Estatística Aplicada
|
|
|
- Raphaella de Lacerda Dinis
- 10 Há anos
- Visualizações:
Transcrição
1 INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 2006/2007 Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto. Utilizando a técnica de venda A a quantidade de produto vendido por dia é em média de 816 Kg com um desvio padrão de 45 Kg. Adoptando a nova técnica de vendas B espera-se aumentar a quantidade de vendas diárias. Para testar tal hipótese registou-se a quantidade diária de vendas do produto durante 50 dias, obtendo-se um valor médio de 839 Kg. a) Pode aceitar-se a hipótese ao nível de significância de 0.01? b) Suponha que a média amostral observada nos 50 dias era de 800 Kg. i) Para o mesmo nível de significância qual seria agora a decisão a tomar? ii) Compare as probabilidades de ocorrência de erro tipo II, quando especificamos os valores µ=828 e µ=832 para a hipótese alternativa. iii) Na hipótese alternativa de µ=828 e para um nível de significância igual a 0.05, calcule o valor de β. Que conclusões pode tirar acerca da variação de β e α? 2. Um grupo de fiscais do IRS acredita que mais de 50% das declarações não têm os dados declarados correctamente. Se esta hipótese puder ser suportada estatisticamente, então um novo programa de inspecções será posto em funcionamento. Seja p a proporção de declarações com dados incorrectos. São testadas as declarações de 20 contribuintes seleccionados aleatoriamente. a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um teste de hipóteses adequado para um nível de significância de 0.06 e diga se o novo programa de inspecções será ou não posto em funcionamento. b) Qual a probabilidade de H 0 não ser rejeitada sabendo que a verdadeira proporção de declarações com dados incorrectos é 0.7? E se essa proporção fosse de 0.8? 3. Um gestor de um franchising está interessado em alugar uma loja e é informado que a renda média na área é de 150 contos. Suponha que, para o tipo de zona em questão, é possível dizer que as rendas desse tipo têm distribuição aproximadamente normal com desvio padrão σ=10 contos. Foram registadas as rendas de 15 lojas seleccionadas aleatoriamente. a) Suponha que para a amostra recolhida a renda média foi de 160 contos. O gestor está convencido de que o valor de 150 contos para a renda média está desactualizado. Terá o gestor razão? Justifique convenientemente a sua resposta, utilizando o teste adequado, a 2% de significância. b) Com que probabilidade é dada razão ao gestor, sabendo que o verdadeiro valor da renda média é de 160 contos?
2 4. Sabe-se que a cotação de determinada acção no mercado de valores segue uma distribuição normal de média u.m.. Com a finalidade de verificar se a acção se encontra "em alta" registou-se a cotação da acção durante 10 dias e obteve-se os valores 0.13, 0.12, 0.14, 0.15, 0.14, 0.15, 0.12, 0.13, 0.14 e 0.13 (em u.m.). Teste a hipótese da acção estar "em alta" ao nível de significância de Um agente de compras de um determinado supermercado, testou uma amostra aleatória de 100 latas de conserva na própria fábrica de enlatados. O peso líquido (em decagramas) encontrado em média por lata foi de com s=0.15. O fabricante afirma que o peso líquido médio por lata era de 16. Pode esta afirmação ser rejeitada a um nível de significância de 10%? 6. Testaram-se dois tipo, A e B, de soluções químicas em relação ao ph (grau de acidez da solução). A análise de 40 amostras da solução A acusou ph médio de 7.52 com desvio padrão de 0.024, enquanto que a análise de 45 amostras da solução B acusou ph médio de 7.49 com desvio padrão de Ao nível de significância de 0.05, teste a hipótese dos dois tipos de solução terem ph diferente. 7. Foi feito um estudo para estimar a diferença entre o tempo médio de exposição à radioactividade, de trabalhadores de uma determinada fábrica, nos anos de 1973 e Considere que os referidos tempos de exposição à radioactividade têm distribuição normal. Os dados baseados em amostras independentes de trabalhadores para os dois anos, foram os seguintes: n 1 =16 n 2 =16 x 1 =0.94 u.t. x 2 =0.62 u.t. s 2 1 =0.04 s 2 2 =0.028 a) Teste a igualdade das variâncias ao nível de significância de 0.2. b) Supondo que há de facto igualdade de variâncias, teste a igualdade das médias ao nível de significância de c) Há razões para admitir que o tempo médio de exposição à radioactividade em 1973 excede o de 1979 em mais de 0.1 unidades de tempo (u.t.)? (use α=0.01) 8. Uma empresa de consultodoria está a analisar duas cidades, A e B, em alternativa, para a implantação de um Centro Comercial regional. O rendimento familiar nas duas cidades é um elemento importante na tomada de decisão. Assim a empresa pretende testar a hipótese de que não existe diferença entre os respectivos rendimentos médios familiares. Para tal recolheu uma amostra de dimensão 9 para cada uma das cidades e verificou que o rendimento médio amostral da cidade A era 2
3 de 4 e o da cidade B de 3. Proceda ao ensaio pretendido para um nível de significância de 0.01, sabendo que a variância do rendimento familiar é 4 em ambas as cidades e que o rendimento é uma variável normal. 9. Consideremos os seguintes dados sobre amostras de duas populações: Agência A Agência B Tempo médio de resposta 4 h 6 h Desvio padrão 1 h 1.2 h nº de observações a) Ao nível de significância de 0.01, teste a alegação (H 0 ) de que as duas agências têm a mesma taxa média de resposta. b) Ao nível de significância de 0.01, teste a alegação (H 1 ) de que a média da agência B excede a média da agência A em mais de 1 hora?. 10. O director de um grupo empresarial pretende comparar as vendas de duas lojas, A e B, do grupo que se dedicam à comercialização do mesmo produto. O director acredita que as vendas da loja A são superiores às da loja B. O quadro abaixo apresenta os resultados semanais (em dezenas de Euros), obtidos durante 12 semanas para loja A e 13 semanas para a loja B, relativamente ao número de vendas. Loja A (X) Loja B (Y) Considere que as variáveis aleatórias X e Y têm distribuição normal com variâncias desconhecidas mas iguais. a) Acredita-se que para a loja A, a média semanal de vendas seja de 125 dezenas de Euros. Será plausível esta hipótese ao nível de significância de 0.01? 3
4 b) Teste ao nível de significância de 0.05 se as vendas médias na loja A são superiores às vendas na loja B. 11. Numa comparação de métodos de ensino, 40 crianças do pré-primário no grupo de controle montaram um quebra-cabeça num tempo médio de 3.2 minutos (s x =0.5 min). As 45 crianças do grupo de teste, após verem um filme sobre resolução de quebra cabeças, completaram a mesma tarefa num tempo médio de 2.8 minutos, com s Y =0.5 min. a) Cabe um teste unilateral ou um teste bilateral? Porquê? b) Que se pode concluir, ao nível de 0.05, sobre a eficiência do filme? c) É preciso supor que os tempos de montagem do quebra-cabeça sejam normalmente distribuídos? Porquê? d) É preciso admitir que as crianças tenham sido aleatoriamente distribuídas pelos grupos? 12. Considere: H 0 : µ=20 H 1 : µ 20 n=100 σ X =10 α=0.05 Determine a P(erro tipo II) para: a) µ=19 b) µ= Uma máquina está construída de forma a assegurar que a medida padrão das peças que produz tenha uma média igual a 4. Mas deseja-se também que a variabilidade dessa medida não ultrapasse uma unidade de medida (controle pelo desvio padrão). Sabe-se que a medida de uma peça produzida por aquela máquina segue uma distribuição normal. No último controle de qualidade, as 16 peças analisadas segundo a medida padrão revelaram uma média de 4, mas uma variabilidade de unidades de medida. Será a diferença na variabilidade significativa ao nível 0.05? A que nível de significância se pode considerar a diferença na variabilidade significativa? 14. Duma população normal foi recolhida uma amostra de 30 elementos em que se obteve: 30 i= 1 x i = x i i= 1 = Ensaie as hipóteses H 0 :σ=0.866 contra H 1 :σ para α=
5 15. Foi feito um estudo para comparar dois tipos de acções, quanto à sua cotação. Considere que a cotação das acções tipo I e tipo II segue uma distribuição normal. Os dados baseados em amostras independentes foram os seguintes: Tipo I Tipo II n 1 =21 n 2 =16 x 1 =380 u.m. x 2 =370 u.m. s 2 1 =100 s 2 2 =400 Teste a hipótese H 1 de que a variabilidade da cotação da acção de tipo II é maior que a variabilidade da cotação da acção de tipo I ao nível de significância de O chefe da contabilidade de certa firma está preocupado com a grande quantidade de facturas em que detectou erros. Ele estima que mais de 20% são enviadas com algum tipo de erro. Foram seleccionadas 500 facturas aleatoriamente. a) Suponha que na amostra de 500 facturas foram encontradas 130 com erros. Para α=0.01 diga se se deve concordar com a suposição feita. b) Calcule a probabilidade de não ser dada razão ao chefe da contabilidade sabendo que a verdadeira proporção é de c) Calcule a probabilidade de ser dada razão ao chefe da contabilidade sabendo que a verdadeira proporção é de Uma determinada máquina produz 20% das peças especiais sendo as restantes normais, mas quando está desafinada começa a produzir 40% de peças especiais. Recolheu-se uma amostra aleatória de 15 peças com o intuito de saber se a máquina está desafinada e verificou-se que 4 delas eram especiais e 11 normais. Considere as duas hipóteses seguintes, onde p é a verdadeira proporção de peças especiais que está a ser produzida pela máquina: H 0 : p=0.2 H 1 :p=0.4 a) O que pode concluir ao nível de significância de 6.5%? b) Calcule o erro tipo II β. 18. Um político afirma que 60% dos eleitores apoiam um projecto de lei que ele pretende apresentar. Para testar a sua afirmação, foram entrevistados 400 eleitores seleccionados aleatoriamente. a) Sabendo que dos 400 eleitores 208 declararam apoiar o referido projecto, diga se pode concordar com a afirmação feita pelo político? Use α=
6 b) Qual a probabilidade de não ser rejeitada a afirmação do político sabendo que a verdadeira proporção é 0.55? c) Qual a probabilidade de ser rejeitada a afirmação do político sabendo que a verdadeira proporção é de 0.5? 19. Numa sondagem, 60 das 200 pessoas inquiridas revelaram-se conhecedoras de determinado produto. Após uma campanha publicitária foi feito novo inquérito a 300 pessoas, das quais 111 se revelaram conhecedoras do produto. Pode considerar-se que, devido à campanha publicitária, o referido produto se tornou mais conhecido? Use α= Numa repartição de finanças de determinada cidade, 62 de 450 contribuintes negligenciaram o pagamento de impostos, enquanto que noutra repartição da mesma cidade essa proporção foi de 40 em 500. Considera que a taxa de negligência é a mesma nas duas repartições da cidade? Use α= Para se testar se a proporção de fumadores é a mesma em duas cidades universitárias, entrevistaram-se 200 estudantes em cada uma delas 36 dos estudantes da cidade A e 26 da cidade B declararam fumar. Poder-se-à concluir que a percentagem de fumadores nas duas cidades é a mesma? (Use α=0.05) 22. Seja X o Q. I. dos estudantes de uma escola A, com distribuição normal de média desconhecida e desvio padrão 18. Foi retirada uma amostra aleatória de 36 estudantes que revelou uma média de 106. a) Um professor da escola A diz que o Q. I. médio dos estudantes é superior a 110. Para α=0.05 diga se pode concordar coma afirmação feita pelo professor. b) Numa outra escola B onde o Q. I. dos estudantes também segue uma distribuição normal com média desconhecida e desvio padrão 10, foi recolhida uma amostra aleatória de tamanho 36 e o Q. I. médio obtido foi de 113. i) Será de supor que na escola B os estudantes são mais inteligentes? (α=0.05) ii) Suponha que na amostra aleatória da escola A, 4 dos alunos apresentavam um Q.I. superior a 110, e que na amostra da escola B 18 estavam nas mesmas condições. Um professor da escola B afirma que a proporção de alunos com Q.I. superior a 110 é maior na escola dele do que na escola A e que a diferença é superior a 0.1. Diga se pode concordar com a afirmação deste professor? (α=0.05) 23. Pensa-se que indivíduos canhotos têm mais força na mão esquerda do que na mão direita. Foram registados as forças, na mão direita e na mão esquerda, de 6 pessoas canhotas: Pessoa 6
7 Força na mão esquerda Força na mão direita Diga se os dados apoiam aquela hipótese. (Admita que são verificados todos os pressupostos que entenda serem necessários para responder a esta pergunta. Use α=0.05.) 24. Certo distribuidor ao comercializar um novo aditivo assegura que este faz reduzir substancialmente o consumo de combustível. Uma organização de automobilistas resolveu comprovar tal afirmação, para o que seleccionou 10 carros todos de modelos diferentes, que percorreram determinado troço nas mesmas condições, primeiro sem aditivo e depois com aditivo. Os consumos em litros foram os seguintes: Sem aditivo Com aditivo Que se deve concluir para α=0.01? (Admita que são verificados todos os pressupostos que entenda serem necessários para responder a esta pergunta.) 25. Existindo reclamações por parte das associações de pais das escolas de uma cidade, relativamente ao tempo que os filhos demoram a fazer os trajectos casa-escola, utilizando os transportes públicos, a C. M. resolveu estudar a situação e propor itinerários alternativos. A tabela seguinte mostra os tempos, em minutos, que 12 autocarros demoraram a fazer os respectivos percursos, antes e depois da implementação dos novos itinerários: Antes Depois Supondo que a diferença entre os tempos acima referidos se comportam de forma aproximadamente normal, diga se os novos itinerários resolvem o problema apresentado pelas associações de pais. (use α=0.05) 26. Dez indivíduos participaram num tratamento para perder peso. O peso dos indivíduos antes e depois do tratamento está registado na tabela seguinte. Há evidência de que em média este tratamento faz reduzir o peso em mais de 10 kilos? (Admita que são verificados todos os pressupostos que entenda serem necessários para responder a esta pergunta) Use α=0.05. Indivíduo Antes Depois
8 27. O gabinete de marketing de uma cadeia de lojas pretende saber se uma determinada campanha promocional irá aumentar as vendas. Para isso selecciona 10 pares de lojas, cada par constituído por lojas com características idênticas (no tamanho, densidade populacional da área onde está integrada, vendas mensais médias, etc.). A campanha promocional é feita numa loja de cada par, sendo esta escolhida ao acaso. O que se pode concluir quanto á eficácia da campanha promocional? (α=0.0005) Par Vendas (em u. m.) (sem campanha promocional) Vendas (em u. m.) (com campanha promocional) Diferenças d=x 1 -x 2 x 1 x (Admita que são verificados todos os pressupostos que entenda serem necessários para responder a esta questão) 28. O gerente da loja CATEM pretende reformular as regras para a linha de crédito da loja, mas para isso ele precisa de saber se a média mensal de compras não pagas é superior a 400 Euros. Para 40 meses escolhidos ao acaso os valores de compras não pagas foram os seguintes 443, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,7777 a) Verifique que a média e o desvio padrão da amostra anterior são, respectivamente, e b) O que pode concluir o gerente ao nível de significância de 0.05? 8
9 Soluções da ficha de trabalho nº 1 1. a) R. C. = [830.8, + [ (usando a estatística X ); valor observado da estatística de teste: 839; rejeitar a hipótese H 0. b) i) não rejeitar H 0. ii) β= 0.67 e β=0.4247, respectivamente. iii) β= a) R. C. ={14, 15, 16, 17, 18, 19, 20}; valor observado da estatística de teste: 15; rejeitar a hipótese H 0. b) β= e β=0.0867, respectivamente. 3. a) R. C. = [155.32, + [ (usando a estatística X ); valor observado da estatística de teste: 160; rejeitar a hipótese H 0. b) R. C. = [2.262, + [; valor observado da estatística de teste: 2.34; rejeitar a hipótese H R. C. = ]-, -1.64] [1.64, + [; valor observado da estatística de teste: -2; rejeitar a hipótese H R. C. = ]-, -1.96] [1.96, + [; valor observado da estatística de teste: 4.92; rejeitar a hipótese H a) R. C. = [0, 0.507] [1.97, + [; valor observado da estatística de teste: 1.43; não rejeitar a hipótese H 0. b) R. C. = ]-, ] [2.042, + [; valor observado da estatística de teste: 4.9; rejeitar a hipótese H 0. c) R. C. = [2.457, + [; valor observado da estatística de teste: 3.37; rejeitar a hipótese H R. C. = ]-, -2.43] [2.43, + [ (usando a estatística X A X B ); valor observado da estatística de teste: 1; não rejeitar H 0. R. C. = ]-, ] [2.576, + [ (usando a estatística Z); valor observado da estatística de teste: ; não rejeitar H a) R. C. = ]-, ] [2.576, + [; valor observado da estatística de teste: -7.43; rejeitar H 0. b) R. C. = ]-, ]; valor observado da estatística de teste: -3.72; rejeitar H a) R. C. = ]-, ] [3.106, + [; valor observado da estatística de teste: -0.81; não rejeitar H 0. b) R. C. = [1.714, + [; valor observado da estatística de teste: 1.86; rejeitar H a) Teste unilateral b) R. C. = [1.645, + [; valor observado da estatística de teste: 3.68; rejeitar H 0. c) Não, pois as amostras têm dimensão superior a 30. 9
10 d) Sim, pois as amostras devem ser aleatórias e independentes uma da outra. 12. a) β=0.83 b) β= R. C. = [25, + [; valor observado da estatística de teste: 18.2; não rejeitar H 0. O menor nível de significância que permite considerar a diferença na variabilidade significativa é R. C. = [0, 13.1] [52.3, + [; valor observado da estatística de teste: ; rejeitar H R. C. = [0, 0.543]; valor observado da estatística de teste: 0.25; rejeitar H a) R. C. = [2.326, + [; valor observado da estatística de teste: 3.354; rejeitar H 0. b) β= c)1-β= a) R. C. ={6, 7, 8,..., 15}; valor observado da estatística de teste: 4; não rejeitar H 0. b) β= a) R. C.=]-, -1.96] [1.96, + [; valor observado da estatística de teste: ; rejeitar H 0. b) β= c) 1-β= R. C.=]-, ]; valor observado da estatística de teste: ou ; não rejeitar H R. C.=]-, -1.96] [1.96, + [; valor observado da estatística de teste: ou 2.987; rejeitar H R. C.=]-, -1.96] [1.96, + [; valor observado da estatística de teste: ou ; não rejeitar H a) R. C.=[ , + [ (usando a estatística X ); valor observado da estatística de teste: 106; não rejeitar H 0. b) i) R. C.=]-, ] (usando a estatística Z); valor observado da estatística de teste: -2.04; rejeitar H 0. b) ii) R. C.=]-, ]; valor observado da estatística de teste: -2.95; rejeitar H (amostras emparelhadas) R. C.=[2.015, + [; valor observado da estatística de teste: 1.46; não rejeitar H (amostras emparelhadas) R. C.=[2.821, + [; valor observado da estatística de teste: 3.44; rejeitar H (amostras emparelhadas) R. C.=[1.796, + [; valor observado da estatística de teste: 1.066; não rejeitar H (amostras emparelhadas) R. C.=[1.833, + [; valor observado da estatística de teste: 3.45; rejeitar H (amostras emparelhadas) R. C.=[-, [; valor observado da estatística de teste: ; não rejeitar H b) R. C.=[1.6454, + [; valor observado da estatística de teste: 2.891; rejeitar H 0 10
a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um
Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Estatística
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 2009/2010 Estatística Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas,
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas
7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora
7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,
Hipótese Estatística:
1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia e Gestão Industrial 1º Semestre 2º Folha Nº8 Testes de hipóteses paramétricos 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de
Monitor Giovani Roveroto
Monitor Giovani Roveroto Intervalo de Confiança 1. Suponha que o gerente de uma loja de comércio de tintas queira calcular a verdadeira quantidade de tinta contida em um galão, comprados de um fabricante
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia do Ambiente º Semestre 1º Folha Nº4: Intervalos de confiança Probabilidades e Estatística 1.a) Determine o intervalo de confiança a 90% para a média de uma população
CAPÍTULO 9 Exercícios Resolvidos
CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159
LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES
Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS 1) Devido às altas taxas de juros, uma firma informa que 30% de suas
LISTA DE EXERCÍCIOS 3
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.
Instituto Politécnico de Viseu Escola Superior de Tecnologia
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005
EXERCÍCIOS DE INFERÊNCIA ESTATÍSTICA
EXERCÍCIOS DE INFERÊNCIA ESTATÍSTICA 1. De uma população normal com variância σ 2 = 6 extraiu-se uma amostra de 25 elementos. Qual a probabilidade de que a amostra tenha uma variância S 2 : a) maior que
Universidade Federal Fluminense
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado
1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial
Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 1 1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1;
QUEDA NO NÍVEL DE ENDIVIDAMENTO DO CATARINENSE É ACOMPANHADA POR PEQUENA DETERIORAÇÃO DA QUALIDADE DAS DÍVIDAS
QUEDA NO NÍVEL DE ENDIVIDAMENTO DO CATARINENSE É ACOMPANHADA POR PEQUENA DETERIORAÇÃO DA QUALIDADE DAS DÍVIDAS O percentual de famílias endividadas em Santa Catarina caiu de 93% em julho para 90% em agosto.
Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber
8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de
A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.
Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através
Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22
Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete
Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida
Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Ivan Bezerra Allaman Considerando variância conhecida Introdução Nestes casos utiliza-se a seguinte estatística
Universidade da Beira Interior Departamento de Matemática
Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Ficha de exercícios nº1: Análise Exploratória de dados: Redução e Representação
Aula de Exercícios - Testes de Hipóteses
Aula de Exercícios - Testes de Hipóteses Organização: Airton Kist Digitação: Guilherme Ludwig Testes de Hipóteses Exemplo Para decidirmos se os habitantes de uma ilha são descendentes da civilização A
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ
Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:
CURSO ON-LINE PROFESSOR GUILHERME NEVES
Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses
Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM
1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:
Exercícios de Gestão de Inventários
Investigação Operacional Exercícios de Gestão de Inventários Exercícios de Gestão de Inventários Exercício 1 Uma empresa deve comprar 400 unidades de um artigo, por ano. Esta procura é conhecida e fixa.
Exercícios Resolvidos sobre Amostragem
Exercícios Resolvidos sobre Amostragem Observe agora, nestes Exercícios Resolvidos, como alguns parâmetros estatísticos devem ser construídos para formar amostras fidedignas de certas populações ou fenômenos
Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I
Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia
TESTES DE HIPÓTESES. Testes de comparação entre grupos
TESTES DE HIPÓTESES Testes de comparação entre grupos 1 Abordagem não paramétrica Não se faz suposição sobre as medidas da variável de interesse Exemplo 1 Com o objetivo de avaliar o efeito de um programa
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas
UNIVERSIDADE DOS AÇORES Mestrado em Gestão (MBA)
UNIVERSIDADE DOS AÇORES Mestrado em Gestão (MBA) Métodos Estatísticos 1º ano -1º Trimestre 2009/2010 Ficha de trabalho nº 1 Exercícios usando o SPSS PARTE 1 - Estatística Descritiva 1. As notas de 32 alunos
UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo
UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos
(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?
Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido
ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015
Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 1. Numa revista foi publicada uma lista com as 100 empresas
NOME DO ALUNO: Nome da Escola: Nome do
International Statistical Literacy Competition of the ISLP Competição Internacional de Literacia Estatística do ISLP NOME DO ALUNO: Ano de Escolaridade: Idade: Nome da Escola: Nome do Professor: Turma:
INE 5122 LISTA DE EXERCÍCIOS INFERÊNCIA ESTATÍSTICA
INE 5122 LISTA DE EXERCÍCIOS INFERÊNCIA ESTATÍSTICA Marcados com asterisco os exercícios de Estimação de Parâmetros. Lista de Exercícios Inferência Estatística 1 1. O tempo médio de atendimento em uma
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
DISTRIBUIÇÕES DE PROBABILIDADE
DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos
Probabilidade. Distribuição Normal
Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade
DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE
DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
Disciplinas: Cálculo das Probabilidades e Estatística I
Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof
Lista IV - Curva Normal. Professor Salvatore Estatística I
Lista IV - Curva Normal Professor Salvatore Estatística I 19/12/2011 Consulta à tabela Normal: 1. Estabeleça a área entre 0 (zero) e Zi igual a a. + 1,35 b. + 1,58 c. +2,05 d. +2,76 e. -1,26 f. -2,49 g.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de
Probabilidades e Estatística
Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09
Fundamentos da Matemática
Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades 1. Numa entrevista, um economista afirmou que considerava a melhoria da situação económica
Escola Básica e Secundária de Alfandega da Fé
Escola Básica e Secundária de Alfandega da Fé Prova de Avaliação MACS - 11.º B Em todas as respostas, indique todos os cálculos e todas as justificações necessárias. Atenção: quando, para um resultado,
Exemplos de Testes de Hipóteses para Médias Populacionais
Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra
Distribuições: Binomial, Poisson e Normal. Distribuição Binomial
Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1
1 Variáveis Aleatórias
Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade
(BB 2010/FCC) Um capital é aplicado, durante 8 meses, a uma taxa de juros simples de 15% ao ano, apresentando um montante igual a R$ 13.200,00 no final do prazo. Se este mesmo capital tivesse sido aplicado,
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 3
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 3 1. Testes de resistência à tensão foram feitas em duas estruturas
Escola Secundária de Jácome Ratton
Escola Secundária de Jácome Ratton Ano Lectivo 2010/2011 Matemática Aplicada às Ciências Sociais Amostragem Sondagem Uma sondagem pressupõe a escolha de uma amostra. A selecção da amostra é uma das fases
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0
Investimentos e Mercados Financeiros
MESTRADO EM CONTABILIDADE, FISCALIDADE E FINANÇAS EMPRESARIAIS 1º SEMESTRE 2007/2008 Investimentos e Mercados Financeiros Caderno de Exercícios nº3 Escolha da Carteira Óptima Raquel M. Gaspar 1 Teoria
Teorema do Limite Central e Intervalo de Confiança
Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
TESTE DE MATEMÁTICA. 1. Efectuou-se um estudo sobre as vendas de automóveis num determinado stand, o qual revelou que:
TESTE DE MATEMÁTICA Ano Lectivo / - 9º I - // Nome:.. Nº... Duração da Prova: 9 minutos O teste inclui cinco itens de escolha múltipla. Seleccione a única resposta correcta de entre as quatro alternativas
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
Lista de Exercícios - Distribuição Normal
Lista de Exercícios - Distribuição Normal Monitor: Giovani e Prof. Jomar 01. Em indivíduos sadios, o consumo renal de oxigênio tem distribuição Normal de média 12 cm³/min e desvio padrão 1,5 cm³/min. Determinar
1. Uma situação na qual um comprador e um vendedor possuem informações diferentes sobre uma transação é chamada de...
1. Uma situação na qual um comprador e um vendedor possuem informações diferentes sobre uma transação é chamada de... Resposta: Informações assimétricas caracterizam uma situação na qual um comprador e
Escolha sua melhor opção e estude para concursos sem gastar nada
Escolha sua melhor opção e estude para concursos sem gastar nada 06. Observe o quadrinho. Para responder às questões de números 08 a 12, leia o texto. (Folha de S.Paulo, 14.06.2013. Adaptado) Assinale
DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM
Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo
Capítulo 8 - Testes de hipóteses. 8.1 Introdução
Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para
Olá pessoal! Sem mais delongas, vamos às questões.
Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente
ActivALEA. active e actualize a sua literacia
ActivALEA active e actualize a sua literacia N.º 25 HIISTOGRAMA Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL [email protected] Emília Oliveira Escola
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,
Investigação Operacional
Ano lectivo: 2014/2015 Universidade da Beira Interior - Departamento de Matemática Investigação Operacional Ficha de exercícios n o 5 Problemas de Transportes e Afectação. Cursos: Economia, Gestão e Optometria
Teste de Hipótese para uma Amostra Única
Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o
Cláudio Tadeu Cristino 1. Julho, 2014
Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino
Omatematico.com ESTATÍSTICA DESCRITIVA
Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).
Pelo segundo mês consecutivo cai o endividamento e a inadimplência em Santa Catarina. Síntese dos resultados Meses Situação da família
Núcleo de Pesquisas Pelo segundo mês consecutivo cai o endividamento e a inadimplência em Santa Catarina Os dados levantados pela Pesquisa de Endividamento e Inadimplência dos Consumidores (PEIC) de Santa
Estatística Aplicada para Engenharia Inferência para Duas Populações
Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas
Exercícios Sugeridos Variáveis Aleatórias Discretas e Contínuas 1. (Paulino e Branco, 2005) Num depósito estão armazenadas 500 embalagens de um produto, das quais 50 estão deterioradas. Inspeciona-se uma
Estatística II Antonio Roque Aula 9. Testes de Hipóteses
Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para
CAPÍTULO 8 - DECISÃO: ELABORANDO A GESTÃO DE UM RECURSO NATURAL 68. Exercício: UTILIZAÇÃO SUSTENTÁVEL
CAPÍTULO 8 - DECISÃO: ELABORANDO A GESTÃO DE UM RECURSO NATURAL 68 Exercício: UTILIZAÇÃO SUSTENTÁVEL O seu objectivo neste exercício é implementar uma estratégia de colheita para uma população de palmeiras
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
Matemática. Aula: 04/10. Prof. Pedro Souza. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.
Matemática Aula: 04/10 Prof. Pedro Souza UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA
Aula 10 Testes de hipóteses
Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos
Departamento comercial e Marketing
Departamento comercial e Marketing Tânia Carneiro Nº20 12ºS Departamento Comercial Noção e objectivos da função comercial O departamento de vendas é considerado por muitos como mais importante da empresa,
RESULTADOS DE OUTUBRO DE 2013
1 RESULTADOS DE OUTUBRO DE 2013 Pesquisa realizada pelo Uni-FACEF em parceria com a Fe-Comércio mede o ICC (Índice de confiança do consumidor) e PEIC (Pesquisa de endividamento e inadimplência do consumidor)
PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014
PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO LICENCIATURA EM GESTÃO LICENCIATURA EM MAEG LICENCIATURA EM FINANÇAS
LICENCIATURA EM GESTÃO LICENCIATURA EM MAEG LICENCIATURA EM FINANÇAS CONTABILIDADE GERAL I V - CADERNO DE EXERCÍCIOS Imobilizações ANO LECTIVO 2004/2005 1º SEMESTRE Exercício 29 A empresa Sempre a dever,
MATEMÁTICA FINANCEIRA
Professor Manuel MATEMÁTICA FINANCEIRA 01. (UNEB-2008) O proprietário de um imóvel contratou uma imobiliária para vendê-lo, pagando-lhe 5% do valor obtido na transação. Se a imobiliária recebeu R$ 5.600,00,
EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063
EXERCÍCIOS BINOMIAL Prof. Jomar 1. Num determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma. Então: a) Qual a probabilidade
