ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I

Tamanho: px
Começar a partir da página:

Download "ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I"

Transcrição

1 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma está correcta. Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão. Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível. Não apresente cálculos ou justificações. Cada resposta certa vale 0 pontos, cada resposta errada vale 0 (zero) pontos, cada pergunta não respondida, ou anulada, vale 0 (zero) pontos.. Sejam A e B dois acontecimentos incompatíveis não vazios de um espaço E. Qual das afirmações é necessariamente verdadeira? (A) Se não se realiza A tem que realizar-se B. (B) Se se realiza A não pode realizar-se B. (C) A B é o acontecimento certo. (D) O contrário de A e o contrário de B são incompatíveis.. Sejam X e Y dois acontecimentos de um mesmo espaço. Se p( X Y) = 0,8, p( X) = 0,7 e p( X Y) = 0,4 então p( Y ) é: (A) 0,. (B) 0,4. (C) 0,. (D) 0,.. Na figura está representado um dado e uma sua possível planificação. O dado tem as faces numeradas, conforme está indicado na figura. O dado é lançado numa mesa e considera-se a variável aleatória X: "soma dos números das cinco faces não assentes sobre a mesa". Qual, das seguintes, é a distribuição de probabilidades da variável X? (A) x i 0 (B) x i 0 p( X = x i ) p( X = x i ) Professora: Rosa Canelas

2 (C) x i 7 (D) x i 7 p( X = x i ) p( X = x i ) 4. Supondo que os códigos Multibanco são atribuídos ao acaso, qual é a probabilidade de lhe ser atribuído um código que não tenha os algarismos todos iguais: (A) (B) (C) (D) 4. O penúltimo elemento de uma linha do Triângulo de Pascal é 8. Então, pode concluir-se que o quarto elemento da linha seguinte é igual a: (A) 8 (B) 99 (C) 00 (D) 87 Grupo II Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver que efectuar e todas as justificações necessárias. Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.. Uma companhia aérea vai comemorar o seu 000º voo, sorteando um tratamento para deixar de fumar entre os passageiros desse voo, assim caracterizados: Fumadores Não fumadores Homens 8% 4% Mulheres % 8%.. Qual é a probabilidade de que o prémio saia a uma pessoa que fuma?.. Sabe-se que o prémio saiu a um homem. Qual é a probabilidade de que ele seja fumador?.. Justifique que, nesse voo, ser fumador é independente do sexo do passageiro.. As baterias de um certo modelo de computadores portáteis têm uma autonomia, em minutos, que segue uma distribuição normal do tipo N(0,0) A Luísa comprou um computador do referido modelo. Qual é a probabilidade da bateria do computador da Luísa ter uma autonomia:.. superior a horas?.. inferior a hora e 0 minutos?.. compreendida entre horas e horas e 0 minutos? Professora: Rosa Canelas

3 . Num certo país existem três operadores de telecomunicações móveis, A, B e C, e todos os números têm 7 algarismos. Os números do operador A começam por, os do B por e os do C por. O Luís e a Cristina são dois dos clientes de telemóvel desse país... Supondo que escolheram o operador ao acaso, qual é a probabilidade de terem escolhido o mesmo operador?.. Se o número do telemóvel do Luís for 44 qual é a probabilidade do telemóvel da Maria, que é do operador C, ter os mesmos algarismos? Apresente o resultado na forma de fracção irredutível... Metade dos clientes de telemóvel, desse país, são firmas. O operador A domina 0% do mercado mas apenas 0% dos seus clientes são firmas. Escolhido um cliente, ao acaso, qual é a probabilidade de, não sendo firma, ser cliente do operador A? Apresente o resultado na forma de percentagem. 4. Prove, justificando todos os passos, que se A e B são acontecimentos independentes então p( A B) + p( A) p( B) + p( B) =. Em relação a uma linha do Triângulo de Pascal, sabe-se que a soma de todos os elementos dessa linha é 4. Num saco há bolas iguais, em número igual ao dos elementos da referida linha do Triângulo de Pascal. O número correspondente a cada elemento dessa linha foi atribuído a uma bola, ficando desta forma as bolas numeradas. Considere a experiência aleatória que consiste em «retirar duas bolas do saco e verificar os números das mesmas»... Determine a probabilidade de as bolas retiradas terem o mesmo número. Apresente o resultado na forma de fracção irredutível... Considere os acontecimentos: A: «sair a bola correspondente ao elemento central da linha»; B: «os números das bolas são diferentes» Sem usar a fórmula da probabilidade condicionada, calcule p( B A ). Numa pequena composição, explique o raciocínio que baseou a resposta. FIM Professora: Rosa Canelas

4 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A COTAÇÕES Grupo I... 0 Cada resposta certa Cada resposta errada, não respondida ou anulada... 0 Grupo II TOTAL Professora: Rosa Canelas 4

5 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Proposta de correcção Grupo I. (B) Sejam A e B dois acontecimentos incompatíveis não vazios de um espaço E. A afirmação que é necessariamente verdadeira é «se se realiza A não pode realizar-se B» A B. (B) Sejam X e Y dois acontecimentos de um mesmo espaço. Se p( X Y) = 0,8, p( X) 0,7 p X Y 0,4 = e ( ) = então p( Y ) Y é 0,4 porque p( Y) + p( X Y) = p( X Y) X. (D) Na figura está representado um dado e uma sua possível planificação. O dado tem as faces numeradas, conforme está indicado na figura. O dado é lançado numa mesa e considera-se a variável aleatória X: "soma dos números das cinco faces não assentes sobre a mesa". A distribuição de probabilidades da variável X é x i 7 p( X = x i ) A soma é obtida quando uma face com o número fica virada para baixo, obtém-se quando uma face com o número fica virada para baixo e 7 é a soma obtida quando a face como o número 0 fica virada para baixo. E a probabilidade de uma face com o número ficar virada para baixo é =. Há faces das que têm o número e só uma das com o número (B) Supondo que os códigos Multibanco são atribuídos ao acaso, a probabilidade de lhe ser atribuído um código que não tenha os algarismos todos iguais é o contrário de nos ser atribuído um código com os algarismos todos iguais então p = 0 = 9990 = Professora: Rosa Canelas

6 . (B) O penúltimo elemento de uma linha do Triângulo de Pascal é 8. Então, pode concluir-se que o quarto elemento da linha seguinte é igual a 9 C = 99 Grupo II. Uma companhia aérea vai comemorar o seu 000º voo, sorteando um tratamento para deixar de fumar entre os passageiros desse voo, assim caracterizados na tabela que completámos: Fumadores Não fumadores Homens 8% 4% 0% Mulheres % 8% 40% 0% 70% 00%.. A probabilidade de que o prémio saia a uma pessoa que fuma é 0%... Sabe-se que o prémio saiu a um homem. A probabilidade de que ele seja fumador é 8 p( F H) = = 0% 0.. Justifiquemos que, nesse voo, ser fumador é independente do sexo do passageiro porque 40 pf H ( ) = 0% = pf ( ) e p( F M) = = 0% = p( F). As baterias de um certo modelo de computadores portáteis têm uma autonomia, em minutos, que segue uma distribuição normal do tipo N(0,0) A Luísa comprou um computador do referido modelo. A probabilidade da bateria do computador da Luísa ter uma autonomia:.. superior a horas é 0% porque horas são 0 minutos e 0 minutos é a média ou calculando normalcdf ( 0,0,0,0) 0,.. inferior a hora e 0 minutos é % porque p( x < 0) = normacdf ( 80,0,0,0) 0,.. compreendida entre horas e horas e 0 minutos é 4% porque: p( 0 < x < 0) = normacdf ( 0,0,0,0) 0,4. Num certo país existem três operadores de telecomunicações móveis, A, B e C, e todos os números têm 7 algarismos. Os números do operador A começam por, os do B por e os do C por. O Luís e a Cristina são dois dos clientes de telemóvel desse país. Professora: Rosa Canelas

7 .. Supondo que escolheram o operador ao acaso, a probabilidade de terem escolhido o mesmo operador é p = pois o número de casos possíveis é e o número de casos favoráveis é,.. Se o número do telemóvel do Luís for 44 a probabilidade do telemóvel da Maria, que é do operador C, ter os mesmos algarismos é dado por: C! 0 p = = = porque o telemóvel da Maria começa por e faltam-lhe algarismos que queremos que sejam,, e dois iguais a 4. O número de casos favoráveis pode ser obtido de duas maneiras diferentes: se pensarmos primeiro nas posições diferentes que os dois algarismos iguais a 4 podem ocupar e permutando os restantes algarismos pelas restantes posições concluímos poder colocar os algarismos de C! formas diferentes, ou fazer sequências de posições das que temos disponíveis para colocarmos, e, ficando os dois 4 nas restantes posições concluímos poder colocar os algarismos de A formas diferentes. Nos casos possíveis teremos de considerar todos os números possíveis do operador C ou seja 0 hipóteses para cada um dos algarismos sendo o número de casos possíveis Metade dos clientes de telemóvel, desse país, são firmas. O operador A domina 0% do mercado mas apenas 0% dos seus clientes são firmas. Escolhido um cliente, ao acaso, a probabilidade de, não sendo firma, ser cliente do operador A é dada por p( A F ). Se considerarmos os acontecimentos A: «ser cliente do operador A» e F: «ser firma» podemos traduzir os dados da seguinte maneira: p( F) = 0%, p( A) = 0%, p( F A) = 0% então ( ) Organizando os dados numa tabela fica: Podemos então calcular ( ) A A F % 8% 0% F 48% % 0% 0% 40% 00% 0, 48 p A F = = 9% 0, p A F = 0, 0,= 0, 4. Provemos, justificando todos os passos, que se A e B são acontecimentos independentes então p( A B) + p( A) p( B) + p( B) = p( A B) + p( A) p( B) + p( B) = p( A B) + p( A) p( B) + p( B) pelas Leis de De Morgan ( ) + ( ) ( ) + ( ) = ( ) + ( ) ( ( )) + ( ) porque p( A) = p( A) p A B p A p B p B p A B p A p B p B Professora: Rosa Canelas 7

8 ( ) ( ) ( ( )) ( ) ( ( ) ( ) ( )) ( ) ( ) ( ) ( ) p A B + p A p B + p B = p A + p B p A B + p A p A p B + p B porque p( A B) = p( A) + p( B) p( A B) pa ( ) pb ( ) + pa ( B) + pa ( ) pa ( ) pb ( ) + pb ( ) = + pa ( B) pa ( B) = porque sendo os acontecimentos independentes p( A B) = p( A) p( B). Em relação a uma linha do Triângulo de Pascal, sabe-se que a soma de todos os elementos dessa linha é 4. Num saco há bolas iguais, em número igual ao dos elementos da referida linha do Triângulo de Pascal. O número correspondente a cada elemento dessa linha foi atribuído a uma bola, ficando desta forma as bolas numeradas. Considere a experiência aleatória que consiste em «retirar duas bolas do saco e verificar os números das mesmas». Se a soma de todos os elementos dessa linha é 4, como triângulo de Pascal em que n = 4 = estamos na linha do A probabilidade de as bolas retiradas terem o mesmo número é p = =, ou 7 7 p = = 7 C 7.. Considere os acontecimentos: A: «sair a bola correspondente ao elemento central da linha»; B: «os números das bolas são diferentes» A expressão p( B A ) representa a probabilidade de os números das bolas retiradas serem diferentes sabendo que saiu o número central da linha do Triângulo de Pascal ou seja que saiu o 0. Como não há outra bola com o número 0 só podemos ter retirado duas bolas com números diferentes. Pelo que pb A ( ) =. Professora: Rosa Canelas 8

9 ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Critérios de Correcção Grupo I... 0 Cada resposta certa... 0 Cada resposta errada, não respondida ou anulada B B D B B Grupo II p( F) = 0% 0 8 p F H = = 0% 0.. ( ).. pf H ( ) = pf ( ) = 0% e ( ) ( ) 0 pf M = pf = 0%. 0.. p( X>0 ) =normalcdf ( 0,0,0,0) 0, 0.. p( x < 0) = normacdf ( 80,0,0,0) 0, 0.. p( 0 < x < 0) = normacdf ( 0,0,0,0) 0, p = = 0 C!.. p = = p( F) = 0%, p( A) = 0%, ( ) p( A F) = 0, 0,= 0, 0, 48 p A F = = 9% 0, ( ) p F A = 0% então p( A B) + p( A) p( B) + p( B) = p( A B) + p( A) p( B) + p( B) p( A B) p( A) ( p( B) ) p( B) = Professora: Rosa Canelas 9

10 ( p( A) + p( B) p( A B) ) + p( A) p( A) p( B) + p( B) 4 = pa ( ) pb ( ) + pa ( B) + pa ( ) pa ( ) pb ( ) + pb ( ) = + p( A B) p( A B) = como 4 = estamos na linha do triângulo de Pascal em que n = p = =, ou p = = C pb A ( ) = Reconhecimento de que o termo central é único composição 0 Total 00 Professora: Rosa Canelas 0

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

TESTE DE MATEMÁTICA. 1. Efectuou-se um estudo sobre as vendas de automóveis num determinado stand, o qual revelou que:

TESTE DE MATEMÁTICA. 1. Efectuou-se um estudo sobre as vendas de automóveis num determinado stand, o qual revelou que: TESTE DE MATEMÁTICA Ano Lectivo / - 9º I - // Nome:.. Nº... Duração da Prova: 9 minutos O teste inclui cinco itens de escolha múltipla. Seleccione a única resposta correcta de entre as quatro alternativas

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

, podemos afirmar que:

, podemos afirmar que: PROOFMATH WWW.PROOFMATH.WORDPRESS.COM MAIS UM BLOG DE MATEMÁTICA FOLHA DE TRABALHO º ANO DE ESCOLARIDADE PREPARAR EXAME NACIONAL. Considere as seguintes sucessões a n, b n Sendo a lim an, b limbn e c lim

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Nacional do Ensino Secundário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 12 Páginas Sem figuras

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150

Leia mais

(Testes intermédios e exames 2007/2008)

(Testes intermédios e exames 2007/2008) (Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007 EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como

Leia mais

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 24.01.2008. 11.º Ano de Escolaridade

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 24.01.2008. 11.º Ano de Escolaridade Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 24.01.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 28.05.2008 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Nome do aluno N.º

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º anos ou 11.º/12.º anos de Escolaridade Prova 835/1.ª Fase

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 13 Páginas Duração

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 07.05.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

PROGRAMA DE ENGENHARIA DE TRANSPORTE PET/COPPE/UFRJ

PROGRAMA DE ENGENHARIA DE TRANSPORTE PET/COPPE/UFRJ PROGRAMA DE ENGENHARIA DE TRANSPORTE PET/COPPE/UFRJ CURSO: Mestrado em Engenharia de Transporte ADMISSÃO: 2012/1 ATIVIDADE: Prova Escrita parte integrante do PROCESSO DATA: 21/11/2010 SELETIVO DE INGRESSO

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 6.05.2010. 11.º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 6.05.2010. 11.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/Época Especial 13 Páginas

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010

Leia mais

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE ANOS Duração: 60 minutos Nome: 1ª Parte Para cada uma das seguintes questões de escolha múltipla, seleccione a resposta correcta com um círculo de entre

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 5.05.2010. 10.º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 5.05.2010. 10.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 5.05.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

MATEMÁTICA A VERSÃO 1

MATEMÁTICA A VERSÃO 1 gabinete de avaliação educacional T E S T E I N T E R M É D I O 11.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 10/Maio/2007 MATEMÁTICA A VERSÃO 1 Na sua

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática B 11.º/1.º Anos de Escolaridade Prova 735/.ª Fase 1 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco 1. A figura abaixo ilustra um bloco de massa igual a 8 kg, em repouso, apoiado sobre um plano horizontal. Um prato de balança, com massa desprezível, está ligado ao bloco por um fio ideal. O fio passa

Leia mais

Identifica claramente, na folha de respostas, os números dos itens a que respondes.

Identifica claramente, na folha de respostas, os números dos itens a que respondes. Teste Intermédio de Matemática Teste Intermédio Matemática Duração do Teste: 90 minutos 31.01.2008 3.º Ciclo do Ensino Básico Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente, na folha de

Leia mais

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1...

Grupo I... 70 Cada resposta certa...10 Grupo II...130 1...35 3...30 1.1...15 3.1...10 1.2...10 3.2...20 1.3...10 4...35 2...30 4.1...5 2.1... Material necessário: Material de escrita. Máquina de calcular científica (não gráfica). A prova é constituída por dois grupos, I e II. O grupo I inclui 7 questões de escolha múltipla. Para cada uma delas,

Leia mais

Escola Básica do 2º e 3º Ciclos S. Paio de Moreira de Cónegos

Escola Básica do 2º e 3º Ciclos S. Paio de Moreira de Cónegos Escola Básica do 2º e 3º Ciclos S. Paio de Moreira de Cónegos Ficha de Avaliação - Matemática 7º Ano Nome: N.º: Turma: Classificação: Professor: Enc. Educ.: A Esta ficha é constituída por duas partes,

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:

Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos

Leia mais

Exame Nacional de 2005 2. a chamada

Exame Nacional de 2005 2. a chamada Exame Nacional de 200 2. a chamada 1. Hoje de manhã, a Ana saiu de casa e dirigiu-se para a escola. Fez uma parte desse percurso a andar e a outra parte a correr. Cotações gráfico que se segue mostra a

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA 835/13 Págs. EXAME NACIONAL DO ENSINO SECUNDÁRIO 10.º/11.º ou 11.º/12.º Anos de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da prova: 150 minutos 2007 2.ª FASE PROVA ESCRITA DE

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 13 Páginas Duração

Leia mais

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes

3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/Época Especial 15 Páginas Duração

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática B 10.º e 11.º Anos de Escolaridade Prova 735/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 39/0, de 5 de julho Prova Escrita de Matemática A.º Ano de Escolaridade Prova 635/Época Especial 5 Páginas Duração da Prova: 50 minutos. Tolerância:

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/2.ª Fase 12 Páginas Duração

Leia mais

Vamos Jogar no Totoloto?

Vamos Jogar no Totoloto? Vamos Jogar no Totoloto? N CRISTIN BICO MTOS CRL HENRIQUES Departamento de Matemática, Escola Superior de Tecnologia de Viseu Tendo como objectivo despertar o interesse dos alunos pelo cálculo de probabilidades,

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente º Semestre 1º Folha Nº4: Intervalos de confiança Probabilidades e Estatística 1.a) Determine o intervalo de confiança a 90% para a média de uma população

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

SISTEMA CLÁSSICO DE REDUÇÃO

SISTEMA CLÁSSICO DE REDUÇÃO Page 1 of 6 SISTEMA CLÁSSICO DE REDUÇÃO Este documento irá ensinar-lhe como pode fazer um desdobramento reduzido, segundo o processo clássico (italiano) para qualquer sistema 5/50, em particular para o

Leia mais

PROVA MODELO 2015. Duração da prova: 120 minutos

PROVA MODELO 2015. Duração da prova: 120 minutos Página 1 de 8 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 3 anos, Decreto-Lei n.º 64/006, de 1 de março AVALIAÇÃO DA CAPACIDADE

Leia mais

1 Probabilidade Condicional - continuação

1 Probabilidade Condicional - continuação 1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos

Leia mais

COTAÇÕES GRUPO I. 1... 8 pontos 2... 8 pontos 3... 8 pontos 4... 8 pontos 5... 10 pontos 6... 10 pontos GRUPO II

COTAÇÕES GRUPO I. 1... 8 pontos 2... 8 pontos 3... 8 pontos 4... 8 pontos 5... 10 pontos 6... 10 pontos GRUPO II Teste Intermédio de Geologia Teste Intermédio Geologia Duração do Teste: 90 minutos 0.0.009 11.º ou 1.º Anos de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março COTAÇÕES GRUPO I.... 8 pontos.... 8 pontos

Leia mais

! "#! #" $ % & $ % '! " #"!' ((() ((() (((((( '

! #! # $ % & $ % '!  #!' ((() ((() (((((( ' !"#! #"$ % &$ %'! " #"!'((()((()(((((( ' *+"","+*" &!"' " "-'. *+"","+*" " ' /0"1"*" /0"+1 *+"","+*""+"! + '1"!"#! #$% $ #$%& /02 3 &$ # 4 56 $ *+"","+*" 4 +% 1"+6 4 56"#*"+"! 0"# $ *+"","+*" " % Dispões

Leia mais

100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS

100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS 100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

UNIVERSIDADE DO ALGARVE

UNIVERSIDADE DO ALGARVE UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -

Leia mais

AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA AULA 9 - PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º Anos ou 11.º/12.º Anos de Escolaridade Prova 835/1.ª Fase

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de

Leia mais

Probabilidade. Vítor Pereira

Probabilidade. Vítor Pereira Probabilidade Vítor Pereira CAPíTULO 1 Probabilidade 1.1. Experiência aleatória Uma experiência aleatória é um processo que pode ser repetido em condições idênticas tantas vezes quantas se queira e em

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Como perder amigos e enganar pessoas

Como perder amigos e enganar pessoas Como perder amigos e enganar pessoas Nicolau C. Saldanha 9 de janeiro de 998 Neste artigo apresentaremos quatro situações simples em que probabilidades enganam. Em alguns casos a probabilidade de certos

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES

EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES EXERCÍCIOS EXAMES E TESTES INTERMÉDIOS ESTATÍSTICA E PROBABILIDADES. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012

PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012 Departamento de Engenharia Electrotécnica PROGRAMAÇÃO DE MICROPROCESSADORES 2011 / 2012 Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1º ano 2º semestre Trabalho Final Reservas de viagens

Leia mais

SERÁ NECESSÁRIA UMA FORÇA PARA

SERÁ NECESSÁRIA UMA FORÇA PARA Ano Lectivo 2010/2011 Professora Fátima Pires FÍSICO-QUÍMICA SERÁ NECESSÁRIA UMA FORÇA PARA QUE UM CORPO SE MOVA? Avaliação: Professora: Observações: 11ºB «Será necessária uma força para que um corpo se

Leia mais

Agrupamento de Escolas de Santo António Parede Escola Básica 2,3 de Santo António. Nome:

Agrupamento de Escolas de Santo António Parede Escola Básica 2,3 de Santo António. Nome: Agrupamento de Escolas de Santo António Parede Escola Básica 2,3 de Santo António Ficha de Preparação - Teste Intermédio de Matemática Nome: Nº: 8.ºAno Turma Parede, / /2011 1. Qual das representações

Leia mais

Noções de Probabilidade e Estatística CAPÍTULO 2

Noções de Probabilidade e Estatística CAPÍTULO 2 Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 2 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 2.1 1 Para cada um dos casos abaixo, escreva o espaço

Leia mais

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M. ([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times:

Assim, de acordo com as regras do campeonato temos a seguinte tabela dos dois times: Raciocínio Lógico- Vinicius Werneck 1. Em um campeonato de futebol, a pontuação acumulada de um time é a soma dos pontos obtidos em cada jogo disputado. Por jogo, cada time ganha três pontos por vitória,

Leia mais

Módulo X. Querido aluno(a)!!!

Módulo X. Querido aluno(a)!!! 1 Módulo X Querido aluno(a)!!! É o que deseja a equipe www.somaticaeducar.com.br 2 Exercícios 1) Um grupo de 15 elementos apresenta a seguinte composição: Um elemento é escolhido as acaso. Pergunta-se:

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A. Número convencional do Agrupamento

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro

Leia mais