 60 O triângulo P é isósceles, conforme inicao na figura a seguir. P 08. e Se, e inicam as meias os ângulos internos e um triângulo (qualquer), então + + = 80. Portanto, é correto afirmar que, necessariamente, sen( + + ) = sen( 80 ) = 0 e cos( + + ) = cos( 80 ) =. 09. c a) Incorreto sen( x) = senx cos x. Portanto, sen x não é, necessariamente, igual a senx. Nesse caso, seno x a meia e um ângulo aguo (seguno o enunciao), sen x= senx se, e somente se, x = 60. b) Incorreto sen( x) = senx cos x. Portanto, sen x não é, necessariamente, igual a cos x. Nesse caso, seno x a meia e um ângulo aguo (seguno o enunciao), sen x= cos x se, e somente se, x = 0. c) orreto De acoro com o enunciao, x inica a meia e um ângulo aguo. Portanto: senx = x= 0 cosx= cos60 = ) Incorreto Seguno o enunciao, x é a meia e um ângulo aguo. Então: tgx= x= 4 x = 90 tangente não está efinia para o arco e 90. Portanto, é incorreto afirmar que tg x é igual a. e) Incorreto Se x é a meia e um ângulo aguo, então, necessariamente, cosx cosx. cosx = cosx se, e somente se, cosx= ou cosx=. De fato: cosx= cosx cos x sen x= cosx cos x ( cos x) = cosx cos x cosx = 0 cosx= ou cosx= Mas, nesses casos, os ângulos corresponentes não são aguos. 0. e E= senx cosx E= ( senx cos x) E = ( 0, 04) E = 008, m 60 Nessa figura, inica a menor istância o barco até o ponto fixo P. Portanto, o triângulo retângulo estacao na figura, temos que: = sen60 = 000 = 000 m Matemática e suas Tecnologias ENEM 4

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os funamentos a física Uniae A Capítulo Campo elétrico Resoluções os testes propostos 1 T.5 Resposta: Daos: F e 10 N; q 50 mc 50 10 C A carga q é negativa. ntão a força elétrica F e e o vetor campo elétrico

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo

AFA Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo AFA 2010 1. Uma pequena fábrica de cintos paga a seus funcionários o salário, conforme tabela abaixo CARGO SALÁRIOS Nº DE (em reais) FUNCIONÁRIOS COSTUREIRO(A) 1 000 10 SECRETÁRIO(A) 1 500 4 CONSULTOR

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 58. Em uma festa com n pessoas, em um dado instante, mulheres se retiraram e restaram convidados na razão de homens

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x

1ª Avaliação 2012/1. lim. x 2x. x x x x x. lim lim lim lim. x x x. x x ª Avaliação 0/ ) Determine o limite a epressão: lim. 0 ( ) ( ) ( ) lim 0 ( ) ( 0) 4 lim lim lim lim 0 0 0 0 ( ) ) Derive a função g ( ). 4 4 g ( ) g ( ) g ( ) 4 4 g ( ) g ( ) g( ) g( ) 4 6 8 9 4 g( ) 4

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 2010 / 11) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 2010 / 11) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) (PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 010 / 11) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Uma empresa oferece serviços de acesso a internet cobrando

Leia mais

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO FINAL 1ª SÉRIE MATEMÁTICA. CONTEÚDO DA RECUPERAÇÃO FINAL- Álgebra

LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO FINAL 1ª SÉRIE MATEMÁTICA. CONTEÚDO DA RECUPERAÇÃO FINAL- Álgebra Colégio J. R. Passalacqua Colégio São Vicente de Paulo Penha Colégio Santo Antonio de Lisboa Colégio Francisco Telles Colégio São Vicente de Paulo LISTA DE EXERCÍCIOS PARA RECUPERAÇÃO FINAL ª SÉRIE MATEMÁTICA

Leia mais

Grupo I Cada resposta certa...10 Grupo II

Grupo I Cada resposta certa...10 Grupo II Provas de Acesso ao Ensino Superior Para Maiores de Anos Candidatura de 0 Exame de Matemática Tempo para realização da prova: horas Tolerância: 0 minutos Material necessário: Material de escrita. Máquina

Leia mais

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2 MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2 [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

VESTIBULAR 2002 Prova de Matemática

VESTIBULAR 2002 Prova de Matemática VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos P.44 Daos: 5 6 C; $ B 4 J Da expressão o trabalho a força elétrica: $ B ( B ) 4 5 6 ( B ) B 5 4 6 Esse resultao inica ue B. B P.45 Se os potenciais e e B valem, respectivamente, 5 e, em relação a um certo

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 Matemática Semi-Extensivo V. Exercícios 01 (x, x; (, 1; (7, d, = d, x x x x = x + 4x + 4 + x + x + 1 = x 14x + 49 + x 4x + 4 4x = 48 x = (, 0 (1, 1; G(, ; M(, 1 (x, y = x = 1 x x = 5 = y x y 1 = 1 y x

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 2 DISTRIBUIÇÃO GRATUITA Simulado enem 0 a. série e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 0 lternativa: ) Incorreta. 7 + = + =, e não é primo. ) Incorreta. 7 + = + =, e não é primo. ) orreta. + = 6 + = 7, e 7 é

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s

Prof. André Motta - A) 3s; 10 m/s; 20 m/s B) 3s; 15 m/s; 30 m/s C) 6s; 10 m/s; 20 m/s D) 6s; 20 m/s; 40 m/s Simulao 1 Física AFA/EFOMM 1- A face inferior e uma camaa e nuvens é plana e horizontal. Um rojão estoura entre o solo e a camaa e nuvens. Uma pessoa situaa na mesma vertical e junto ao solo vê o clarão

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10 Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:

Leia mais

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente MATEMÁTICA CADERNO CURSO D ) I) x 0 As raízes são e e o gráfico é do tipo FRENTE ÁLGEBRA n Módulo 7 Sistema de Inequações ) I) x x 0 As raízes são e e o gráfico é do tipo Logo, x ou x. II) x x 0 As raízes

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado!

## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## , determine t 1 3. Isolando o vetor t : Temos o vetor t procurado! ## RESOLUÇÃO DE EXERCÍCIOS DO MATERIAL BÁSICO DE ESTUDO ## LISTA DE EXERCÍCIOS Operações com Vetores na Forma Algébrica [Analítica] no R [página 7] 5) Daos os vetores u i j Inicialmente, antes e substituir

Leia mais

Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.

Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4

Leia mais

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2

Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2 Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA

UNIVERSIDADE ESTADUAL DA PARAÍBA UNIVERSIDADE ESTADUAL DA PARAÍBA Comissão Permanente do Vestibular Comvest Rua Baraúnas, 5 Bairro Universitário Campina Grande/PB CEP: 5849-500 Central Administrativa º Andar Fone: (8) 5-68 / E-mail: comvest@uep.edu.br

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Em um plano, munido do sistema Questão 01 - (UECE/2017)

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Em um plano, munido do sistema Questão 01 - (UECE/2017) Em um plano, munio o sistema Questão 01 - (UECE/017) e coorenaas cartesianas usual, as equações x y + 6 = 0 e x + 4y 1 = 0 representam uas retas concorrentes. A meia a área a região limitaa por essas retas

Leia mais

Para mais exemplos veja o vídeo:

Para mais exemplos veja o vídeo: Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

MATEMÁTICA Questões de 1 a 20

MATEMÁTICA Questões de 1 a 20 MATEMÁTICA Questões de 1 a 0 Um corpo lançado do solo verticalmente para cima tem posição em função do tempo dada pela função f(t) = 40 t 5 t, onde a altura f(t) é dada em metros e o tempo t é dado em

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.

Leia mais

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. 1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã

Leia mais

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS

MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS PROF. HAROLDO FILHO COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO Algumas as utiliaes são: atribuir um significao geométrico a fatos e natureza numérica, como o comportamento e uma função real

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

Exercícios propostos

Exercícios propostos Os funamentos a Física Volume 3 1 Capítulo 3 Trabalho e potencial elétrico P.44 Daos: 5 1 6 C; $ B 1 4 J Da expressão o trabalho a força elétrica: $ B (V V B ) 1 4 5 1 6 (V V B ) V V B 1 5 1 4 6 Esse resultao

Leia mais

Trigonometria nos Triângulos

Trigonometria nos Triângulos M TRIRÃO TRIRÃO T TRIRÃO T TRIRÃO T TRIRÃO T TRIRÃO T TRIRÃO TRIRÃO T Trigonometria nos Triângulos (U) uas avenias retilíneas e se cruzam seguno um ângulo e 0. Um posto e gasolina situao na avenia a 400

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

GABARITO. Matemática D 11) B. Como β = C C = 3β.

GABARITO. Matemática D 11) B. Como β = C C = 3β. GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para

Leia mais

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes: 2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática A. d As distâncias nadadas formam uma progressão aritmética. a 5 m a5 m a5 a+ 4 r 5 + 4 r r m a a+ 9 r a 5 + 9 a m. c Sejam r, e + r as medidas dos ângulos internos do triângulo. Como a soma

Leia mais

Aluno (a): Meta: Resolver em 60min ± 10min

Aluno (a): Meta: Resolver em 60min ± 10min Aluno (a): Meta: Resolver em 60min ± 10min Exercício 1: O gráfico que melhor representa a 4 x 4, se x 7 função real definida por é x x, se x a) b) c) Assinale a opção correta. a) Apenas as afirmativas

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos os funamentos a física 3 Uniae A Resoluções os testes propostos 1 T.56 Resposta: a I. Correta. A força elétrica tem a ireção o vetor campo elétrico, que é tangente à linha e força no ponto consierao. II.

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Calcule a soma de todos os números inteiros maiores do que -300 e menores do que 501, que não são múltiplos de 15. MAT. 2 GRUPO 5 TIPO A 02. Para

Leia mais

MATEMÁTICA. Questões de 01 a Determine a equação da circunferência com centro no vértice da parábola e que tangencia a reta y = x 1

MATEMÁTICA. Questões de 01 a Determine a equação da circunferência com centro no vértice da parábola e que tangencia a reta y = x 1 GRUPO 5 TIPO B MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Determine a equação da circunferência com centro no vértice da parábola y = ( x + 1) 2 + 1 e que tangencia a reta y = x 1. MAT. 2 GRUPO 5 TIPO B

Leia mais

π. e) 6 π. c) π. d) 8 π b) 4

π. e) 6 π. c) π. d) 8 π b) 4 Lista de Exercícios º ANO Prof. Ulisses 1. (Mackenzie) Considerando o esboço do gráfico da função f(x) = cos x, entre 0 e π a reta que passa pelos pontos P e Q define com os eixos coordenados um triângulo

Leia mais

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9. Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno

Leia mais

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total?

a) Sabendo que o carro A faz 6 km por litro de combustível no circuito, quantos litros esse carro gastará durante o percurso total? UFJF MÓDULO I DO PISM TRIÊNIO 013-015 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA Questão 1 Um circuito e teste para carros é constituío e uas pistas circulares e raios 10 km e 5 km, que se intersectam

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o semestre de 4 Data / / Escola Aluno Questão O gráfico a seguir foi

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T.

Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física. Referências bibliográficas: H S T. Universiae eeral o Paraná Setor e Ciências Eatas Departamento e ísica ísica III Prof. Dr. Ricaro Luiz Viana Referências bibliográficas: H. -4 S. -5 T. 18- Aula Lei e Coulomb Charles Augustin e Coulomb

Leia mais

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA FUVEST 08/0/009 //008 Seu pé direito nas melhores Faculdades MTEMÁTIC 0. Na figura, a reta r tem equação y x + no plano cartesiano Oxy. lém disso, os pontos 0,,, estão na reta r, sendo 0 0,). Os pontos

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

Com essas informações, determine os valores de x, y e z sugeridos pelo consultor. Análise Quantitativa e Lógica Discursiva - Prova A

Com essas informações, determine os valores de x, y e z sugeridos pelo consultor. Análise Quantitativa e Lógica Discursiva - Prova A 1. Renato decidiu aplicar R$ 100.000,00 em um fundo de previdência privada. O consultor da empresa responsável pela administração do fundo sugeriu que essa quantia fosse dividida em três partes x, y e

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA 81 1 SOLENÓDE E NDUTÂNCA 1.1 - O SOLENÓDE Campos magnéticos prouzios por simples conutores, ou por uma única espira são, para efeitos práticos, bastante fracos. Uma forma e se prouzir campos magnéticos

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MTMÁTI - o ciclo 017 - a ase Proposta de resolução aderno 1 1. omo no histograma estão representados todos os alunos a probabilidade de um aluno, escolhido ao acaso, ter uma massa corporal

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 017 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Resolução do Simulado Camiseta Preta

Resolução do Simulado Camiseta Preta Resolução do Simulado amiseta Preta Questão 01 Vejamos a simulação da quantidade de partidas que um time deverá jogar em ambos os anos nesta competição. Primeiro Ano Primeira Fase 6 = 6 6 = 6 partidas

Leia mais

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3. TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 017 / 018 Teste N.º 1 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios

CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa

Leia mais

1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0. (b) 4 t2 8t t2 8t = 0

1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0. (b) 4 t2 8t t2 8t = 0 1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0 (b) 4 t2 8t+16 9 2 t2 8t+17 + 32 = 0 4 2. A embalagem mostrada na figura contém iogurte na parte de baixo e cereais

Leia mais

A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos.

A) 1 hora. B) 1 dia. C) 20 minutos. D) 30 minutos. E) 45 minutos. MATEMÁTCA 01. Júnior marca com Daniela às 1 horas para juntos assistirem a um filme, cuja sessão inicia às 16 horas. Como às 1 horas, Daniela não chegou, Júnior resolveu esperar um tempo t 1 igual a 1

Leia mais

APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA

APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA RESOLVIDAS E COMENTADAS RESOLUÇÃO DETALHADA DE TODAS AS QUESTÕES ESTUDE CERTO! COMPRE JÁ A SUA! WWW.LOJAEXATIANDO.COM.BR profsilviocarlos@yahoo.com.br

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

RESPOSTA ESPERADA MATEMÁTICA

RESPOSTA ESPERADA MATEMÁTICA Questão 3 a) Quando se usa o cartucho Preto BR, o custo por página é igual a 90/80 /9. Para o cartucho Preto AR, esse custo baixa para 50/400 /6. Como /6 < /9, o cartucho Preto AR é mais econômico. Você

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

PROVA DE MATEMÁTICA. Vestibular GAB1 Julho de CEV/UECE 03.

PROVA DE MATEMÁTICA. Vestibular GAB1 Julho de CEV/UECE 03. PROVA DE MATEMÁTICA. Se x e y são as médias aritmética e geométrica, respectivamente, dos números, e, então a 8 razão y/x é igual a: /7 7/ C) 7/8 D) 8/7. Uma companhia de aviação alugou uma aeronave de

Leia mais

Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/2014)

Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/2014) Física IV Poli Engenharia Elétrica: 4ª Aula (14/08/014) Prof. Alvaro Vannucci Na última aula vimos: A experiência e fena-upla e Thomas Young (1801). Se sin m interferência será construtiva (no ponto P

Leia mais